| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> |
| * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> |
| * (C) Copyright 2008 Armadeus Systems nc |
| * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> |
| * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <environment.h> |
| #include <malloc.h> |
| #include <memalign.h> |
| #include <miiphy.h> |
| #include <net.h> |
| #include <netdev.h> |
| #include <power/regulator.h> |
| |
| #include <asm/io.h> |
| #include <linux/errno.h> |
| #include <linux/compiler.h> |
| |
| #include <asm/arch/clock.h> |
| #include <asm/arch/imx-regs.h> |
| #include <asm/mach-imx/sys_proto.h> |
| #include <asm-generic/gpio.h> |
| |
| #include "fec_mxc.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* |
| * Timeout the transfer after 5 mS. This is usually a bit more, since |
| * the code in the tightloops this timeout is used in adds some overhead. |
| */ |
| #define FEC_XFER_TIMEOUT 5000 |
| |
| /* |
| * The standard 32-byte DMA alignment does not work on mx6solox, which requires |
| * 64-byte alignment in the DMA RX FEC buffer. |
| * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also |
| * satisfies the alignment on other SoCs (32-bytes) |
| */ |
| #define FEC_DMA_RX_MINALIGN 64 |
| |
| #ifndef CONFIG_MII |
| #error "CONFIG_MII has to be defined!" |
| #endif |
| |
| #ifndef CONFIG_FEC_XCV_TYPE |
| #define CONFIG_FEC_XCV_TYPE MII100 |
| #endif |
| |
| /* |
| * The i.MX28 operates with packets in big endian. We need to swap them before |
| * sending and after receiving. |
| */ |
| #ifdef CONFIG_MX28 |
| #define CONFIG_FEC_MXC_SWAP_PACKET |
| #endif |
| |
| #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) |
| |
| /* Check various alignment issues at compile time */ |
| #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) |
| #error "ARCH_DMA_MINALIGN must be multiple of 16!" |
| #endif |
| |
| #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ |
| (PKTALIGN % ARCH_DMA_MINALIGN != 0)) |
| #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" |
| #endif |
| |
| #undef DEBUG |
| |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
| static void swap_packet(uint32_t *packet, int length) |
| { |
| int i; |
| |
| for (i = 0; i < DIV_ROUND_UP(length, 4); i++) |
| packet[i] = __swab32(packet[i]); |
| } |
| #endif |
| |
| /* MII-interface related functions */ |
| static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr, |
| uint8_t regaddr) |
| { |
| uint32_t reg; /* convenient holder for the PHY register */ |
| uint32_t phy; /* convenient holder for the PHY */ |
| uint32_t start; |
| int val; |
| |
| /* |
| * reading from any PHY's register is done by properly |
| * programming the FEC's MII data register. |
| */ |
| writel(FEC_IEVENT_MII, ð->ievent); |
| reg = regaddr << FEC_MII_DATA_RA_SHIFT; |
| phy = phyaddr << FEC_MII_DATA_PA_SHIFT; |
| |
| writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | |
| phy | reg, ð->mii_data); |
| |
| /* wait for the related interrupt */ |
| start = get_timer(0); |
| while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { |
| if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { |
| printf("Read MDIO failed...\n"); |
| return -1; |
| } |
| } |
| |
| /* clear mii interrupt bit */ |
| writel(FEC_IEVENT_MII, ð->ievent); |
| |
| /* it's now safe to read the PHY's register */ |
| val = (unsigned short)readl(ð->mii_data); |
| debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, |
| regaddr, val); |
| return val; |
| } |
| |
| static int fec_get_clk_rate(void *udev, int idx) |
| { |
| #if IS_ENABLED(CONFIG_IMX8) |
| struct fec_priv *fec; |
| struct udevice *dev; |
| int ret; |
| |
| dev = udev; |
| if (!dev) { |
| ret = uclass_get_device(UCLASS_ETH, idx, &dev); |
| if (ret < 0) { |
| debug("Can't get FEC udev: %d\n", ret); |
| return ret; |
| } |
| } |
| |
| fec = dev_get_priv(dev); |
| if (fec) |
| return fec->clk_rate; |
| |
| return -EINVAL; |
| #else |
| return imx_get_fecclk(); |
| #endif |
| } |
| |
| static void fec_mii_setspeed(struct ethernet_regs *eth) |
| { |
| /* |
| * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock |
| * and do not drop the Preamble. |
| * |
| * The i.MX28 and i.MX6 types have another field in the MSCR (aka |
| * MII_SPEED) register that defines the MDIO output hold time. Earlier |
| * versions are RAZ there, so just ignore the difference and write the |
| * register always. |
| * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. |
| * HOLDTIME + 1 is the number of clk cycles the fec is holding the |
| * output. |
| * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). |
| * Given that ceil(clkrate / 5000000) <= 64, the calculation for |
| * holdtime cannot result in a value greater than 3. |
| */ |
| u32 pclk; |
| u32 speed; |
| u32 hold; |
| int ret; |
| |
| ret = fec_get_clk_rate(NULL, 0); |
| if (ret < 0) { |
| printf("Can't find FEC0 clk rate: %d\n", ret); |
| return; |
| } |
| pclk = ret; |
| speed = DIV_ROUND_UP(pclk, 5000000); |
| hold = DIV_ROUND_UP(pclk, 100000000) - 1; |
| |
| #ifdef FEC_QUIRK_ENET_MAC |
| speed--; |
| #endif |
| writel(speed << 1 | hold << 8, ð->mii_speed); |
| debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); |
