blob: 408c89315a9f8a30dee1c0538235082df2604612 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Texas Instruments' K3 Clas 0 Adaptive Voltage Scaling driver
*
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
* Tero Kristo <t-kristo@ti.com>
*
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <asm/io.h>
#include <i2c.h>
#include <k3-avs.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <power/regulator.h>
#define AM6_VTM_DEVINFO(i) (priv->base + 0x100 + 0x20 * (i))
#define AM6_VTM_OPPVID_VD(i) (priv->base + 0x104 + 0x20 * (i))
#define AM6_VTM_AVS0_SUPPORTED BIT(12)
#define AM6_VTM_OPP_SHIFT(opp) (8 * (opp))
#define AM6_VTM_OPP_MASK 0xff
#define VD_FLAG_INIT_DONE BIT(0)
struct k3_avs_privdata {
void *base;
struct vd_config *vd_config;
};
struct opp {
u32 freq;
u32 volt;
};
struct vd_data {
int id;
u8 opp;
u8 flags;
int dev_id;
int clk_id;
struct opp opps[NUM_OPPS];
struct udevice *supply;
};
struct vd_config {
struct vd_data *vds;
u32 (*efuse_xlate)(struct k3_avs_privdata *priv, int idx, int opp);
};
static struct k3_avs_privdata *k3_avs_priv;
/**
* am6_efuse_voltage: read efuse voltage from VTM
* @priv: driver private data
* @idx: VD to read efuse for
* @opp: opp id to read
*
* Reads efuse value for the specified OPP, and converts the register
* value to a voltage. Returns the voltage in uV, or 0 if nominal voltage
* should be used.
*
* Efuse val to volt conversion logic:
*
* val > 171 volt increments in 20mV steps with base 171 => 1.66V
* val between 115 to 11 increments in 10mV steps with base 115 => 1.1V
* val between 15 to 115 increments in 5mV steps with base 15 => .6V
* val between 1 to 15 increments in 20mv steps with base 0 => .3V
* val 0 is invalid
*/
static u32 am6_efuse_xlate(struct k3_avs_privdata *priv, int idx, int opp)
{
u32 val = readl(AM6_VTM_OPPVID_VD(idx));
val >>= AM6_VTM_OPP_SHIFT(opp);
val &= AM6_VTM_OPP_MASK;
if (!val)
return 0;
if (val > 171)
return 1660000 + 20000 * (val - 171);
if (val > 115)
return 1100000 + 10000 * (val - 115);
if (val > 15)
return 600000 + 5000 * (val - 15);
return 300000 + 20000 * val;
}
static int k3_avs_program_voltage(struct k3_avs_privdata *priv,
struct vd_data *vd,
int opp_id)
{
u32 volt = vd->opps[opp_id].volt;
struct vd_data *vd2;
if (!vd->supply)
return -ENODEV;
vd->opp = opp_id;
vd->flags |= VD_FLAG_INIT_DONE;
/* Take care of ganged rails and pick the Max amongst them*/
for (vd2 = priv->vd_config->vds; vd2->id >= 0; vd2++) {
if (vd == vd2)
continue;
if (vd2->supply != vd->supply)
continue;
if (vd2->opps[vd2->opp].volt > volt)
volt = vd2->opps[vd2->opp].volt;
vd2->flags |= VD_FLAG_INIT_DONE;
}
return regulator_set_value(vd->supply, volt);
}
static struct vd_data *get_vd(struct k3_avs_privdata *priv, int idx)
{
struct vd_data *vd;
for (vd = priv->vd_config->vds; vd->id >= 0 && vd->id != idx; vd++)
;
if (vd->id < 0)
return NULL;
return vd;
}
/**
* k3_avs_set_opp: Sets the voltage for an arbitrary VD rail
* @dev: AVS device
* @vdd_id: voltage domain ID
* @opp_id: OPP ID
*
* Programs the desired OPP value for the defined voltage rail. This
* should be called from board files if reconfiguration is desired.
* Returns 0 on success, negative error value on failure.
*/
int k3_avs_set_opp(struct udevice *dev, int vdd_id, int opp_id)
{
struct k3_avs_privdata *priv = dev_get_priv(dev);
struct vd_data *vd;
vd = get_vd(priv, vdd_id);
if (!vd)
return -EINVAL;
return k3_avs_program_voltage(priv, vd, opp_id);
}
static int match_opp(struct vd_data *vd, u32 freq)
{
struct opp *opp;
int opp_id;
for (opp_id = 0; opp_id < NUM_OPPS; opp_id++) {
opp = &vd->opps[opp_id];
if (opp->freq == freq)
return opp_id;
}
printf("No matching OPP found for freq %d.\n", freq);
return -EINVAL;
}
/**
* k3_avs_notify_freq: Notify clock rate change towards AVS subsystem
* @dev_id: Device ID for the clock to be changed
* @clk_id: Clock ID for the clock to be changed
* @freq: New frequency for clock
*
* Checks if the provided clock is the MPU clock or not, if not, return
* immediately. If MPU clock is provided, maps the provided MPU frequency
* towards an MPU OPP, and programs the voltage to the regulator. Return 0
* on success, negative error value on failure.
