blob: 084c9497289908c94aac13425dd79d20afd82845 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* (C) Copyright 2016-2017 Rockchip Inc.
*
* Adapted from coreboot.
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dt-structs.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru_rk3399.h>
#include <asm/arch-rockchip/grf_rk3399.h>
#include <asm/arch-rockchip/hardware.h>
#include <asm/arch-rockchip/sdram_common.h>
#include <asm/arch-rockchip/sdram_rk3399.h>
#include <linux/err.h>
#include <time.h>
#define PRESET_SGRF_HOLD(n) ((0x1 << (6 + 16)) | ((n) << 6))
#define PRESET_GPIO0_HOLD(n) ((0x1 << (7 + 16)) | ((n) << 7))
#define PRESET_GPIO1_HOLD(n) ((0x1 << (8 + 16)) | ((n) << 8))
#define PHY_DRV_ODT_HI_Z 0x0
#define PHY_DRV_ODT_240 0x1
#define PHY_DRV_ODT_120 0x8
#define PHY_DRV_ODT_80 0x9
#define PHY_DRV_ODT_60 0xc
#define PHY_DRV_ODT_48 0xd
#define PHY_DRV_ODT_40 0xe
#define PHY_DRV_ODT_34_3 0xf
#define CRU_SFTRST_DDR_CTRL(ch, n) ((0x1 << (8 + 16 + (ch) * 4)) | \
((n) << (8 + (ch) * 4)))
#define CRU_SFTRST_DDR_PHY(ch, n) ((0x1 << (9 + 16 + (ch) * 4)) | \
((n) << (9 + (ch) * 4)))
struct chan_info {
struct rk3399_ddr_pctl_regs *pctl;
struct rk3399_ddr_pi_regs *pi;
struct rk3399_ddr_publ_regs *publ;
struct rk3399_msch_regs *msch;
};
struct dram_info {
#if defined(CONFIG_TPL_BUILD) || \
(!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD))
u32 pwrup_srefresh_exit[2];
struct chan_info chan[2];
struct clk ddr_clk;
struct rk3399_cru *cru;
struct rk3399_grf_regs *grf;
struct rk3399_pmucru *pmucru;
struct rk3399_pmusgrf_regs *pmusgrf;
struct rk3399_ddr_cic_regs *cic;
#endif
struct ram_info info;
struct rk3399_pmugrf_regs *pmugrf;
};
#if defined(CONFIG_TPL_BUILD) || \
(!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD))
struct rockchip_dmc_plat {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_rockchip_rk3399_dmc dtplat;
#else
struct rk3399_sdram_params sdram_params;
#endif
struct regmap *map;
};
static void *get_ddrc0_con(struct dram_info *dram, u8 channel)
{
return (channel == 0) ? &dram->grf->ddrc0_con0 : &dram->grf->ddrc0_con1;
}
static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
{
int i;
for (i = 0; i < n / sizeof(u32); i++) {
writel(*src, dest);
src++;
dest++;
}
}
static void rkclk_ddr_reset(struct rk3399_cru *cru, u32 channel, u32 ctl,
u32 phy)
{
channel &= 0x1;
ctl &= 0x1;
phy &= 0x1;
writel(CRU_SFTRST_DDR_CTRL(channel, ctl) |
CRU_SFTRST_DDR_PHY(channel, phy),
&cru->softrst_con[4]);
}
static void phy_pctrl_reset(struct rk3399_cru *cru, u32 channel)
{
rkclk_ddr_reset(cru, channel, 1, 1);
udelay(10);
rkclk_ddr_reset(cru, channel, 1, 0);
udelay(10);
rkclk_ddr_reset(cru, channel, 0, 0);
udelay(10);
}
static void phy_dll_bypass_set(struct rk3399_ddr_publ_regs *ddr_publ_regs,
u32 freq)
{
u32 *denali_phy = ddr_publ_regs->denali_phy;
/* From IP spec, only freq small than 125 can enter dll bypass mode */
if (freq <= 125) {
/* phy_sw_master_mode_X PHY_86/214/342/470 4bits offset_8 */
setbits_le32(&denali_phy[86], (0x3 << 2) << 8);
setbits_le32(&denali_phy[214], (0x3 << 2) << 8);
setbits_le32(&denali_phy[342], (0x3 << 2) << 8);
setbits_le32(&denali_phy[470], (0x3 << 2) << 8);
/* phy_adrctl_sw_master_mode PHY_547/675/803 4bits offset_16 */
setbits_le32(&denali_phy[547], (0x3 << 2) << 16);
setbits_le32(&denali_phy[675], (0x3 << 2) << 16);
setbits_le32(&denali_phy[803], (0x3 << 2) << 16);
} else {
/* phy_sw_master_mode_X PHY_86/214/342/470 4bits offset_8 */
clrbits_le32(&denali_phy[86], (0x3 << 2) << 8);
clrbits_le32(&denali_phy[214], (0x3 << 2) << 8);
clrbits_le32(&denali_phy[342], (0x3 << 2) << 8);
clrbits_le32(&denali_phy[470], (0x3 << 2) << 8);
/* phy_adrctl_sw_master_mode PHY_547/675/803 4bits offset_16 */
clrbits_le32(&denali_phy[547], (0x3 << 2) << 16);