| } |
| |
| static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr, |
| uint8_t regaddr, uint16_t data) |
| { |
| uint32_t reg; /* convenient holder for the PHY register */ |
| uint32_t phy; /* convenient holder for the PHY */ |
| uint32_t start; |
| |
| reg = regaddr << FEC_MII_DATA_RA_SHIFT; |
| phy = phyaddr << FEC_MII_DATA_PA_SHIFT; |
| |
| writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | |
| FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); |
| |
| /* wait for the MII interrupt */ |
| start = get_timer(0); |
| while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { |
| if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { |
| printf("Write MDIO failed...\n"); |
| return -1; |
| } |
| } |
| |
| /* clear MII interrupt bit */ |
| writel(FEC_IEVENT_MII, ð->ievent); |
| debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, |
| regaddr, data); |
| |
| return 0; |
| } |
| |
| static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr, |
| int regaddr) |
| { |
| return fec_mdio_read(bus->priv, phyaddr, regaddr); |
| } |
| |
| static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr, |
| int regaddr, u16 data) |
| { |
| return fec_mdio_write(bus->priv, phyaddr, regaddr, data); |
| } |
| |
| #ifndef CONFIG_PHYLIB |
| static int miiphy_restart_aneg(struct eth_device *dev) |
| { |
| int ret = 0; |
| #if !defined(CONFIG_FEC_MXC_NO_ANEG) |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| struct ethernet_regs *eth = fec->bus->priv; |
| |
| /* |
| * Wake up from sleep if necessary |
| * Reset PHY, then delay 300ns |
| */ |
| #ifdef CONFIG_MX27 |
| fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); |
| #endif |
| fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); |
| udelay(1000); |
| |
| /* Set the auto-negotiation advertisement register bits */ |
| fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, |
| LPA_100FULL | LPA_100HALF | LPA_10FULL | |
| LPA_10HALF | PHY_ANLPAR_PSB_802_3); |
| fec_mdio_write(eth, fec->phy_id, MII_BMCR, |
| BMCR_ANENABLE | BMCR_ANRESTART); |
| |
| if (fec->mii_postcall) |
| ret = fec->mii_postcall(fec->phy_id); |
| |
| #endif |
| return ret; |
| } |
| |
| #ifndef CONFIG_FEC_FIXED_SPEED |
| static int miiphy_wait_aneg(struct eth_device *dev) |
| { |
| uint32_t start; |
| int status; |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| struct ethernet_regs *eth = fec->bus->priv; |
| |
| /* Wait for AN completion */ |
| start = get_timer(0); |
| do { |
| if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { |
| printf("%s: Autonegotiation timeout\n", dev->name); |
| return -1; |
| } |
| |
| status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); |
| if (status < 0) { |
| printf("%s: Autonegotiation failed. status: %d\n", |
| dev->name, status); |
| return -1; |
| } |
| } while (!(status & BMSR_LSTATUS)); |
| |
| return 0; |
| } |
| #endif /* CONFIG_FEC_FIXED_SPEED */ |
| #endif |
| |
| static int fec_rx_task_enable(struct fec_priv *fec) |
| { |
| writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); |
| return 0; |
| } |
| |
| static int fec_rx_task_disable(struct fec_priv *fec) |
| { |
| return 0; |
| } |
| |
| static int fec_tx_task_enable(struct fec_priv *fec) |
| { |
| writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); |
| return 0; |
| } |
| |
| static int fec_tx_task_disable(struct fec_priv *fec) |
| { |
| return 0; |
| } |
| |
| /** |
| * Initialize receive task's buffer descriptors |
| * @param[in] fec all we know about the device yet |
| * @param[in] count receive buffer count to be allocated |
| * @param[in] dsize desired size of each receive buffer |
| * @return 0 on success |
| * |
| * Init all RX descriptors to default values. |
| */ |
| static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) |
| { |
| uint32_t size; |
| ulong data; |
| int i; |
| |
| /* |
| * Reload the RX descriptors with default values and wipe |
| * the RX buffers. |
| */ |
| size = roundup(dsize, ARCH_DMA_MINALIGN); |
| for (i = 0; i < count; i++) { |
| data = fec->rbd_base[i].data_pointer; |
| memset((void *)data, 0, dsize); |
| flush_dcache_range(data, data + size); |
| |
| fec->rbd_base[i].status = FEC_RBD_EMPTY; |
| fec->rbd_base[i].data_length = 0; |
| } |
| |
| /* Mark the last RBD to close the ring. */ |
| fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; |
| fec->rbd_index = 0; |
| |
| flush_dcache_range((ulong)fec->rbd_base, |
| (ulong)fec->rbd_base + size); |
| } |
| |
| /** |
| * Initialize transmit task's buffer descriptors |
| * @param[in] fec all we know about the device yet |
| * |
| * Transmit buffers are created externally. We only have to init the BDs here.\n |
| * Note: There is a race condition in the hardware. When only one BD is in |
| * use it must be marked with the WRAP bit to use it for every transmitt. |
| * This bit in combination with the READY bit results into double transmit |
| * of each data buffer. It seems the state machine checks READY earlier then |
| * resetting it after the first transfer. |
| * Using two BDs solves this issue. |
| */ |
| static void fec_tbd_init(struct fec_priv *fec) |
| { |
| ulong addr = (ulong)fec->tbd_base; |
| unsigned size = roundup(2 * sizeof(struct fec_bd), |
