| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2018 Synopsys, Inc. All rights reserved. |
| * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com> |
| */ |
| |
| #include <common.h> |
| #include <config.h> |
| #include <linux/printk.h> |
| #include <linux/kernel.h> |
| #include <linux/io.h> |
| #include <asm/arcregs.h> |
| #include <fdt_support.h> |
| #include <dwmmc.h> |
| #include <malloc.h> |
| #include <usb.h> |
| |
| #include "clk-lib.h" |
| #include "env-lib.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define ALL_CPU_MASK GENMASK(NR_CPUS - 1, 0) |
| #define MASTER_CPU_ID 0 |
| #define APERTURE_SHIFT 28 |
| #define NO_CCM 0x10 |
| #define SLAVE_CPU_READY 0x12345678 |
| #define BOOTSTAGE_1 1 /* after SP, FP setup, before HW init */ |
| #define BOOTSTAGE_2 2 /* after HW init, before self halt */ |
| #define BOOTSTAGE_3 3 /* after self halt */ |
| #define BOOTSTAGE_4 4 /* before app launch */ |
| #define BOOTSTAGE_5 5 /* after app launch, unreachable */ |
| |
| #define RESET_VECTOR_ADDR 0x0 |
| |
| #define CREG_BASE (ARC_PERIPHERAL_BASE + 0x1000) |
| #define CREG_CPU_START (CREG_BASE + 0x400) |
| #define CREG_CPU_START_MASK 0xF |
| |
| #define SDIO_BASE (ARC_PERIPHERAL_BASE + 0xA000) |
| #define SDIO_UHS_REG_EXT (SDIO_BASE + 0x108) |
| #define SDIO_UHS_REG_EXT_DIV_2 (2 << 30) |
| |
| /* Uncached access macros */ |
| #define arc_read_uncached_32(ptr) \ |
| ({ \ |
| unsigned int __ret; \ |
| __asm__ __volatile__( \ |
| " ld.di %0, [%1] \n" \ |
| : "=r"(__ret) \ |
| : "r"(ptr)); \ |
| __ret; \ |
| }) |
| |
| #define arc_write_uncached_32(ptr, data)\ |
| ({ \ |
| __asm__ __volatile__( \ |
| " st.di %0, [%1] \n" \ |
| : \ |
| : "r"(data), "r"(ptr)); \ |
| }) |
| |
| struct hsdk_env_core_ctl { |
| u32_env entry[NR_CPUS]; |
| u32_env iccm[NR_CPUS]; |
| u32_env dccm[NR_CPUS]; |
| }; |
| |
| struct hsdk_env_common_ctl { |
| bool halt_on_boot; |
| u32_env core_mask; |
| u32_env cpu_freq; |
| u32_env axi_freq; |
| u32_env tun_freq; |
| u32_env nvlim; |
| u32_env icache; |
| u32_env dcache; |
| }; |
| |
| /* |
| * Uncached cross-cpu structure. All CPUs must access to this structure fields |
| * only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which |
| * implement ld.di / st.di instructions). Simultaneous cached and uncached |
| * access to this area will lead to data loss. |
| * We flush all data caches in board_early_init_r() as we don't want to have |
| * any dirty line in L1d$ or SL$ in this area. |
| */ |
| struct hsdk_cross_cpu { |
| /* slave CPU ready flag */ |
| u32 ready_flag; |
| /* address of the area, which can be used for stack by slave CPU */ |
| u32 stack_ptr; |
| /* slave CPU status - bootstage number */ |
| s32 status[NR_CPUS]; |
| |
| /* |
| * Slave CPU data - it is copy of corresponding fields in |
| * hsdk_env_core_ctl and hsdk_env_common_ctl structures which are |
| * required for slave CPUs initialization. |
| * This fields can be populated by copying from hsdk_env_core_ctl |
| * and hsdk_env_common_ctl structures with sync_cross_cpu_data() |
| * function. |
| */ |
| u32 entry[NR_CPUS]; |
| u32 iccm[NR_CPUS]; |
| u32 dccm[NR_CPUS]; |
| |
| u32 core_mask; |
| u32 icache; |
| u32 dcache; |
| |
| u8 cache_padding[ARCH_DMA_MINALIGN]; |
| } __aligned(ARCH_DMA_MINALIGN); |
| |
| /* Place for slave CPUs temporary stack */ |
| static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN); |
| |
| static struct hsdk_env_common_ctl env_common = {}; |
| static struct hsdk_env_core_ctl env_core = {}; |
| static struct hsdk_cross_cpu cross_cpu_data; |
| |
| static const struct env_map_common env_map_common[] = { |
| { "core_mask", ENV_HEX, true, 0x1, 0xF, &env_common.core_mask }, |
| { "non_volatile_limit", ENV_HEX, true, 0, 0xF, &env_common.nvlim }, |