clrbits_le32(&denali_phy[675], (0x3 << 2) << 16);
clrbits_le32(&denali_phy[803], (0x3 << 2) << 16);
}
}
static void set_memory_map(const struct chan_info *chan, u32 channel,
const struct rk3399_sdram_params *params)
{
const struct rk3399_sdram_channel *sdram_ch = &params->ch[channel];
u32 *denali_ctl = chan->pctl->denali_ctl;
u32 *denali_pi = chan->pi->denali_pi;
u32 cs_map;
u32 reduc;
u32 row;
/* Get row number from ddrconfig setting */
if (sdram_ch->cap_info.ddrconfig < 2 ||
sdram_ch->cap_info.ddrconfig == 4)
row = 16;
else if (sdram_ch->cap_info.ddrconfig == 3)
row = 14;
else
row = 15;
cs_map = (sdram_ch->cap_info.rank > 1) ? 3 : 1;
reduc = (sdram_ch->cap_info.bw == 2) ? 0 : 1;
/* Set the dram configuration to ctrl */
clrsetbits_le32(&denali_ctl[191], 0xF, (12 - sdram_ch->cap_info.col));
clrsetbits_le32(&denali_ctl[190], (0x3 << 16) | (0x7 << 24),
((3 - sdram_ch->cap_info.bk) << 16) |
((16 - row) << 24));
clrsetbits_le32(&denali_ctl[196], 0x3 | (1 << 16),
cs_map | (reduc << 16));
/* PI_199 PI_COL_DIFF:RW:0:4 */
clrsetbits_le32(&denali_pi[199], 0xF, (12 - sdram_ch->cap_info.col));
/* PI_155 PI_ROW_DIFF:RW:24:3 PI_BANK_DIFF:RW:16:2 */
clrsetbits_le32(&denali_pi[155], (0x3 << 16) | (0x7 << 24),
((3 - sdram_ch->cap_info.bk) << 16) |
((16 - row) << 24));
/* PI_41 PI_CS_MAP:RW:24:4 */
clrsetbits_le32(&denali_pi[41], 0xf << 24, cs_map << 24);
if (sdram_ch->cap_info.rank == 1 && params->base.dramtype == DDR3)
writel(0x2EC7FFFF, &denali_pi[34]);
}
static void set_ds_odt(const struct chan_info *chan,
const struct rk3399_sdram_params *params)
{
u32 *denali_phy = chan->publ->denali_phy;
u32 tsel_idle_en, tsel_wr_en, tsel_rd_en;
u32 tsel_idle_select_p, tsel_rd_select_p;
u32 tsel_idle_select_n, tsel_rd_select_n;
u32 tsel_wr_select_dq_p, tsel_wr_select_ca_p;
u32 tsel_wr_select_dq_n, tsel_wr_select_ca_n;
u32 reg_value;
if (params->base.dramtype == LPDDR4) {
tsel_rd_select_p = PHY_DRV_ODT_HI_Z;
tsel_rd_select_n = PHY_DRV_ODT_240;
tsel_idle_select_p = PHY_DRV_ODT_HI_Z;
tsel_idle_select_n = PHY_DRV_ODT_240;
tsel_wr_select_dq_p = PHY_DRV_ODT_40;
tsel_wr_select_dq_n = PHY_DRV_ODT_40;
tsel_wr_select_ca_p = PHY_DRV_ODT_40;
tsel_wr_select_ca_n = PHY_DRV_ODT_40;
} else if (params->base.dramtype == LPDDR3) {
tsel_rd_select_p = PHY_DRV_ODT_240;
tsel_rd_select_n = PHY_DRV_ODT_HI_Z;
tsel_idle_select_p = PHY_DRV_ODT_240;
tsel_idle_select_n = PHY_DRV_ODT_HI_Z;
tsel_wr_select_dq_p = PHY_DRV_ODT_34_3;
tsel_wr_select_dq_n = PHY_DRV_ODT_34_3;
tsel_wr_select_ca_p = PHY_DRV_ODT_48;
tsel_wr_select_ca_n = PHY_DRV_ODT_48;
} else {
tsel_rd_select_p = PHY_DRV_ODT_240;
tsel_rd_select_n = PHY_DRV_ODT_240;
tsel_idle_select_p = PHY_DRV_ODT_240;
tsel_idle_select_n = PHY_DRV_ODT_240;
tsel_wr_select_dq_p = PHY_DRV_ODT_34_3;
tsel_wr_select_dq_n = PHY_DRV_ODT_34_3;
tsel_wr_select_ca_p = PHY_DRV_ODT_34_3;
tsel_wr_select_ca_n = PHY_DRV_ODT_34_3;
}
if (params->base.odt == 1)
tsel_rd_en = 1;
else
tsel_rd_en = 0;
tsel_wr_en = 0;
tsel_idle_en = 0;
/*
* phy_dq_tsel_select_X 24bits DENALI_PHY_6/134/262/390 offset_0
* sets termination values for read/idle cycles and drive strength
* for write cycles for DQ/DM
*/
reg_value = tsel_rd_select_n | (tsel_rd_select_p << 0x4) |
(tsel_wr_select_dq_n << 8) | (tsel_wr_select_dq_p << 12) |
(tsel_idle_select_n << 16) | (tsel_idle_select_p << 20);
clrsetbits_le32(&denali_phy[6], 0xffffff, reg_value);
clrsetbits_le32(&denali_phy[134], 0xffffff, reg_value);
clrsetbits_le32(&denali_phy[262], 0xffffff, reg_value);
clrsetbits_le32(&denali_phy[390], 0xffffff, reg_value);
/*
* phy_dqs_tsel_select_X 24bits DENALI_PHY_7/135/263/391 offset_0
* sets termination values for read/idle cycles and drive strength
* for write cycles for DQS
*/
clrsetbits_le32(&denali_phy[7], 0xffffff, reg_value);