| ARCH_DMA_MINALIGN); |
| |
| memset(fec->tbd_base, 0, size); |
| fec->tbd_base[0].status = 0; |
| fec->tbd_base[1].status = FEC_TBD_WRAP; |
| fec->tbd_index = 0; |
| flush_dcache_range(addr, addr + size); |
| } |
| |
| /** |
| * Mark the given read buffer descriptor as free |
| * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 |
| * @param[in] prbd buffer descriptor to mark free again |
| */ |
| static void fec_rbd_clean(int last, struct fec_bd *prbd) |
| { |
| unsigned short flags = FEC_RBD_EMPTY; |
| if (last) |
| flags |= FEC_RBD_WRAP; |
| writew(flags, &prbd->status); |
| writew(0, &prbd->data_length); |
| } |
| |
| static int fec_get_hwaddr(int dev_id, unsigned char *mac) |
| { |
| imx_get_mac_from_fuse(dev_id, mac); |
| return !is_valid_ethaddr(mac); |
| } |
| |
| #ifdef CONFIG_DM_ETH |
| static int fecmxc_set_hwaddr(struct udevice *dev) |
| #else |
| static int fec_set_hwaddr(struct eth_device *dev) |
| #endif |
| { |
| #ifdef CONFIG_DM_ETH |
| struct fec_priv *fec = dev_get_priv(dev); |
| struct eth_pdata *pdata = dev_get_platdata(dev); |
| uchar *mac = pdata->enetaddr; |
| #else |
| uchar *mac = dev->enetaddr; |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| #endif |
| |
| writel(0, &fec->eth->iaddr1); |
| writel(0, &fec->eth->iaddr2); |
| writel(0, &fec->eth->gaddr1); |
| writel(0, &fec->eth->gaddr2); |
| |
| /* Set physical address */ |
| writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], |
| &fec->eth->paddr1); |
| writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); |
| |
| return 0; |
| } |
| |
| /* Do initial configuration of the FEC registers */ |
| static void fec_reg_setup(struct fec_priv *fec) |
| { |
| uint32_t rcntrl; |
| |
| /* Set interrupt mask register */ |
| writel(0x00000000, &fec->eth->imask); |
| |
| /* Clear FEC-Lite interrupt event register(IEVENT) */ |
| writel(0xffffffff, &fec->eth->ievent); |
| |
| /* Set FEC-Lite receive control register(R_CNTRL): */ |
| |
| /* Start with frame length = 1518, common for all modes. */ |
| rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; |
| if (fec->xcv_type != SEVENWIRE) /* xMII modes */ |
| rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; |
| if (fec->xcv_type == RGMII) |
| rcntrl |= FEC_RCNTRL_RGMII; |
| else if (fec->xcv_type == RMII) |
| rcntrl |= FEC_RCNTRL_RMII; |
| |
| writel(rcntrl, &fec->eth->r_cntrl); |
| } |
| |
| /** |
| * Start the FEC engine |
| * @param[in] dev Our device to handle |
| */ |
| #ifdef CONFIG_DM_ETH |
| static int fec_open(struct udevice *dev) |
| #else |
| static int fec_open(struct eth_device *edev) |
| #endif |
| { |
| #ifdef CONFIG_DM_ETH |
| struct fec_priv *fec = dev_get_priv(dev); |
| #else |
| struct fec_priv *fec = (struct fec_priv *)edev->priv; |
| #endif |
| int speed; |
| ulong addr, size; |
| int i; |
| |
| debug("fec_open: fec_open(dev)\n"); |
| /* full-duplex, heartbeat disabled */ |
| writel(1 << 2, &fec->eth->x_cntrl); |
| fec->rbd_index = 0; |
| |
| /* Invalidate all descriptors */ |
| for (i = 0; i < FEC_RBD_NUM - 1; i++) |
| fec_rbd_clean(0, &fec->rbd_base[i]); |
| fec_rbd_clean(1, &fec->rbd_base[i]); |
| |
| /* Flush the descriptors into RAM */ |
| size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), |
| ARCH_DMA_MINALIGN); |
| addr = (ulong)fec->rbd_base; |
| flush_dcache_range(addr, addr + size); |
| |
| #ifdef FEC_QUIRK_ENET_MAC |
| /* Enable ENET HW endian SWAP */ |
| writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, |
| &fec->eth->ecntrl); |
| /* Enable ENET store and forward mode */ |
| writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, |
| &fec->eth->x_wmrk); |
| #endif |
| /* Enable FEC-Lite controller */ |
| writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, |
| &fec->eth->ecntrl); |
| |
| #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) |
| udelay(100); |
| |
| /* setup the MII gasket for RMII mode */ |
| /* disable the gasket */ |
| writew(0, &fec->eth->miigsk_enr); |
| |
| /* wait for the gasket to be disabled */ |
| while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) |
| udelay(2); |
| |
| /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ |
| writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); |
| |
| /* re-enable the gasket */ |
| writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); |
| |
| /* wait until MII gasket is ready */ |
| int max_loops = 10; |
| while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { |
| if (--max_loops <= 0) { |
| printf("WAIT for MII Gasket ready timed out\n"); |
| break; |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_PHYLIB |
| { |
| /* Start up the PHY */ |
| int ret = phy_startup(fec->phydev); |
| |
| if (ret) { |
| printf("Could not initialize PHY %s\n", |
| fec->phydev->dev->name); |
| return ret; |
| } |
| speed = fec->phydev->speed; |
| } |
| #elif CONFIG_FEC_FIXED_SPEED |
| speed = CONFIG_FEC_FIXED_SPEED; |
| #else |
| miiphy_wait_aneg(edev); |
| speed = miiphy_speed(edev->name, fec->phy_id); |
| miiphy_duplex(edev->name, fec->phy_id); |
| #endif |
| |
| #ifdef FEC_QUIRK_ENET_MAC |
| { |
| u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; |
| u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; |