| { "icache_ena", ENV_HEX, true, 0, 1, &env_common.icache }, |
| { "dcache_ena", ENV_HEX, true, 0, 1, &env_common.dcache }, |
| {} |
| }; |
| |
| static const struct env_map_common env_map_clock[] = { |
| { "cpu_freq", ENV_DEC, false, 100, 1000, &env_common.cpu_freq }, |
| { "axi_freq", ENV_DEC, false, 200, 800, &env_common.axi_freq }, |
| { "tun_freq", ENV_DEC, false, 0, 150, &env_common.tun_freq }, |
| {} |
| }; |
| |
| static const struct env_map_percpu env_map_core[] = { |
| { "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm }, |
| { "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm }, |
| {} |
| }; |
| |
| static const struct env_map_common env_map_mask[] = { |
| { "core_mask", ENV_HEX, false, 0x1, 0xF, &env_common.core_mask }, |
| {} |
| }; |
| |
| static const struct env_map_percpu env_map_go[] = { |
| { "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry }, |
| {} |
| }; |
| |
| static void sync_cross_cpu_data(void) |
| { |
| u32 value; |
| |
| for (u32 i = 0; i < NR_CPUS; i++) { |
| value = env_core.entry[i].val; |
| arc_write_uncached_32(&cross_cpu_data.entry[i], value); |
| } |
| |
| for (u32 i = 0; i < NR_CPUS; i++) { |
| value = env_core.iccm[i].val; |
| arc_write_uncached_32(&cross_cpu_data.iccm[i], value); |
| } |
| |
| for (u32 i = 0; i < NR_CPUS; i++) { |
| value = env_core.dccm[i].val; |
| arc_write_uncached_32(&cross_cpu_data.dccm[i], value); |
| } |
| |
| value = env_common.core_mask.val; |
| arc_write_uncached_32(&cross_cpu_data.core_mask, value); |
| |
| value = env_common.icache.val; |
| arc_write_uncached_32(&cross_cpu_data.icache, value); |
| |
| value = env_common.dcache.val; |
| arc_write_uncached_32(&cross_cpu_data.dcache, value); |
| } |
| |
| /* Can be used only on master CPU */ |
| static bool is_cpu_used(u32 cpu_id) |
| { |
| return !!(env_common.core_mask.val & BIT(cpu_id)); |
| } |
| |
| /* TODO: add ICCM BCR and DCCM BCR runtime check */ |
| static void init_slave_cpu_func(u32 core) |
| { |
| u32 val; |
| |
| /* Remap ICCM to another memory region if it exists */ |
| val = arc_read_uncached_32(&cross_cpu_data.iccm[core]); |
| if (val != NO_CCM) |
| write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT); |
| |
| /* Remap DCCM to another memory region if it exists */ |
| val = arc_read_uncached_32(&cross_cpu_data.dccm[core]); |
| if (val != NO_CCM) |
| write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT); |
| |
| if (arc_read_uncached_32(&cross_cpu_data.icache)) |
| icache_enable(); |
| else |
| icache_disable(); |
| |
| if (arc_read_uncached_32(&cross_cpu_data.dcache)) |
| dcache_enable(); |
| else |
| dcache_disable(); |
| } |
| |
| static void init_cluster_nvlim(void) |
| { |
| u32 val = env_common.nvlim.val << APERTURE_SHIFT; |
| |
| flush_dcache_all(); |
| write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val); |
| write_aux_reg(AUX_AUX_CACHE_LIMIT, val); |
| flush_n_invalidate_dcache_all(); |
| } |
| |
| static void init_master_icache(void) |
| { |
| if (icache_status()) { |
| /* I$ is enabled - we need to disable it */ |
| if (!env_common.icache.val) |
| icache_disable(); |
| } else { |
| /* I$ is disabled - we need to enable it */ |
| if (env_common.icache.val) { |
| icache_enable(); |
| |
| /* invalidate I$ right after enable */ |
| invalidate_icache_all(); |
| } |
| } |
| } |
| |
| static void init_master_dcache(void) |
| { |
| if (dcache_status()) { |
| /* D$ is enabled - we need to disable it */ |
| if (!env_common.dcache.val) |
| dcache_disable(); |
| } else { |
| /* D$ is disabled - we need to enable it */ |
| if (env_common.dcache.val) |
| dcache_enable(); |
| |
| /* TODO: probably we need ti invalidate D$ right after enable */ |
| } |
| } |
| |