clrsetbits_le32(&denali_phy[135], 0xffffff, reg_value);
clrsetbits_le32(&denali_phy[263], 0xffffff, reg_value);
clrsetbits_le32(&denali_phy[391], 0xffffff, reg_value);
/* phy_adr_tsel_select_ 8bits DENALI_PHY_544/672/800 offset_0 */
reg_value = tsel_wr_select_ca_n | (tsel_wr_select_ca_p << 0x4);
clrsetbits_le32(&denali_phy[544], 0xff, reg_value);
clrsetbits_le32(&denali_phy[672], 0xff, reg_value);
clrsetbits_le32(&denali_phy[800], 0xff, reg_value);
/* phy_pad_addr_drive 8bits DENALI_PHY_928 offset_0 */
clrsetbits_le32(&denali_phy[928], 0xff, reg_value);
/* phy_pad_rst_drive 8bits DENALI_PHY_937 offset_0 */
clrsetbits_le32(&denali_phy[937], 0xff, reg_value);
/* phy_pad_cke_drive 8bits DENALI_PHY_935 offset_0 */
clrsetbits_le32(&denali_phy[935], 0xff, reg_value);
/* phy_pad_cs_drive 8bits DENALI_PHY_939 offset_0 */
clrsetbits_le32(&denali_phy[939], 0xff, reg_value);
/* phy_pad_clk_drive 8bits DENALI_PHY_929 offset_0 */
clrsetbits_le32(&denali_phy[929], 0xff, reg_value);
/* phy_pad_fdbk_drive 23bit DENALI_PHY_924/925 */
clrsetbits_le32(&denali_phy[924], 0xff,
tsel_wr_select_dq_n | (tsel_wr_select_dq_p << 4));
clrsetbits_le32(&denali_phy[925], 0xff,
tsel_rd_select_n | (tsel_rd_select_p << 4));
/* phy_dq_tsel_enable_X 3bits DENALI_PHY_5/133/261/389 offset_16 */
reg_value = (tsel_rd_en | (tsel_wr_en << 1) | (tsel_idle_en << 2))
<< 16;
clrsetbits_le32(&denali_phy[5], 0x7 << 16, reg_value);
clrsetbits_le32(&denali_phy[133], 0x7 << 16, reg_value);
clrsetbits_le32(&denali_phy[261], 0x7 << 16, reg_value);
clrsetbits_le32(&denali_phy[389], 0x7 << 16, reg_value);
/* phy_dqs_tsel_enable_X 3bits DENALI_PHY_6/134/262/390 offset_24 */
reg_value = (tsel_rd_en | (tsel_wr_en << 1) | (tsel_idle_en << 2))
<< 24;
clrsetbits_le32(&denali_phy[6], 0x7 << 24, reg_value);
clrsetbits_le32(&denali_phy[134], 0x7 << 24, reg_value);
clrsetbits_le32(&denali_phy[262], 0x7 << 24, reg_value);
clrsetbits_le32(&denali_phy[390], 0x7 << 24, reg_value);
/* phy_adr_tsel_enable_ 1bit DENALI_PHY_518/646/774 offset_8 */
reg_value = tsel_wr_en << 8;
clrsetbits_le32(&denali_phy[518], 0x1 << 8, reg_value);
clrsetbits_le32(&denali_phy[646], 0x1 << 8, reg_value);
clrsetbits_le32(&denali_phy[774], 0x1 << 8, reg_value);
/* phy_pad_addr_term tsel 1bit DENALI_PHY_933 offset_17 */
reg_value = tsel_wr_en << 17;
clrsetbits_le32(&denali_phy[933], 0x1 << 17, reg_value);
/*
* pad_rst/cke/cs/clk_term tsel 1bits
* DENALI_PHY_938/936/940/934 offset_17
*/
clrsetbits_le32(&denali_phy[938], 0x1 << 17, reg_value);
clrsetbits_le32(&denali_phy[936], 0x1 << 17, reg_value);
clrsetbits_le32(&denali_phy[940], 0x1 << 17, reg_value);
clrsetbits_le32(&denali_phy[934], 0x1 << 17, reg_value);
/* phy_pad_fdbk_term 1bit DENALI_PHY_930 offset_17 */
clrsetbits_le32(&denali_phy[930], 0x1 << 17, reg_value);
}
static void pctl_start(struct dram_info *dram, u8 channel)
{
const struct chan_info *chan = &dram->chan[channel];
u32 *denali_ctl = chan->pctl->denali_ctl;
u32 *denali_phy = chan->publ->denali_phy;
u32 *ddrc0_con = get_ddrc0_con(dram, channel);
u32 count = 0;
u32 byte, tmp;
writel(0x01000000, &ddrc0_con);
clrsetbits_le32(&denali_phy[957], 0x3 << 24, 0x2 << 24);
while (!(readl(&denali_ctl[203]) & (1 << 3))) {
if (count > 1000) {
printf("%s: Failed to init pctl for channel %d\n",
__func__, channel);
while (1)
;
}
udelay(1);
count++;
}
writel(0x01000100, &ddrc0_con);
for (byte = 0; byte < 4; byte++) {
tmp = 0x820;
writel((tmp << 16) | tmp, &denali_phy[53 + (128 * byte)]);
writel((tmp << 16) | tmp, &denali_phy[54 + (128 * byte)]);
writel((tmp << 16) | tmp, &denali_phy[55 + (128 * byte)]);
writel((tmp << 16) | tmp, &denali_phy[56 + (128 * byte)]);
writel((tmp << 16) | tmp, &denali_phy[57 + (128 * byte)]);
clrsetbits_le32(&denali_phy[58 + (128 * byte)], 0xffff, tmp);