| if (speed == _1000BASET) |
| ecr |= FEC_ECNTRL_SPEED; |
| else if (speed != _100BASET) |
| rcr |= FEC_RCNTRL_RMII_10T; |
| writel(ecr, &fec->eth->ecntrl); |
| writel(rcr, &fec->eth->r_cntrl); |
| } |
| #endif |
| debug("%s:Speed=%i\n", __func__, speed); |
| |
| /* Enable SmartDMA receive task */ |
| fec_rx_task_enable(fec); |
| |
| udelay(100000); |
| return 0; |
| } |
| |
| #ifdef CONFIG_DM_ETH |
| static int fecmxc_init(struct udevice *dev) |
| #else |
| static int fec_init(struct eth_device *dev, bd_t *bd) |
| #endif |
| { |
| #ifdef CONFIG_DM_ETH |
| struct fec_priv *fec = dev_get_priv(dev); |
| #else |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| #endif |
| u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop; |
| u8 *i; |
| ulong addr; |
| |
| /* Initialize MAC address */ |
| #ifdef CONFIG_DM_ETH |
| fecmxc_set_hwaddr(dev); |
| #else |
| fec_set_hwaddr(dev); |
| #endif |
| |
| /* Setup transmit descriptors, there are two in total. */ |
| fec_tbd_init(fec); |
| |
| /* Setup receive descriptors. */ |
| fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); |
| |
| fec_reg_setup(fec); |
| |
| if (fec->xcv_type != SEVENWIRE) |
| fec_mii_setspeed(fec->bus->priv); |
| |
| /* Set Opcode/Pause Duration Register */ |
| writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ |
| writel(0x2, &fec->eth->x_wmrk); |
| |
| /* Set multicast address filter */ |
| writel(0x00000000, &fec->eth->gaddr1); |
| writel(0x00000000, &fec->eth->gaddr2); |
| |
| /* Do not access reserved register */ |
| if (!is_mx6ul() && !is_mx6ull() && !is_imx8m()) { |
| /* clear MIB RAM */ |
| for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) |
| writel(0, i); |
| |
| /* FIFO receive start register */ |
| writel(0x520, &fec->eth->r_fstart); |
| } |
| |
| /* size and address of each buffer */ |
| writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); |
| |
| addr = (ulong)fec->tbd_base; |
| writel((uint32_t)addr, &fec->eth->etdsr); |
| |
| addr = (ulong)fec->rbd_base; |
| writel((uint32_t)addr, &fec->eth->erdsr); |
| |
| #ifndef CONFIG_PHYLIB |
| if (fec->xcv_type != SEVENWIRE) |
| miiphy_restart_aneg(dev); |
| #endif |
| fec_open(dev); |
| return 0; |
| } |
| |
| /** |
| * Halt the FEC engine |
| * @param[in] dev Our device to handle |
| */ |
| #ifdef CONFIG_DM_ETH |
| static void fecmxc_halt(struct udevice *dev) |
| #else |
| static void fec_halt(struct eth_device *dev) |
| #endif |
| { |
| #ifdef CONFIG_DM_ETH |
| struct fec_priv *fec = dev_get_priv(dev); |
| #else |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| #endif |
| int counter = 0xffff; |
| |
| /* issue graceful stop command to the FEC transmitter if necessary */ |
| writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), |
| &fec->eth->x_cntrl); |
| |
| debug("eth_halt: wait for stop regs\n"); |
| /* wait for graceful stop to register */ |
| while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) |
| udelay(1); |
| |
| /* Disable SmartDMA tasks */ |
| fec_tx_task_disable(fec); |
| fec_rx_task_disable(fec); |
| |
| /* |
| * Disable the Ethernet Controller |
| * Note: this will also reset the BD index counter! |
| */ |
| writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, |
| &fec->eth->ecntrl); |
| fec->rbd_index = 0; |
| fec->tbd_index = 0; |
| debug("eth_halt: done\n"); |
| } |
| |
| /** |
| * Transmit one frame |
| * @param[in] dev Our ethernet device to handle |
| * @param[in] packet Pointer to the data to be transmitted |
| * @param[in] length Data count in bytes |
| * @return 0 on success |
| */ |
| #ifdef CONFIG_DM_ETH |
| static int fecmxc_send(struct udevice *dev, void *packet, int length) |
| #else |
| static int fec_send(struct eth_device *dev, void *packet, int length) |
| #endif |
| { |
| unsigned int status; |
| u32 size; |
| ulong addr, end; |
| int timeout = FEC_XFER_TIMEOUT; |
| int ret = 0; |
| |
| /* |
| * This routine transmits one frame. This routine only accepts |
| * 6-byte Ethernet addresses. |
| */ |
| #ifdef CONFIG_DM_ETH |
| struct fec_priv *fec = dev_get_priv(dev); |
| #else |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| #endif |
| |
| /* |
| * Check for valid length of data. |
| */ |
| if ((length > 1500) || (length <= 0)) { |
| printf("Payload (%d) too large\n", length); |
| return -1; |
| } |
| |
| /* |
| * Setup the transmit buffer. We are always using the first buffer for |
| * transmission, the second will be empty and only used to stop the DMA |
| * engine. We also flush the packet to RAM here to avoid cache trouble. |
| */ |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
| swap_packet((uint32_t *)packet, length); |
| #endif |
| |
| addr = (ulong)packet; |
| end = roundup(addr + length, ARCH_DMA_MINALIGN); |
| addr &= ~(ARCH_DMA_MINALIGN - 1); |
| flush_dcache_range(addr, end); |
| |
| writew(length, &fec->tbd_base[fec->tbd_index].data_length); |
| writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer); |
| |
| /* |
| * update BD's status now |
| * This block: |
| * - is always the last in a chain (means no chain) |
| * - should transmitt the CRC |
| * - might be the last BD in the list, so the address counter should |
| * wrap (-> keep the WRAP flag) |
| */ |