| static int cleanup_before_go(void) |
| { |
| disable_interrupts(); |
| sync_n_cleanup_cache_all(); |
| |
| return 0; |
| } |
| |
| void slave_cpu_set_boot_addr(u32 addr) |
| { |
| /* All cores have reset vector pointing to 0 */ |
| writel(addr, (void __iomem *)RESET_VECTOR_ADDR); |
| |
| /* Make sure other cores see written value in memory */ |
| sync_n_cleanup_cache_all(); |
| } |
| |
| static inline void halt_this_cpu(void) |
| { |
| __builtin_arc_flag(1); |
| } |
| |
| static void smp_kick_cpu_x(u32 cpu_id) |
| { |
| int cmd = readl((void __iomem *)CREG_CPU_START); |
| |
| if (cpu_id > NR_CPUS) |
| return; |
| |
| cmd &= ~CREG_CPU_START_MASK; |
| cmd |= (1 << cpu_id); |
| writel(cmd, (void __iomem *)CREG_CPU_START); |
| } |
| |
| static u32 prepare_cpu_ctart_reg(void) |
| { |
| int cmd = readl((void __iomem *)CREG_CPU_START); |
| |
| cmd &= ~CREG_CPU_START_MASK; |
| |
| return cmd | env_common.core_mask.val; |
| } |
| |
| /* slave CPU entry for configuration */ |
| __attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void) |
| { |
| __asm__ __volatile__( |
| "ld.di r8, [%0]\n" |
| "mov %%sp, r8\n" |
| "mov %%fp, %%sp\n" |
| : /* no output */ |
| : "r" (&cross_cpu_data.stack_ptr)); |
| |
| invalidate_icache_all(); |
| |
| arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1); |
| init_slave_cpu_func(CPU_ID_GET()); |
| |
| arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY); |
| arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2); |
| |
| /* Halt the processor until the master kick us again */ |
| halt_this_cpu(); |
| |
| /* |
| * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2 |
| * cores but we leave them for gebug purposes. |
| */ |
| __builtin_arc_nop(); |
| __builtin_arc_nop(); |
| __builtin_arc_nop(); |
| |
| arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3); |
| |
| /* get the updated entry - invalidate i$ */ |
| invalidate_icache_all(); |
| |
| arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4); |
| |
| /* Run our program */ |
| ((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))(); |
| |
| /* This bootstage is unreachable as we don't return from app we launch */ |
| arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5); |
| |
| /* Something went terribly wrong */ |
| while (true) |
| halt_this_cpu(); |
| } |
| |
| static void clear_cross_cpu_data(void) |
| { |
| arc_write_uncached_32(&cross_cpu_data.ready_flag, 0); |
| arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0); |
| |
| for (u32 i = 0; i < NR_CPUS; i++) |
| arc_write_uncached_32(&cross_cpu_data.status[i], 0); |
| } |
| |
| static noinline void do_init_slave_cpu(u32 cpu_id) |
| { |
| /* attempts number for check clave CPU ready_flag */ |
| u32 attempts = 100; |
| u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id)); |
| |
| if (cpu_id >= NR_CPUS) |
| return; |
| |
| arc_write_uncached_32(&cross_cpu_data.ready_flag, 0); |
| |
| /* Use global unique place for each slave cpu stack */ |
| arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr); |
| |
| debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack); |
| debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr); |
| slave_cpu_set_boot_addr((u32)hsdk_core_init_f); |
| |
| smp_kick_cpu_x(cpu_id); |
| |
| debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id, |
| arc_read_uncached_32(&cross_cpu_data.ready_flag)); |
| |
| while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--) |
| mdelay(10); |
| |
| /* Just to be sure that slave cpu is halted after it set ready_flag */ |
| mdelay(20); |
| |
| /* |
| * Only print error here if we reach timeout as there is no option to |
| * halt slave cpu (or check that slave cpu is halted) |
| */ |
| if (!attempts) |