}
clrsetbits_le32(&denali_ctl[68], PWRUP_SREFRESH_EXIT,
dram->pwrup_srefresh_exit[channel]);
}
static int phy_io_config(const struct chan_info *chan,
const struct rk3399_sdram_params *params)
{
u32 *denali_phy = chan->publ->denali_phy;
u32 vref_mode_dq, vref_value_dq, vref_mode_ac, vref_value_ac;
u32 mode_sel;
u32 reg_value;
u32 drv_value, odt_value;
u32 speed;
/* vref setting */
if (params->base.dramtype == LPDDR4) {
/* LPDDR4 */
vref_mode_dq = 0x6;
vref_value_dq = 0x1f;
vref_mode_ac = 0x6;
vref_value_ac = 0x1f;
} else if (params->base.dramtype == LPDDR3) {
if (params->base.odt == 1) {
vref_mode_dq = 0x5; /* LPDDR3 ODT */
drv_value = (readl(&denali_phy[6]) >> 12) & 0xf;
odt_value = (readl(&denali_phy[6]) >> 4) & 0xf;
if (drv_value == PHY_DRV_ODT_48) {
switch (odt_value) {
case PHY_DRV_ODT_240:
vref_value_dq = 0x16;
break;
case PHY_DRV_ODT_120:
vref_value_dq = 0x26;
break;
case PHY_DRV_ODT_60:
vref_value_dq = 0x36;
break;
default:
debug("Invalid ODT value.\n");
return -EINVAL;
}
} else if (drv_value == PHY_DRV_ODT_40) {
switch (odt_value) {
case PHY_DRV_ODT_240:
vref_value_dq = 0x19;
break;
case PHY_DRV_ODT_120:
vref_value_dq = 0x23;
break;
case PHY_DRV_ODT_60:
vref_value_dq = 0x31;
break;
default:
debug("Invalid ODT value.\n");
return -EINVAL;
}
} else if (drv_value == PHY_DRV_ODT_34_3) {
switch (odt_value) {
case PHY_DRV_ODT_240:
vref_value_dq = 0x17;
break;
case PHY_DRV_ODT_120:
vref_value_dq = 0x20;
break;
case PHY_DRV_ODT_60:
vref_value_dq = 0x2e;
break;
default:
debug("Invalid ODT value.\n");
return -EINVAL;
}
} else {
debug("Invalid DRV value.\n");
return -EINVAL;
}
} else {
vref_mode_dq = 0x2; /* LPDDR3 */
vref_value_dq = 0x1f;
}
vref_mode_ac = 0x2;
vref_value_ac = 0x1f;
} else if (params->base.dramtype == DDR3) {
/* DDR3L */
vref_mode_dq = 0x1;
vref_value_dq = 0x1f;
vref_mode_ac = 0x1;
vref_value_ac = 0x1f;
} else {
debug("Unknown DRAM type.\n");
return -EINVAL;
}
reg_value = (vref_mode_dq << 9) | (0x1 << 8) | vref_value_dq;
/* PHY_913 PHY_PAD_VREF_CTRL_DQ_0 12bits offset_8 */
clrsetbits_le32(&denali_phy[913], 0xfff << 8, reg_value << 8);
/* PHY_914 PHY_PAD_VREF_CTRL_DQ_1 12bits offset_0 */
clrsetbits_le32(&denali_phy[914], 0xfff, reg_value);
/* PHY_914 PHY_PAD_VREF_CTRL_DQ_2 12bits offset_16 */
clrsetbits_le32(&denali_phy[914], 0xfff << 16, reg_value << 16);
/* PHY_915 PHY_PAD_VREF_CTRL_DQ_3 12bits offset_0 */
clrsetbits_le32(&denali_phy[915], 0xfff, reg_value);
reg_value = (vref_mode_ac << 9) | (0x1 << 8) | vref_value_ac;
/* PHY_915 PHY_PAD_VREF_CTRL_AC 12bits offset_16 */
clrsetbits_le32(&denali_phy[915], 0xfff << 16, reg_value << 16);
if (params->base.dramtype == LPDDR4)
mode_sel = 0x6;
else if (params->base.dramtype == LPDDR3)
mode_sel = 0x0;
else if (params->base.dramtype == DDR3)
mode_sel = 0x1;
else
return -EINVAL;
/* PHY_924 PHY_PAD_FDBK_DRIVE */
clrsetbits_le32(&denali_phy[924], 0x7 << 15, mode_sel << 15);
/* PHY_926 PHY_PAD_DATA_DRIVE */
clrsetbits_le32(&denali_phy[926], 0x7 << 6, mode_sel << 6);
/* PHY_927 PHY_PAD_DQS_DRIVE */
clrsetbits_le32(&denali_phy[927], 0x7 << 6, mode_sel << 6);
/* PHY_928 PHY_PAD_ADDR_DRIVE */
clrsetbits_le32(&denali_phy[928], 0x7 << 14, mode_sel << 14);
/* PHY_929 PHY_PAD_CLK_DRIVE */
clrsetbits_le32(&denali_phy[929], 0x7 << 14, mode_sel << 14);
/* PHY_935 PHY_PAD_CKE_DRIVE */
clrsetbits_le32(&denali_phy[935], 0x7 << 14, mode_sel << 14);
/* PHY_937 PHY_PAD_RST_DRIVE */
clrsetbits_le32(&denali_phy[937], 0x7 << 14, mode_sel << 14);
/* PHY_939 PHY_PAD_CS_DRIVE */
clrsetbits_le32(&denali_phy[939], 0x7 << 14, mode_sel << 14);
/* speed setting */
if (params->base.ddr_freq < 400)
speed = 0x0;
else if (params->base.ddr_freq < 800)
speed = 0x1;
else if (params->base.ddr_freq < 1200)
speed = 0x2;
else