| status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; |
| status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; |
| writew(status, &fec->tbd_base[fec->tbd_index].status); |
| |
| /* |
| * Flush data cache. This code flushes both TX descriptors to RAM. |
| * After this code, the descriptors will be safely in RAM and we |
| * can start DMA. |
| */ |
| size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); |
| addr = (ulong)fec->tbd_base; |
| flush_dcache_range(addr, addr + size); |
| |
| /* |
| * Below we read the DMA descriptor's last four bytes back from the |
| * DRAM. This is important in order to make sure that all WRITE |
| * operations on the bus that were triggered by previous cache FLUSH |
| * have completed. |
| * |
| * Otherwise, on MX28, it is possible to observe a corruption of the |
| * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM |
| * for the bus structure of MX28. The scenario is as follows: |
| * |
| * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going |
| * to DRAM due to flush_dcache_range() |
| * 2) ARM core writes the FEC registers via AHB_ARB2 |
| * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 |
| * |
| * Note that 2) does sometimes finish before 1) due to reordering of |
| * WRITE accesses on the AHB bus, therefore triggering 3) before the |
| * DMA descriptor is fully written into DRAM. This results in occasional |
| * corruption of the DMA descriptor. |
| */ |
| readl(addr + size - 4); |
| |
| /* Enable SmartDMA transmit task */ |
| fec_tx_task_enable(fec); |
| |
| /* |
| * Wait until frame is sent. On each turn of the wait cycle, we must |
| * invalidate data cache to see what's really in RAM. Also, we need |
| * barrier here. |
| */ |
| while (--timeout) { |
| if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) |
| break; |
| } |
| |
| if (!timeout) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * The TDAR bit is cleared when the descriptors are all out from TX |
| * but on mx6solox we noticed that the READY bit is still not cleared |
| * right after TDAR. |
| * These are two distinct signals, and in IC simulation, we found that |
| * TDAR always gets cleared prior than the READY bit of last BD becomes |
| * cleared. |
| * In mx6solox, we use a later version of FEC IP. It looks like that |
| * this intrinsic behaviour of TDAR bit has changed in this newer FEC |
| * version. |
| * |
| * Fix this by polling the READY bit of BD after the TDAR polling, |
| * which covers the mx6solox case and does not harm the other SoCs. |
| */ |
| timeout = FEC_XFER_TIMEOUT; |
| while (--timeout) { |
| invalidate_dcache_range(addr, addr + size); |
| if (!(readw(&fec->tbd_base[fec->tbd_index].status) & |
| FEC_TBD_READY)) |
| break; |
| } |
| |
| if (!timeout) |
| ret = -EINVAL; |
| |
| out: |
| debug("fec_send: status 0x%x index %d ret %i\n", |
| readw(&fec->tbd_base[fec->tbd_index].status), |
| fec->tbd_index, ret); |
| /* for next transmission use the other buffer */ |
| if (fec->tbd_index) |
| fec->tbd_index = 0; |
| else |
| fec->tbd_index = 1; |
| |
| return ret; |
| } |
| |
| /** |
| * Pull one frame from the card |
| * @param[in] dev Our ethernet device to handle |
| * @return Length of packet read |
| */ |
| #ifdef CONFIG_DM_ETH |
| static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp) |
| #else |
| static int fec_recv(struct eth_device *dev) |
| #endif |
| { |
| #ifdef CONFIG_DM_ETH |
| struct fec_priv *fec = dev_get_priv(dev); |
| #else |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| #endif |
| struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; |
| unsigned long ievent; |
| int frame_length, len = 0; |
| uint16_t bd_status; |
| ulong addr, size, end; |
| int i; |
| |
| #ifdef CONFIG_DM_ETH |
| *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE); |
| if (*packetp == 0) { |
| printf("%s: error allocating packetp\n", __func__); |
| return -ENOMEM; |
| } |
| #else |
| ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); |
| #endif |
| |
| /* Check if any critical events have happened */ |
| ievent = readl(&fec->eth->ievent); |
| writel(ievent, &fec->eth->ievent); |
| debug("fec_recv: ievent 0x%lx\n", ievent); |
| if (ievent & FEC_IEVENT_BABR) { |
| #ifdef CONFIG_DM_ETH |
| fecmxc_halt(dev); |
| fecmxc_init(dev); |
| #else |
| fec_halt(dev); |
| fec_init(dev, fec->bd); |
| #endif |
| printf("some error: 0x%08lx\n", ievent); |
| return 0; |
| } |
| if (ievent & FEC_IEVENT_HBERR) { |
| /* Heartbeat error */ |
| writel(0x00000001 | readl(&fec->eth->x_cntrl), |
| &fec->eth->x_cntrl); |
| } |
| if (ievent & FEC_IEVENT_GRA) { |
| /* Graceful stop complete */ |
| if (readl(&fec->eth->x_cntrl) & 0x00000001) { |
| #ifdef CONFIG_DM_ETH |
| fecmxc_halt(dev); |
| #else |
| fec_halt(dev); |
| #endif |
| writel(~0x00000001 & readl(&fec->eth->x_cntrl), |
| &fec->eth->x_cntrl); |
| #ifdef CONFIG_DM_ETH |
| fecmxc_init(dev); |
| #else |
| fec_init(dev, fec->bd); |
| #endif |
| } |
| } |
| |
| /* |
| * Read the buffer status. Before the status can be read, the data cache |
| * must be invalidated, because the data in RAM might have been changed |
| * by DMA. The descriptors are properly aligned to cachelines so there's |