| pr_err("CPU %u is not responding after init!\n", cpu_id); |
| |
| /* Check current stage of slave cpu */ |
| if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2) |
| pr_err("CPU %u status is unexpected: %d\n", cpu_id, |
| arc_read_uncached_32(&cross_cpu_data.status[cpu_id])); |
| |
| debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id, |
| arc_read_uncached_32(&cross_cpu_data.ready_flag)); |
| debug("CPU %u: status: %d [after timeout]\n", cpu_id, |
| arc_read_uncached_32(&cross_cpu_data.status[cpu_id])); |
| } |
| |
| static void do_init_slave_cpus(void) |
| { |
| clear_cross_cpu_data(); |
| sync_cross_cpu_data(); |
| |
| debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data); |
| |
| for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++) |
| if (is_cpu_used(i)) |
| do_init_slave_cpu(i); |
| } |
| |
| static void do_init_master_cpu(void) |
| { |
| /* |
| * Setup master caches even if master isn't used as we want to use |
| * same cache configuration on all running CPUs |
| */ |
| init_master_icache(); |
| init_master_dcache(); |
| } |
| |
| enum hsdk_axi_masters { |
| M_HS_CORE = 0, |
| M_HS_RTT, |
| M_AXI_TUN, |
| M_HDMI_VIDEO, |
| M_HDMI_AUDIO, |
| M_USB_HOST, |
| M_ETHERNET, |
| M_SDIO, |
| M_GPU, |
| M_DMAC_0, |
| M_DMAC_1, |
| M_DVFS |
| }; |
| |
| #define UPDATE_VAL 1 |
| |
| /* |
| * m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1 |
| * 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210 |
| * 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210 |
| * 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210 |
| * 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210 |
| * 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210 |
| * 5 USB-HOST 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98 |
| * 6 ETHERNET 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98 |
| * 7 SDIO 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98 |
| * 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210 |
| * 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210 |
| * 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210 |
| * 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000 |
| * |
| * Please read ARC HS Development IC Specification, section 17.2 for more |
| * information about apertures configuration. |
| * NOTE: we intentionally modify default settings in U-boot. Default settings |
| * are specified in "Table 111 CREG Address Decoder register reset values". |
| */ |
| |
| #define CREG_AXI_M_SLV0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m))) |
| #define CREG_AXI_M_SLV1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004)) |
| #define CREG_AXI_M_OFT0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008)) |
| #define CREG_AXI_M_OFT1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C)) |
| #define CREG_AXI_M_UPDT(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014)) |
| |
| #define CREG_AXI_M_HS_CORE_BOOT ((void __iomem *)(CREG_BASE + 0x010)) |
| |
| #define CREG_PAE ((void __iomem *)(CREG_BASE + 0x180)) |
| #define CREG_PAE_UPDT ((void __iomem *)(CREG_BASE + 0x194)) |
| |
| void init_memory_bridge(void) |
| { |
| u32 reg; |
| |
| /* |
| * M_HS_CORE has one unic register - BOOT. |
| * We need to clean boot mirror (BOOT[1:0]) bits in them. |
| */ |
| reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3); |
| writel(reg, CREG_AXI_M_HS_CORE_BOOT); |
| writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE)); |
| writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE)); |
| writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT)); |
| writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT)); |
| writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT)); |