speed = 0x3;
/* PHY_924 PHY_PAD_FDBK_DRIVE */
clrsetbits_le32(&denali_phy[924], 0x3 << 21, speed << 21);
/* PHY_926 PHY_PAD_DATA_DRIVE */
clrsetbits_le32(&denali_phy[926], 0x3 << 9, speed << 9);
/* PHY_927 PHY_PAD_DQS_DRIVE */
clrsetbits_le32(&denali_phy[927], 0x3 << 9, speed << 9);
/* PHY_928 PHY_PAD_ADDR_DRIVE */
clrsetbits_le32(&denali_phy[928], 0x3 << 17, speed << 17);
/* PHY_929 PHY_PAD_CLK_DRIVE */
clrsetbits_le32(&denali_phy[929], 0x3 << 17, speed << 17);
/* PHY_935 PHY_PAD_CKE_DRIVE */
clrsetbits_le32(&denali_phy[935], 0x3 << 17, speed << 17);
/* PHY_937 PHY_PAD_RST_DRIVE */
clrsetbits_le32(&denali_phy[937], 0x3 << 17, speed << 17);
/* PHY_939 PHY_PAD_CS_DRIVE */
clrsetbits_le32(&denali_phy[939], 0x3 << 17, speed << 17);
return 0;
}
static int pctl_cfg(struct dram_info *dram, const struct chan_info *chan,
u32 channel, const struct rk3399_sdram_params *params)
{
u32 *denali_ctl = chan->pctl->denali_ctl;
u32 *denali_pi = chan->pi->denali_pi;
u32 *denali_phy = chan->publ->denali_phy;
const u32 *params_ctl = params->pctl_regs.denali_ctl;
const u32 *params_phy = params->phy_regs.denali_phy;
u32 tmp, tmp1, tmp2;
int ret;
/*
* work around controller bug:
* Do not program DRAM_CLASS until NO_PHY_IND_TRAIN_INT is programmed
*/
copy_to_reg(&denali_ctl[1], &params_ctl[1],
sizeof(struct rk3399_ddr_pctl_regs) - 4);
writel(params_ctl[0], &denali_ctl[0]);
copy_to_reg(denali_pi, &params->pi_regs.denali_pi[0],
sizeof(struct rk3399_ddr_pi_regs));
/* rank count need to set for init */
set_memory_map(chan, channel, params);
writel(params->phy_regs.denali_phy[910], &denali_phy[910]);
writel(params->phy_regs.denali_phy[911], &denali_phy[911]);
writel(params->phy_regs.denali_phy[912], &denali_phy[912]);
dram->pwrup_srefresh_exit[channel] = readl(&denali_ctl[68]) &
PWRUP_SREFRESH_EXIT;
clrbits_le32(&denali_ctl[68], PWRUP_SREFRESH_EXIT);
/* PHY_DLL_RST_EN */
clrsetbits_le32(&denali_phy[957], 0x3 << 24, 1 << 24);
setbits_le32(&denali_pi[0], START);
setbits_le32(&denali_ctl[0], START);
/* Waiting for phy DLL lock */
while (1) {
tmp = readl(&denali_phy[920]);
tmp1 = readl(&denali_phy[921]);
tmp2 = readl(&denali_phy[922]);
if ((((tmp >> 16) & 0x1) == 0x1) &&
(((tmp1 >> 16) & 0x1) == 0x1) &&
(((tmp1 >> 0) & 0x1) == 0x1) &&
(((tmp2 >> 0) & 0x1) == 0x1))
break;
}
copy_to_reg(&denali_phy[896], &params_phy[896], (958 - 895) * 4);
copy_to_reg(&denali_phy[0], &params_phy[0], (90 - 0 + 1) * 4);
copy_to_reg(&denali_phy[128], &params_phy[128], (218 - 128 + 1) * 4);
copy_to_reg(&denali_phy[256], &params_phy[256], (346 - 256 + 1) * 4);
copy_to_reg(&denali_phy[384], &params_phy[384], (474 - 384 + 1) * 4);
copy_to_reg(&denali_phy[512], &params_phy[512], (549 - 512 + 1) * 4);
copy_to_reg(&denali_phy[640], &params_phy[640], (677 - 640 + 1) * 4);
copy_to_reg(&denali_phy[768], &params_phy[768], (805 - 768 + 1) * 4);
set_ds_odt(chan, params);
/*
* phy_dqs_tsel_wr_timing_X 8bits DENALI_PHY_84/212/340/468 offset_8
* dqs_tsel_wr_end[7:4] add Half cycle
*/
tmp = (readl(&denali_phy[84]) >> 8) & 0xff;
clrsetbits_le32(&denali_phy[84], 0xff << 8, (tmp + 0x10) << 8);
tmp = (readl(&denali_phy[212]) >> 8) & 0xff;
clrsetbits_le32(&denali_phy[212], 0xff << 8, (tmp + 0x10) << 8);
tmp = (readl(&denali_phy[340]) >> 8) & 0xff;
clrsetbits_le32(&denali_phy[340], 0xff << 8, (tmp + 0x10) << 8);
tmp = (readl(&denali_phy[468]) >> 8) & 0xff;
clrsetbits_le32(&denali_phy[468], 0xff << 8, (tmp + 0x10) << 8);
/*
* phy_dqs_tsel_wr_timing_X 8bits DENALI_PHY_83/211/339/467 offset_8
* dq_tsel_wr_end[7:4] add Half cycle
*/
tmp = (readl(&denali_phy[83]) >> 16) & 0xff;
clrsetbits_le32(&denali_phy[83], 0xff << 16, (tmp + 0x10) << 16);
tmp = (readl(&denali_phy[211]) >> 16) & 0xff;
clrsetbits_le32(&denali_phy[211], 0xff << 16, (tmp + 0x10) << 16);