| * no need to worry they'd overlap. |
| * |
| * WARNING: By invalidating the descriptor here, we also invalidate |
| * the descriptors surrounding this one. Therefore we can NOT change the |
| * contents of this descriptor nor the surrounding ones. The problem is |
| * that in order to mark the descriptor as processed, we need to change |
| * the descriptor. The solution is to mark the whole cache line when all |
| * descriptors in the cache line are processed. |
| */ |
| addr = (ulong)rbd; |
| addr &= ~(ARCH_DMA_MINALIGN - 1); |
| size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); |
| invalidate_dcache_range(addr, addr + size); |
| |
| bd_status = readw(&rbd->status); |
| debug("fec_recv: status 0x%x\n", bd_status); |
| |
| if (!(bd_status & FEC_RBD_EMPTY)) { |
| if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && |
| ((readw(&rbd->data_length) - 4) > 14)) { |
| /* Get buffer address and size */ |
| addr = readl(&rbd->data_pointer); |
| frame_length = readw(&rbd->data_length) - 4; |
| /* Invalidate data cache over the buffer */ |
| end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); |
| addr &= ~(ARCH_DMA_MINALIGN - 1); |
| invalidate_dcache_range(addr, end); |
| |
| /* Fill the buffer and pass it to upper layers */ |
| #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
| swap_packet((uint32_t *)addr, frame_length); |
| #endif |
| |
| #ifdef CONFIG_DM_ETH |
| memcpy(*packetp, (char *)addr, frame_length); |
| #else |
| memcpy(buff, (char *)addr, frame_length); |
| net_process_received_packet(buff, frame_length); |
| #endif |
| len = frame_length; |
| } else { |
| if (bd_status & FEC_RBD_ERR) |
| debug("error frame: 0x%08lx 0x%08x\n", |
| addr, bd_status); |
| } |
| |
| /* |
| * Free the current buffer, restart the engine and move forward |
| * to the next buffer. Here we check if the whole cacheline of |
| * descriptors was already processed and if so, we mark it free |
| * as whole. |
| */ |
| size = RXDESC_PER_CACHELINE - 1; |
| if ((fec->rbd_index & size) == size) { |
| i = fec->rbd_index - size; |
| addr = (ulong)&fec->rbd_base[i]; |
| for (; i <= fec->rbd_index ; i++) { |
| fec_rbd_clean(i == (FEC_RBD_NUM - 1), |
| &fec->rbd_base[i]); |
| } |
| flush_dcache_range(addr, |
| addr + ARCH_DMA_MINALIGN); |
| } |
| |
| fec_rx_task_enable(fec); |
| fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; |
| } |
| debug("fec_recv: stop\n"); |
| |
| return len; |
| } |
| |
| static void fec_set_dev_name(char *dest, int dev_id) |
| { |
| sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); |
| } |
| |
| static int fec_alloc_descs(struct fec_priv *fec) |
| { |
| unsigned int size; |
| int i; |
| uint8_t *data; |
| ulong addr; |
| |
| /* Allocate TX descriptors. */ |
| size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); |
| fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); |
| if (!fec->tbd_base) |
| goto err_tx; |
| |
| /* Allocate RX descriptors. */ |
| size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); |
| fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); |
| if (!fec->rbd_base) |
| goto err_rx; |
| |
| memset(fec->rbd_base, 0, size); |
| |
| /* Allocate RX buffers. */ |
| |
| /* Maximum RX buffer size. */ |
| size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); |
| for (i = 0; i < FEC_RBD_NUM; i++) { |
| data = memalign(FEC_DMA_RX_MINALIGN, size); |
| if (!data) { |
| printf("%s: error allocating rxbuf %d\n", __func__, i); |
| goto err_ring; |
| } |
| |
| memset(data, 0, size); |
| |
| addr = (ulong)data; |
| fec->rbd_base[i].data_pointer = (uint32_t)addr; |
| fec->rbd_base[i].status = FEC_RBD_EMPTY; |
| fec->rbd_base[i].data_length = 0; |
| /* Flush the buffer to memory. */ |
| flush_dcache_range(addr, addr + size); |
| } |
| |
| /* Mark the last RBD to close the ring. */ |
| fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; |
| |
| fec->rbd_index = 0; |
| fec->tbd_index = 0; |
| |
| return 0; |
| |
| err_ring: |
| for (; i >= 0; i--) { |
| addr = fec->rbd_base[i].data_pointer; |
| free((void *)addr); |
| } |
| free(fec->rbd_base); |
| err_rx: |
| free(fec->tbd_base); |
| err_tx: |
| return -ENOMEM; |
| } |
| |
| static void fec_free_descs(struct fec_priv *fec) |
| { |
| int i; |
| ulong addr; |
| |
| for (i = 0; i < FEC_RBD_NUM; i++) { |
| addr = fec->rbd_base[i].data_pointer; |
| free((void *)addr); |
| } |
| free(fec->rbd_base); |
| free(fec->tbd_base); |
| } |
| |
| struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id) |
| { |
| struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; |
| struct mii_dev *bus; |
| int ret; |
| |
| bus = mdio_alloc(); |
| if (!bus) { |
| printf("mdio_alloc failed\n"); |
| return NULL; |
| } |
| bus->read = fec_phy_read; |
| bus->write = fec_phy_write; |
| bus->priv = eth; |
| fec_set_dev_name(bus->name, dev_id); |
| |
| ret = mdio_register(bus); |
| if (ret) { |
| printf("mdio_register failed\n"); |
| free(bus); |
| return NULL; |
| } |
| fec_mii_setspeed(eth); |
| return bus; |
| } |
| |
| #ifndef CONFIG_DM_ETH |
| #ifdef CONFIG_PHYLIB |
| int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, |
| struct mii_dev *bus, struct phy_device *phydev) |
| #else |
| static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, |