| |
| writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN)); |
| writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN)); |
| writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO)); |
| writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO)); |
| writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO)); |
| writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO)); |
| writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST)); |
| writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST)); |
| writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET)); |
| writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET)); |
| writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO)); |
| writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO)); |
| writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_GPU)); |
| writel(0x77777777, CREG_AXI_M_SLV1(M_GPU)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU)); |
| writel(0x76543210, CREG_AXI_M_OFT1(M_GPU)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0)); |
| writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0)); |
| writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0)); |
| |
| writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1)); |
| writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1)); |
| writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1)); |
| writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1)); |
| |
| writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS)); |
| writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS)); |
| writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS)); |
| writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS)); |
| writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS)); |
| |
| writel(0x00000000, CREG_PAE); |
| writel(UPDATE_VAL, CREG_PAE_UPDT); |
| } |
| |
| static void setup_clocks(void) |
| { |
| ulong rate; |
| |
| /* Setup CPU clock */ |
| if (env_common.cpu_freq.set) { |
| rate = env_common.cpu_freq.val; |
| soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ); |
| } |
| |
| /* Setup TUN clock */ |
| if (env_common.tun_freq.set) { |
| rate = env_common.tun_freq.val; |
| if (rate) |
| soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ); |
| else |
| soc_clk_ctl("tun-clk", NULL, CLK_OFF); |
| } |
| |
| if (env_common.axi_freq.set) { |
| rate = env_common.axi_freq.val; |
| soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ); |
| } |
| } |
| |
| static void do_init_cluster(void) |
| { |
| /* |
| * A multi-core ARC HS configuration always includes only one |
| * ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the |
| * cores. |
| */ |
| init_cluster_nvlim(); |
| } |
| |
| static int check_master_cpu_id(void) |
| { |
| if (CPU_ID_GET() == MASTER_CPU_ID) |
| return 0; |
| |
| pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET()); |
| |
| return -ENOENT; |
| } |
| |
| static noinline int prepare_cpus(void) |
| { |
| int ret; |
| |
| ret = check_master_cpu_id(); |
| if (ret) |
| return ret; |
| |
| ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used); |
| if (ret) |
| return ret; |
| |
| printf("CPU start mask is %#x\n", env_common.core_mask.val); |
| |
| do_init_slave_cpus(); |
| do_init_master_cpu(); |
| do_init_cluster(); |
| |
| return 0; |
| } |
| |
| static int hsdk_go_run(u32 cpu_start_reg) |
| { |
| /* Cleanup caches, disable interrupts */ |
| cleanup_before_go(); |
| |
| if (env_common.halt_on_boot) |
| halt_this_cpu(); |
| |
| /* |
| * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2 |
| * cores but we leave them for gebug purposes. |
| */ |
| __builtin_arc_nop(); |
| __builtin_arc_nop(); |
| __builtin_arc_nop(); |