tmp = (readl(&denali_phy[339]) >> 16) & 0xff;
clrsetbits_le32(&denali_phy[339], 0xff << 16, (tmp + 0x10) << 16);
tmp = (readl(&denali_phy[467]) >> 16) & 0xff;
clrsetbits_le32(&denali_phy[467], 0xff << 16, (tmp + 0x10) << 16);
ret = phy_io_config(chan, params);
if (ret)
return ret;
return 0;
}
static void select_per_cs_training_index(const struct chan_info *chan,
u32 rank)
{
u32 *denali_phy = chan->publ->denali_phy;
/* PHY_84 PHY_PER_CS_TRAINING_EN_0 1bit offset_16 */
if ((readl(&denali_phy[84]) >> 16) & 1) {
/*
* PHY_8/136/264/392
* phy_per_cs_training_index_X 1bit offset_24
*/
clrsetbits_le32(&denali_phy[8], 0x1 << 24, rank << 24);
clrsetbits_le32(&denali_phy[136], 0x1 << 24, rank << 24);
clrsetbits_le32(&denali_phy[264], 0x1 << 24, rank << 24);
clrsetbits_le32(&denali_phy[392], 0x1 << 24, rank << 24);
}
}
static void override_write_leveling_value(const struct chan_info *chan)
{
u32 *denali_ctl = chan->pctl->denali_ctl;
u32 *denali_phy = chan->publ->denali_phy;
u32 byte;
/* PHY_896 PHY_FREQ_SEL_MULTICAST_EN 1bit offset_0 */
setbits_le32(&denali_phy[896], 1);
/*
* PHY_8/136/264/392
* phy_per_cs_training_multicast_en_X 1bit offset_16
*/
clrsetbits_le32(&denali_phy[8], 0x1 << 16, 1 << 16);
clrsetbits_le32(&denali_phy[136], 0x1 << 16, 1 << 16);
clrsetbits_le32(&denali_phy[264], 0x1 << 16, 1 << 16);
clrsetbits_le32(&denali_phy[392], 0x1 << 16, 1 << 16);
for (byte = 0; byte < 4; byte++)
clrsetbits_le32(&denali_phy[63 + (128 * byte)], 0xffff << 16,
0x200 << 16);
/* PHY_896 PHY_FREQ_SEL_MULTICAST_EN 1bit offset_0 */
clrbits_le32(&denali_phy[896], 1);
/* CTL_200 ctrlupd_req 1bit offset_8 */
clrsetbits_le32(&denali_ctl[200], 0x1 << 8, 0x1 << 8);
}
static int data_training_ca(const struct chan_info *chan, u32 channel,
const struct rk3399_sdram_params *params)
{
u32 *denali_pi = chan->pi->denali_pi;
u32 *denali_phy = chan->publ->denali_phy;
u32 i, tmp;
u32 obs_0, obs_1, obs_2, obs_err = 0;
u32 rank = params->ch[channel].cap_info.rank;
u32 rank_mask;
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
rank_mask = (rank == 1) ? 0x1 : 0x3;
for (i = 0; i < 4; i++) {
if (!(rank_mask & (1 << i)))
continue;
select_per_cs_training_index(chan, i);
/* PI_100 PI_CALVL_EN:RW:8:2 */
clrsetbits_le32(&denali_pi[100], 0x3 << 8, 0x2 << 8);
/* PI_92 PI_CALVL_REQ:WR:16:1,PI_CALVL_CS:RW:24:2 */
clrsetbits_le32(&denali_pi[92],
(0x1 << 16) | (0x3 << 24),
(0x1 << 16) | (i << 24));
/* Waiting for training complete */
while (1) {
/* PI_174 PI_INT_STATUS:RD:8:18 */
tmp = readl(&denali_pi[174]) >> 8;
/*
* check status obs
* PHY_532/660/789 phy_adr_calvl_obs1_:0:32
*/
obs_0 = readl(&denali_phy[532]);
obs_1 = readl(&denali_phy[660]);
obs_2 = readl(&denali_phy[788]);
if (((obs_0 >> 30) & 0x3) ||
((obs_1 >> 30) & 0x3) ||
((obs_2 >> 30) & 0x3))
obs_err = 1;
if ((((tmp >> 11) & 0x1) == 0x1) &&
(((tmp >> 13) & 0x1) == 0x1) &&
(((tmp >> 5) & 0x1) == 0x0) &&
obs_err == 0)
break;
else if ((((tmp >> 5) & 0x1) == 0x1) ||
(obs_err == 1))
return -EIO;
}
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
}
clrbits_le32(&denali_pi[100], 0x3 << 8);
return 0;
}
static int data_training_wl(const struct chan_info *chan, u32 channel,
const struct rk3399_sdram_params *params)
{
u32 *denali_pi = chan->pi->denali_pi;
u32 *denali_phy = chan->publ->denali_phy;
u32 i, tmp;
u32 obs_0, obs_1, obs_2, obs_3, obs_err = 0;
u32 rank = params->ch[channel].cap_info.rank;
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
for (i = 0; i < rank; i++) {
select_per_cs_training_index(chan, i);
/* PI_60 PI_WRLVL_EN:RW:8:2 */
clrsetbits_le32(&denali_pi[60], 0x3 << 8, 0x2 << 8);
/* PI_59 PI_WRLVL_REQ:WR:8:1,PI_WRLVL_CS:RW:16:2 */
clrsetbits_le32(&denali_pi[59],
(0x1 << 8) | (0x3 << 16),
(0x1 << 8) | (i << 16));
/* Waiting for training complete */