| struct mii_dev *bus, int phy_id) |
| #endif |
| { |
| struct eth_device *edev; |
| struct fec_priv *fec; |
| unsigned char ethaddr[6]; |
| char mac[16]; |
| uint32_t start; |
| int ret = 0; |
| |
| /* create and fill edev struct */ |
| edev = (struct eth_device *)malloc(sizeof(struct eth_device)); |
| if (!edev) { |
| puts("fec_mxc: not enough malloc memory for eth_device\n"); |
| ret = -ENOMEM; |
| goto err1; |
| } |
| |
| fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); |
| if (!fec) { |
| puts("fec_mxc: not enough malloc memory for fec_priv\n"); |
| ret = -ENOMEM; |
| goto err2; |
| } |
| |
| memset(edev, 0, sizeof(*edev)); |
| memset(fec, 0, sizeof(*fec)); |
| |
| ret = fec_alloc_descs(fec); |
| if (ret) |
| goto err3; |
| |
| edev->priv = fec; |
| edev->init = fec_init; |
| edev->send = fec_send; |
| edev->recv = fec_recv; |
| edev->halt = fec_halt; |
| edev->write_hwaddr = fec_set_hwaddr; |
| |
| fec->eth = (struct ethernet_regs *)(ulong)base_addr; |
| fec->bd = bd; |
| |
| fec->xcv_type = CONFIG_FEC_XCV_TYPE; |
| |
| /* Reset chip. */ |
| writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); |
| start = get_timer(0); |
| while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { |
| if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { |
| printf("FEC MXC: Timeout resetting chip\n"); |
| goto err4; |
| } |
| udelay(10); |
| } |
| |
| fec_reg_setup(fec); |
| fec_set_dev_name(edev->name, dev_id); |
| fec->dev_id = (dev_id == -1) ? 0 : dev_id; |
| fec->bus = bus; |
| fec_mii_setspeed(bus->priv); |
| #ifdef CONFIG_PHYLIB |
| fec->phydev = phydev; |
| phy_connect_dev(phydev, edev); |
| /* Configure phy */ |
| phy_config(phydev); |
| #else |
| fec->phy_id = phy_id; |
| #endif |
| eth_register(edev); |
| /* only support one eth device, the index number pointed by dev_id */ |
| edev->index = fec->dev_id; |
| |
| if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) { |
| debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr); |
| memcpy(edev->enetaddr, ethaddr, 6); |
| if (fec->dev_id) |
| sprintf(mac, "eth%daddr", fec->dev_id); |
| else |
| strcpy(mac, "ethaddr"); |
| if (!env_get(mac)) |
| eth_env_set_enetaddr(mac, ethaddr); |
| } |
| return ret; |
| err4: |
| fec_free_descs(fec); |
| err3: |
| free(fec); |
| err2: |
| free(edev); |
| err1: |
| return ret; |
| } |
| |
| int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) |
| { |
| uint32_t base_mii; |
| struct mii_dev *bus = NULL; |
| #ifdef CONFIG_PHYLIB |
| struct phy_device *phydev = NULL; |
| #endif |
| int ret; |
| |
| #ifdef CONFIG_FEC_MXC_MDIO_BASE |
| /* |
| * The i.MX28 has two ethernet interfaces, but they are not equal. |
| * Only the first one can access the MDIO bus. |
| */ |
| base_mii = CONFIG_FEC_MXC_MDIO_BASE; |
| #else |
| base_mii = addr; |
| #endif |
| debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); |
| bus = fec_get_miibus(base_mii, dev_id); |
| if (!bus) |
| return -ENOMEM; |
| #ifdef CONFIG_PHYLIB |
| phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); |
| if (!phydev) { |
| mdio_unregister(bus); |
| free(bus); |
| return -ENOMEM; |
| } |
| ret = fec_probe(bd, dev_id, addr, bus, phydev); |
| #else |
| ret = fec_probe(bd, dev_id, addr, bus, phy_id); |
| #endif |
| if (ret) { |
| #ifdef CONFIG_PHYLIB |
| free(phydev); |
| #endif |
| mdio_unregister(bus); |
| free(bus); |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_FEC_MXC_PHYADDR |
| int fecmxc_initialize(bd_t *bd) |
| { |
| return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, |
| IMX_FEC_BASE); |
| } |
| #endif |
| |
| #ifndef CONFIG_PHYLIB |
| int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) |
| { |
| struct fec_priv *fec = (struct fec_priv *)dev->priv; |
| fec->mii_postcall = cb; |
| return 0; |
| } |
| #endif |
| |
| #else |
| |
| static int fecmxc_read_rom_hwaddr(struct udevice *dev) |
| { |
| struct fec_priv *priv = dev_get_priv(dev); |
| struct eth_pdata *pdata = dev_get_platdata(dev); |
| |
| return fec_get_hwaddr(priv->dev_id, pdata->enetaddr); |
| } |
| |
| static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length) |
| { |
| if (packet) |
| free(packet); |
| |
| return 0; |
| } |
| |
| static const struct eth_ops fecmxc_ops = { |
| .start = fecmxc_init, |
| .send = fecmxc_send, |
| .recv = fecmxc_recv, |
| .free_pkt = fecmxc_free_pkt, |
| .stop = fecmxc_halt, |
| .write_hwaddr = fecmxc_set_hwaddr, |
| .read_rom_hwaddr = fecmxc_read_rom_hwaddr, |
| }; |
| |
| static int device_get_phy_addr(struct udevice *dev) |
| { |
| struct ofnode_phandle_args phandle_args; |
| int reg; |
| |
| if (dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0, |
| &phandle_args)) { |
| debug("Failed to find phy-handle"); |
| return -ENODEV; |
| } |
| |
| reg = ofnode_read_u32_default(phandle_args.node, "reg", 0); |
| |
| return reg; |
| } |
| |
| static int fec_phy_init(struct fec_priv *priv, struct udevice *dev) |
| { |
| struct phy_device *phydev; |
| int addr; |
| |
| addr = device_get_phy_addr(dev); |
| #ifdef CONFIG_FEC_MXC_PHYADDR |
| addr = CONFIG_FEC_MXC_PHYADDR; |
| #endif |
| |
| phydev = phy_connect(priv->bus, addr, dev, priv->interface); |
| if (!phydev) |
| return -ENODEV; |