| |
| /* Kick chosen slave CPUs */ |
| writel(cpu_start_reg, (void __iomem *)CREG_CPU_START); |
| |
| if (is_cpu_used(MASTER_CPU_ID)) |
| ((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))(); |
| else |
| halt_this_cpu(); |
| |
| pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET()); |
| |
| /* |
| * We will never return after executing our program if master cpu used |
| * otherwise halt master cpu manually. |
| */ |
| while (true) |
| halt_this_cpu(); |
| |
| return 0; |
| } |
| |
| int board_prep_linux(bootm_headers_t *images) |
| { |
| int ret, ofst; |
| char mask[15]; |
| |
| ret = envs_read_validate_common(env_map_mask); |
| if (ret) |
| return ret; |
| |
| /* Rollback to default values */ |
| if (!env_common.core_mask.set) { |
| env_common.core_mask.val = ALL_CPU_MASK; |
| env_common.core_mask.set = true; |
| } |
| |
| printf("CPU start mask is %#x\n", env_common.core_mask.val); |
| |
| if (!is_cpu_used(MASTER_CPU_ID)) |
| pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n"); |
| |
| /* |
| * If we want to launch linux on all CPUs we don't need to patch |
| * linux DTB as it is default configuration |
| */ |
| if (env_common.core_mask.val == ALL_CPU_MASK) |
| return 0; |
| |
| if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) { |
| pr_err("WARN: core_mask setup will work properly only with external DTB!\n"); |
| return 0; |
| } |
| |
| /* patch '/possible-cpus' property according to cpu mask */ |
| ofst = fdt_path_offset(images->ft_addr, "/"); |
| sprintf(mask, "%s%s%s%s", |
| is_cpu_used(0) ? "0," : "", |
| is_cpu_used(1) ? "1," : "", |
| is_cpu_used(2) ? "2," : "", |
| is_cpu_used(3) ? "3," : ""); |
| ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask); |
| /* |
| * If we failed to patch '/possible-cpus' property we don't need break |
| * linux loading process: kernel will handle it but linux will print |
| * warning like "Timeout: CPU1 FAILED to comeup !!!". |
| * So warn here about error, but return 0 like no error had occurred. |
| */ |
| if (ret) |
| pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n", |
| ret); |
| |
| return 0; |
| } |
| |
| void board_jump_and_run(ulong entry, int zero, int arch, uint params) |
| { |
| void (*kernel_entry)(int zero, int arch, uint params); |
| u32 cpu_start_reg; |
| |
| kernel_entry = (void (*)(int, int, uint))entry; |
| |
| /* Prepare CREG_CPU_START for kicking chosen CPUs */ |
| cpu_start_reg = prepare_cpu_ctart_reg(); |
| |
| /* In case of run without hsdk_init */ |
| slave_cpu_set_boot_addr(entry); |
| |
| /* In case of run with hsdk_init */ |
| for (u32 i = 0; i < NR_CPUS; i++) { |
| env_core.entry[i].val = entry; |
| env_core.entry[i].set = true; |
| } |
| /* sync cross_cpu struct as we updated core-entry variables */ |
| sync_cross_cpu_data(); |
| |
| /* Kick chosen slave CPUs */ |
| writel(cpu_start_reg, (void __iomem *)CREG_CPU_START); |
| |
| if (is_cpu_used(0)) |
| kernel_entry(zero, arch, params); |
| } |
| |
| static int hsdk_go_prepare_and_run(void) |
| { |
| /* Prepare CREG_CPU_START for kicking chosen CPUs */ |
| u32 reg = prepare_cpu_ctart_reg(); |
| |
| if (env_common.halt_on_boot) |
| printf("CPU will halt before application start, start application with debugger.\n"); |
| |
| return hsdk_go_run(reg); |
| } |
| |
| static int do_hsdk_go(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) |
| { |
| int ret; |
| |
| /* |
| * Check for 'halt' parameter. 'halt' = enter halt-mode just before |
| * starting the application; can be used for debug. |
| */ |
| if (argc > 1) { |
| env_common.halt_on_boot = !strcmp(argv[1], "halt"); |
| if (!env_common.halt_on_boot) { |
| pr_err("Unrecognised parameter: \'%s\'\n", argv[1]); |
| return CMD_RET_FAILURE; |