while (1) {
/* PI_174 PI_INT_STATUS:RD:8:18 */
tmp = readl(&denali_pi[174]) >> 8;
/*
* check status obs, if error maybe can not
* get leveling done PHY_40/168/296/424
* phy_wrlvl_status_obs_X:0:13
*/
obs_0 = readl(&denali_phy[40]);
obs_1 = readl(&denali_phy[168]);
obs_2 = readl(&denali_phy[296]);
obs_3 = readl(&denali_phy[424]);
if (((obs_0 >> 12) & 0x1) ||
((obs_1 >> 12) & 0x1) ||
((obs_2 >> 12) & 0x1) ||
((obs_3 >> 12) & 0x1))
obs_err = 1;
if ((((tmp >> 10) & 0x1) == 0x1) &&
(((tmp >> 13) & 0x1) == 0x1) &&
(((tmp >> 4) & 0x1) == 0x0) &&
obs_err == 0)
break;
else if ((((tmp >> 4) & 0x1) == 0x1) ||
(obs_err == 1))
return -EIO;
}
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
}
override_write_leveling_value(chan);
clrbits_le32(&denali_pi[60], 0x3 << 8);
return 0;
}
static int data_training_rg(const struct chan_info *chan, u32 channel,
const struct rk3399_sdram_params *params)
{
u32 *denali_pi = chan->pi->denali_pi;
u32 *denali_phy = chan->publ->denali_phy;
u32 i, tmp;
u32 obs_0, obs_1, obs_2, obs_3, obs_err = 0;
u32 rank = params->ch[channel].cap_info.rank;
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
for (i = 0; i < rank; i++) {
select_per_cs_training_index(chan, i);
/* PI_80 PI_RDLVL_GATE_EN:RW:24:2 */
clrsetbits_le32(&denali_pi[80], 0x3 << 24, 0x2 << 24);
/*
* PI_74 PI_RDLVL_GATE_REQ:WR:16:1
* PI_RDLVL_CS:RW:24:2
*/
clrsetbits_le32(&denali_pi[74],
(0x1 << 16) | (0x3 << 24),
(0x1 << 16) | (i << 24));
/* Waiting for training complete */
while (1) {
/* PI_174 PI_INT_STATUS:RD:8:18 */
tmp = readl(&denali_pi[174]) >> 8;
/*
* check status obs
* PHY_43/171/299/427
* PHY_GTLVL_STATUS_OBS_x:16:8
*/
obs_0 = readl(&denali_phy[43]);
obs_1 = readl(&denali_phy[171]);
obs_2 = readl(&denali_phy[299]);
obs_3 = readl(&denali_phy[427]);
if (((obs_0 >> (16 + 6)) & 0x3) ||
((obs_1 >> (16 + 6)) & 0x3) ||
((obs_2 >> (16 + 6)) & 0x3) ||
((obs_3 >> (16 + 6)) & 0x3))
obs_err = 1;
if ((((tmp >> 9) & 0x1) == 0x1) &&
(((tmp >> 13) & 0x1) == 0x1) &&
(((tmp >> 3) & 0x1) == 0x0) &&
obs_err == 0)
break;
else if ((((tmp >> 3) & 0x1) == 0x1) ||
(obs_err == 1))
return -EIO;
}
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
}
clrbits_le32(&denali_pi[80], 0x3 << 24);
return 0;
}
static int data_training_rl(const struct chan_info *chan, u32 channel,
const struct rk3399_sdram_params *params)
{
u32 *denali_pi = chan->pi->denali_pi;
u32 i, tmp;
u32 rank = params->ch[channel].cap_info.rank;
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
for (i = 0; i < rank; i++) {
select_per_cs_training_index(chan, i);
/* PI_80 PI_RDLVL_EN:RW:16:2 */
clrsetbits_le32(&denali_pi[80], 0x3 << 16, 0x2 << 16);
/* PI_74 PI_RDLVL_REQ:WR:8:1,PI_RDLVL_CS:RW:24:2 */
clrsetbits_le32(&denali_pi[74],
(0x1 << 8) | (0x3 << 24),
(0x1 << 8) | (i << 24));
/* Waiting for training complete */
while (1) {
/* PI_174 PI_INT_STATUS:RD:8:18 */
tmp = readl(&denali_pi[174]) >> 8;
/*
* make sure status obs not report error bit
* PHY_46/174/302/430
* phy_rdlvl_status_obs_X:16:8
*/
if ((((tmp >> 8) & 0x1) == 0x1) &&
(((tmp >> 13) & 0x1) == 0x1) &&
(((tmp >> 2) & 0x1) == 0x0))
break;
else if (((tmp >> 2) & 0x1) == 0x1)
return -EIO;
}
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
}
clrbits_le32(&denali_pi[80], 0x3 << 16);
return 0;
}
static int data_training_wdql(const struct chan_info *chan, u32 channel,
const struct rk3399_sdram_params *params)
{
u32 *denali_pi = chan->pi->denali_pi;
u32 i, tmp;
u32 rank = params->ch[channel].cap_info.rank;
u32 rank_mask;
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
rank_mask = (rank == 1) ? 0x1 : 0x3;
for (i = 0; i < 4; i++) {
if (!(rank_mask & (1 << i)))
continue;
select_per_cs_training_index(chan, i);
/*
* disable PI_WDQLVL_VREF_EN before wdq leveling?