| |
| priv->phydev = phydev; |
| phy_config(phydev); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_DM_GPIO |
| /* FEC GPIO reset */ |
| static void fec_gpio_reset(struct fec_priv *priv) |
| { |
| debug("fec_gpio_reset: fec_gpio_reset(dev)\n"); |
| if (dm_gpio_is_valid(&priv->phy_reset_gpio)) { |
| dm_gpio_set_value(&priv->phy_reset_gpio, 1); |
| mdelay(priv->reset_delay); |
| dm_gpio_set_value(&priv->phy_reset_gpio, 0); |
| } |
| } |
| #endif |
| |
| static int fecmxc_probe(struct udevice *dev) |
| { |
| struct eth_pdata *pdata = dev_get_platdata(dev); |
| struct fec_priv *priv = dev_get_priv(dev); |
| struct mii_dev *bus = NULL; |
| uint32_t start; |
| int ret; |
| |
| if (IS_ENABLED(CONFIG_IMX8)) { |
| ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk); |
| if (ret < 0) { |
| debug("Can't get FEC ipg clk: %d\n", ret); |
| return ret; |
| } |
| ret = clk_enable(&priv->ipg_clk); |
| if (ret < 0) { |
| debug("Can't enable FEC ipg clk: %d\n", ret); |
| return ret; |
| } |
| |
| priv->clk_rate = clk_get_rate(&priv->ipg_clk); |
| } |
| |
| ret = fec_alloc_descs(priv); |
| if (ret) |
| return ret; |
| |
| #ifdef CONFIG_DM_REGULATOR |
| if (priv->phy_supply) { |
| ret = regulator_set_enable(priv->phy_supply, true); |
| if (ret) { |
| printf("%s: Error enabling phy supply\n", dev->name); |
| return ret; |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_DM_GPIO |
| fec_gpio_reset(priv); |
| #endif |
| /* Reset chip. */ |
| writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET, |
| &priv->eth->ecntrl); |
| start = get_timer(0); |
| while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) { |
| if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { |
| printf("FEC MXC: Timeout reseting chip\n"); |
| goto err_timeout; |
| } |
| udelay(10); |
| } |
| |
| fec_reg_setup(priv); |
| |
| priv->dev_id = dev->seq; |
| #ifdef CONFIG_FEC_MXC_MDIO_BASE |
| bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq); |
| #else |
| bus = fec_get_miibus((ulong)priv->eth, dev->seq); |
| #endif |
| if (!bus) { |
| ret = -ENOMEM; |
| goto err_mii; |
| } |
| |
| priv->bus = bus; |
| priv->interface = pdata->phy_interface; |
| switch (priv->interface) { |
| case PHY_INTERFACE_MODE_MII: |
| priv->xcv_type = MII100; |
| break; |
| case PHY_INTERFACE_MODE_RMII: |
| priv->xcv_type = RMII; |
| break; |
| case PHY_INTERFACE_MODE_RGMII: |
| case PHY_INTERFACE_MODE_RGMII_ID: |
| case PHY_INTERFACE_MODE_RGMII_RXID: |
| case PHY_INTERFACE_MODE_RGMII_TXID: |
| priv->xcv_type = RGMII; |
| break; |
| default: |
| priv->xcv_type = CONFIG_FEC_XCV_TYPE; |
| printf("Unsupported interface type %d defaulting to %d\n", |
| priv->interface, priv->xcv_type); |
| break; |
| } |
| |
| ret = fec_phy_init(priv, dev); |
| if (ret) |
| goto err_phy; |
| |
| return 0; |
| |
| err_phy: |
| mdio_unregister(bus); |
| free(bus); |
| err_mii: |
| err_timeout: |
| fec_free_descs(priv); |
| return ret; |
| } |
| |
| static int fecmxc_remove(struct udevice *dev) |
| { |
| struct fec_priv *priv = dev_get_priv(dev); |
| |
| free(priv->phydev); |
| fec_free_descs(priv); |
| mdio_unregister(priv->bus); |
| mdio_free(priv->bus); |
| |
| #ifdef CONFIG_DM_REGULATOR |
| if (priv->phy_supply) |
| regulator_set_enable(priv->phy_supply, false); |
| #endif |
| |
| return 0; |
| } |
| |
| static int fecmxc_ofdata_to_platdata(struct udevice *dev) |
| { |
| int ret = 0; |
| struct eth_pdata *pdata = dev_get_platdata(dev); |
| struct fec_priv *priv = dev_get_priv(dev); |
| const char *phy_mode; |
| |
| pdata->iobase = (phys_addr_t)devfdt_get_addr(dev); |
| priv->eth = (struct ethernet_regs *)pdata->iobase; |
| |
| pdata->phy_interface = -1; |
| phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode", |
| NULL); |
| if (phy_mode) |
| pdata->phy_interface = phy_get_interface_by_name(phy_mode); |
| if (pdata->phy_interface == -1) { |
| debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_DM_REGULATOR |
| device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply); |
| #endif |
| |
| #ifdef CONFIG_DM_GPIO |
| ret = gpio_request_by_name(dev, "phy-reset-gpios", 0, |
| &priv->phy_reset_gpio, GPIOD_IS_OUT); |
| if (ret < 0) |
| return 0; /* property is optional, don't return error! */ |
| |
| priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1); |
| if (priv->reset_delay > 1000) { |
| printf("FEC MXC: phy reset duration should be <= 1000ms\n"); |
| /* property value wrong, use default value */ |
| priv->reset_delay = 1; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static const struct udevice_id fecmxc_ids[] = { |
| { .compatible = "fsl,imx6q-fec" }, |
| { .compatible = "fsl,imx6sl-fec" }, |
| { .compatible = "fsl,imx6sx-fec" }, |
| { .compatible = "fsl,imx6ul-fec" }, |
| { .compatible = "fsl,imx53-fec" }, |
| { .compatible = "fsl,imx7d-fec" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(fecmxc_gem) = { |
| .name = "fecmxc", |
| .id = UCLASS_ETH, |
| .of_match = fecmxc_ids, |
| .ofdata_to_platdata = fecmxc_ofdata_to_platdata, |
| .probe = fecmxc_probe, |
| .remove = fecmxc_remove, |
| .ops = &fecmxc_ops, |
| .priv_auto_alloc_size = sizeof(struct fec_priv), |
| .platdata_auto_alloc_size = sizeof(struct eth_pdata), |
| }; |
| #endif |