| } |
| } |
| |
| ret = check_master_cpu_id(); |
| if (ret) |
| return ret; |
| |
| ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used); |
| if (ret) |
| return ret; |
| |
| /* sync cross_cpu struct as we updated core-entry variables */ |
| sync_cross_cpu_data(); |
| |
| ret = hsdk_go_prepare_and_run(); |
| |
| return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS; |
| } |
| |
| U_BOOT_CMD( |
| hsdk_go, 3, 0, do_hsdk_go, |
| "Synopsys HSDK specific command", |
| " - Boot stand-alone application on HSDK\n" |
| "hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n" |
| ); |
| |
| static int do_hsdk_init(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) |
| { |
| static bool done = false; |
| int ret; |
| |
| /* hsdk_init can be run only once */ |
| if (done) { |
| printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n"); |
| return CMD_RET_FAILURE; |
| } |
| |
| ret = prepare_cpus(); |
| if (!ret) |
| done = true; |
| |
| return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS; |
| } |
| |
| U_BOOT_CMD( |
| hsdk_init, 1, 0, do_hsdk_init, |
| "Synopsys HSDK specific command", |
| "- Init HSDK HW\n" |
| ); |
| |
| static int do_hsdk_clock_set(cmd_tbl_t *cmdtp, int flag, int argc, |
| char *const argv[]) |
| { |
| int ret = 0; |
| |
| /* Strip off leading subcommand argument */ |
| argc--; |
| argv++; |
| |
| envs_cleanup_common(env_map_clock); |
| |
| if (!argc) { |
| printf("Set clocks to values specified in environment\n"); |
| ret = envs_read_common(env_map_clock); |
| } else { |
| printf("Set clocks to values specified in args\n"); |
| ret = args_envs_enumerate(env_map_clock, 2, argc, argv); |
| } |
| |
| if (ret) |
| return CMD_RET_FAILURE; |
| |
| ret = envs_validate_common(env_map_clock); |
| if (ret) |
| return CMD_RET_FAILURE; |
| |
| /* Setup clock tree HW */ |
| setup_clocks(); |
| |
| return CMD_RET_SUCCESS; |
| } |
| |
| static int do_hsdk_clock_get(cmd_tbl_t *cmdtp, int flag, int argc, |
| char *const argv[]) |
| { |
| ulong rate; |
| |
| if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ)) |
| return CMD_RET_FAILURE; |
| |
| if (env_set_ulong("cpu_freq", rate)) |
| return CMD_RET_FAILURE; |
| |
| if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ)) |
| return CMD_RET_FAILURE; |
| |
| if (env_set_ulong("tun_freq", rate)) |
| return CMD_RET_FAILURE; |
| |
| if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ)) |
| return CMD_RET_FAILURE; |
| |
| if (env_set_ulong("axi_freq", rate)) |
| return CMD_RET_FAILURE; |
| |
| printf("Clock values are saved to environment\n"); |
| |
| return CMD_RET_SUCCESS; |
| } |
| |
| static int do_hsdk_clock_print(cmd_tbl_t *cmdtp, int flag, int argc, |
| char *const argv[]) |
| { |
| /* Main clocks */ |
| soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ); |
| |
| return CMD_RET_SUCCESS; |
| } |
| |
| static int do_hsdk_clock_print_all(cmd_tbl_t *cmdtp, int flag, int argc, |
| char *const argv[]) |
| { |
| /* |
| * NOTE: as of today we don't use some peripherals like HDMI / EBI |
| * so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll", |
| * "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully |
| * functional and we can print their clocks if it is required |
| */ |
| |
| /* CPU clock domain */ |
| soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ); |
| printf("\n"); |
| |
| /* SYS clock domain */ |
| soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ); |
| /* soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ); */ |
| soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ); |
| /* soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */ |
| soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ); |
| printf("\n"); |
| |
| /* DDR clock domain */ |
| soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ); |
| printf("\n"); |
| |
| /* HDMI clock domain */ |
| /* soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ); */ |
| /* soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ); */ |
| /* printf("\n"); */ |
| |
| /* TUN clock domain */ |
| soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ); |
| soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ); |
| printf("\n"); |
| |
| return CMD_RET_SUCCESS; |
| } |
| |
| cmd_tbl_t cmd_hsdk_clock[] = { |
| U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""), |
| U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""), |
| U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""), |
| U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""), |
| }; |
| |
| static int do_hsdk_clock(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) |
| { |
| cmd_tbl_t *c; |
| |
| if (argc < 2) |
| return CMD_RET_USAGE; |
| |
| /* Strip off leading 'hsdk_clock' command argument */ |
| argc--; |
| argv++; |
| |
| c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock)); |
| if (!c) |
| return CMD_RET_USAGE; |
| |
| return c->cmd(cmdtp, flag, argc, argv); |
| } |
| |
| U_BOOT_CMD( |
| hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock, |
| "Synopsys HSDK specific clock command", |
| "set - Set clock to values specified in environment / command line arguments\n" |
| "hsdk_clock get - Save clock values to environment\n" |
| "hsdk_clock print - Print main clock values to console\n" |
| "hsdk_clock print_all - Print all clock values to console\n" |
| ); |
| |
| /* init calls */ |
| int board_early_init_f(void) |
| { |
| /* |
| * Setup AXI apertures unconditionally as we want to have DDR |
| * in 0x00000000 region when we are kicking slave cpus. |
| */ |
| init_memory_bridge(); |
| |
| return 0; |
| } |
| |
| int board_early_init_r(void) |
| { |
| /* |
| * TODO: Init USB here to be able read environment from USB MSD. |
| * It can be done with usb_init() call. We can't do it right now |
| * due to brocken USB IP SW reset and lack of USB IP HW reset in |
| * linux kernel (if we init USB here we will break USB in linux) |
| */ |
| |
| /* |
| * Flush all d$ as we want to use uncached area with st.di / ld.di |
| * instructions and we don't want to have any dirty line in L1d$ or SL$ |
| * in this area. It is enough to flush all d$ once here as we access to |
| * uncached area with regular st (non .di) instruction only when we copy |
| * data during u-boot relocation. |
| */ |
| flush_dcache_all(); |
| |
| printf("Relocation Offset is: %08lx\n", gd->reloc_off); |
| |
| return 0; |
| } |
| |
| int board_late_init(void) |
| { |
| /* |
| * Populate environment with clock frequency values - |
| * run hsdk_clock get callback without uboot command run. |
| */ |
| do_hsdk_clock_get(NULL, 0, 0, NULL); |
| |
| return 0; |
| } |
| |
| int board_mmc_getcd(struct mmc *mmc) |
| { |
| struct dwmci_host *host = mmc->priv; |
| |
| return !(dwmci_readl(host, DWMCI_CDETECT) & 1); |
| } |
| |
| int board_mmc_init(bd_t *bis) |
| { |
| struct dwmci_host *host = NULL; |
| |
| host = malloc(sizeof(struct dwmci_host)); |
| if (!host) { |
| printf("dwmci_host malloc fail!\n"); |
| return 1; |
| } |
| |
| /* |
| * Switch SDIO external ciu clock divider from default div-by-8 to |
| * minimum possible div-by-2. |
| */ |
| writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT); |
| |
| memset(host, 0, sizeof(struct dwmci_host)); |
| host->name = "Synopsys Mobile storage"; |
| host->ioaddr = (void *)ARC_DWMMC_BASE; |
| host->buswidth = 4; |
| host->dev_index = 0; |
| host->bus_hz = 50000000; |
| |
| add_dwmci(host, host->bus_hz / 2, 400000); |
| |
| return 0; |
| } |