*/
int k3_avs_notify_freq(int dev_id, int clk_id, u32 freq)
{
int opp_id;
struct k3_avs_privdata *priv = k3_avs_priv;
struct vd_data *vd;
/* Driver may not be probed yet */
if (!priv)
return -EINVAL;
for (vd = priv->vd_config->vds; vd->id >= 0; vd++) {
if (vd->dev_id != dev_id || vd->clk_id != clk_id)
continue;
opp_id = match_opp(vd, freq);
if (opp_id < 0)
return opp_id;
vd->opp = opp_id;
return k3_avs_program_voltage(priv, vd, opp_id);
}
return -EINVAL;
}
static int k3_avs_configure(struct udevice *dev, struct k3_avs_privdata *priv)
{
struct vd_config *conf;
int ret;
char pname[20];
struct vd_data *vd;
conf = (void *)dev_get_driver_data(dev);
priv->vd_config = conf;
for (vd = conf->vds; vd->id >= 0; vd++) {
sprintf(pname, "vdd-supply-%d", vd->id);
ret = device_get_supply_regulator(dev, pname, &vd->supply);
if (ret)
dev_warn(dev, "supply not found for VD%d.\n", vd->id);
sprintf(pname, "ti,default-opp-%d", vd->id);
ret = dev_read_u32_default(dev, pname, -1);
if (ret != -1)
vd->opp = ret;
}
return 0;
}
/**
* k3_avs_probe: parses VD info from VTM, and re-configures the OPP data
*
* Parses all VDs on a device calculating the AVS class-0 voltages for them,
* and updates the vd_data based on this. The vd_data itself shall be used
* to program the required OPPs later on. Returns 0 on success, negative
* error value on failure.
*/
static int k3_avs_probe(struct udevice *dev)
{
int opp_id;
u32 volt;
struct opp *opp;
struct k3_avs_privdata *priv;
struct vd_data *vd;
int ret;
priv = dev_get_priv(dev);
k3_avs_priv = priv;
ret = k3_avs_configure(dev, priv);
if (ret)
return ret;
priv->base = dev_read_addr_ptr(dev);
if (!priv->base)
return -ENODEV;
for (vd = priv->vd_config->vds; vd->id >= 0; vd++) {
if (!(readl(AM6_VTM_DEVINFO(vd->id)) &
AM6_VTM_AVS0_SUPPORTED)) {
dev_warn(dev, "AVS-class 0 not supported for VD%d\n",
vd->id);
continue;
}
for (opp_id = 0; opp_id < NUM_OPPS; opp_id++) {
opp = &vd->opps[opp_id];
if (!opp->freq)
continue;
volt = priv->vd_config->efuse_xlate(priv, vd->id,
opp_id);
if (volt)
opp->volt = volt;
}
}
for (vd = priv->vd_config->vds; vd->id >= 0; vd++) {
if (vd->flags & VD_FLAG_INIT_DONE)
continue;
k3_avs_program_voltage(priv, vd, vd->opp);
}
return 0;
}
static struct vd_data am654_vd_data[] = {
{
.id = AM6_VDD_CORE,
.dev_id = 82, /* AM6_DEV_CBASS0 */
.clk_id = 0, /* main sysclk0 */
.opp = AM6_OPP_NOM,
.opps = {
[AM6_OPP_NOM] = {
.volt = 1000000,
.freq = 250000000, /* CBASS0 */
},
},
},
{
.id = AM6_VDD_MPU0,
.dev_id = 202, /* AM6_DEV_COMPUTE_CLUSTER_A53_0 */
.clk_id = 0, /* ARM clock */
.opp = AM6_OPP_NOM,
.opps = {
[AM6_OPP_NOM] = {
.volt = 1100000,
.freq = 800000000,
},
[AM6_OPP_OD] = {
.volt = 1200000,
.freq = 1000000000,
},
[AM6_OPP_TURBO] = {
.volt = 1240000,
.freq = 1100000000,
},
},
},
{
.id = AM6_VDD_MPU1,
.opp = AM6_OPP_NOM,
.dev_id = 204, /* AM6_DEV_COMPUTE_CLUSTER_A53_2 */
.clk_id = 0, /* ARM clock */
.opps = {
[AM6_OPP_NOM] = {
.volt = 1100000,
.freq = 800000000,
},
[AM6_OPP_OD] = {
.volt = 1200000,
.freq = 1000000000,
},
[AM6_OPP_TURBO] = {
.volt = 1240000,
.freq = 1100000000,
},
},
},
{ .id = -1 },
};
static struct vd_data j721e_vd_data[] = {
{
.id = J721E_VDD_MPU,
.opp = AM6_OPP_NOM,
.dev_id = 202, /* J721E_DEV_A72SS0_CORE0 */
.clk_id = 2, /* ARM clock */
.opps = {
[AM6_OPP_NOM] = {
.volt = 880000, /* TBD in DM */
.freq = 2000000000,
},
},
},
{ .id = -1 },
};
static struct vd_config j721e_vd_config = {
.efuse_xlate = am6_efuse_xlate,
.vds = j721e_vd_data,
};
static struct vd_config am654_vd_config = {
.efuse_xlate = am6_efuse_xlate,
.vds = am654_vd_data,
};
static const struct udevice_id k3_avs_ids[] = {
{ .compatible = "ti,am654-avs", .data = (ulong)&am654_vd_config },
{ .compatible = "ti,j721e-avs", .data = (ulong)&j721e_vd_config },
{}
};
U_BOOT_DRIVER(k3_avs) = {
.name = "k3_avs",
.of_match = k3_avs_ids,
.id = UCLASS_MISC,
.probe = k3_avs_probe,
.priv_auto_alloc_size = sizeof(struct k3_avs_privdata),
};