* PI_181 PI_WDQLVL_VREF_EN:RW:8:1
*/
clrbits_le32(&denali_pi[181], 0x1 << 8);
/* PI_124 PI_WDQLVL_EN:RW:16:2 */
clrsetbits_le32(&denali_pi[124], 0x3 << 16, 0x2 << 16);
/* PI_121 PI_WDQLVL_REQ:WR:8:1,PI_WDQLVL_CS:RW:16:2 */
clrsetbits_le32(&denali_pi[121],
(0x1 << 8) | (0x3 << 16),
(0x1 << 8) | (i << 16));
/* Waiting for training complete */
while (1) {
/* PI_174 PI_INT_STATUS:RD:8:18 */
tmp = readl(&denali_pi[174]) >> 8;
if ((((tmp >> 12) & 0x1) == 0x1) &&
(((tmp >> 13) & 0x1) == 0x1) &&
(((tmp >> 6) & 0x1) == 0x0))
break;
else if (((tmp >> 6) & 0x1) == 0x1)
return -EIO;
}
/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
writel(0x00003f7c, (&denali_pi[175]));
}
clrbits_le32(&denali_pi[124], 0x3 << 16);
return 0;
}
static int data_training(const struct chan_info *chan, u32 channel,
const struct rk3399_sdram_params *params,
u32 training_flag)
{
u32 *denali_phy = chan->publ->denali_phy;
int ret;
/* PHY_927 PHY_PAD_DQS_DRIVE RPULL offset_22 */
setbits_le32(&denali_phy[927], (1 << 22));
if (training_flag == PI_FULL_TRAINING) {
if (params->base.dramtype == LPDDR4) {
training_flag = PI_CA_TRAINING | PI_WRITE_LEVELING |
PI_READ_GATE_TRAINING |
PI_READ_LEVELING | PI_WDQ_LEVELING;
} else if (params->base.dramtype == LPDDR3) {
training_flag = PI_CA_TRAINING | PI_WRITE_LEVELING |
PI_READ_GATE_TRAINING;
} else if (params->base.dramtype == DDR3) {
training_flag = PI_WRITE_LEVELING |
PI_READ_GATE_TRAINING |
PI_READ_LEVELING;
}
}
/* ca training(LPDDR4,LPDDR3 support) */
if ((training_flag & PI_CA_TRAINING) == PI_CA_TRAINING) {
ret = data_training_ca(chan, channel, params);
if (ret < 0) {
debug("%s: data training ca failed\n", __func__);
return ret;
}
}
/* write leveling(LPDDR4,LPDDR3,DDR3 support) */
if ((training_flag & PI_WRITE_LEVELING) == PI_WRITE_LEVELING) {
ret = data_training_wl(chan, channel, params);
if (ret < 0) {
debug("%s: data training wl failed\n", __func__);
return ret;
}
}
/* read gate training(LPDDR4,LPDDR3,DDR3 support) */
if ((training_flag & PI_READ_GATE_TRAINING) == PI_READ_GATE_TRAINING) {
ret = data_training_rg(chan, channel, params);
if (ret < 0) {
debug("%s: data training rg failed\n", __func__);
return ret;
}
}
/* read leveling(LPDDR4,LPDDR3,DDR3 support) */
if ((training_flag & PI_READ_LEVELING) == PI_READ_LEVELING) {
ret = data_training_rl(chan, channel, params);
if (ret < 0) {
debug("%s: data training rl failed\n", __func__);
return ret;
}
}
/* wdq leveling(LPDDR4 support) */
if ((training_flag & PI_WDQ_LEVELING) == PI_WDQ_LEVELING) {
ret = data_training_wdql(chan, channel, params);
if (ret < 0) {
debug("%s: data training wdql failed\n", __func__);
return ret;
}
}
/* PHY_927 PHY_PAD_DQS_DRIVE RPULL offset_22 */
clrbits_le32(&denali_phy[927], (1 << 22));
return 0;
}
static void set_ddrconfig(const struct chan_info *chan,
const struct rk3399_sdram_params *params,
unsigned char channel, u32 ddrconfig)
{
/* only need to set ddrconfig */
struct rk3399_msch_regs *ddr_msch_regs = chan->msch;
unsigned int cs0_cap = 0;
unsigned int cs1_cap = 0;
cs0_cap = (1 << (params->ch[channel].cap_info.cs0_row
+ params->ch[channel].cap_info.col
+ params->ch[channel].cap_info.bk
+ params->ch[channel].cap_info.bw - 20));
if (params->ch[channel].cap_info.rank > 1)
cs1_cap = cs0_cap >> (params->ch[channel].cap_info.cs0_row
- params->ch[channel].cap_info.cs1_row);
if (params->ch[channel].cap_info.row_3_4) {
cs0_cap = cs0_cap * 3 / 4;
cs1_cap = cs1_cap * 3 / 4;
}
writel(ddrconfig | (ddrconfig << 8), &ddr_msch_regs->ddrconf);
writel(((cs0_cap / 32) & 0xff) | (((cs1_cap / 32) & 0xff) << 8),
&ddr_msch_regs->ddrsize);
}
static void dram_all_config(struct dram_info *dram,
const struct rk3399_sdram_params *params)
{
u32 sys_reg = 0;
unsigned int channel, idx;
sys_reg |= params->base.dramtype << SYS_REG_DDRTYPE_SHIFT;
sys_reg |= (params->base.num_channels - 1) << SYS_REG_NUM_CH_SHIFT;
for (channel = 0, idx = 0;
(idx < params->base.num_channels) && (channel < 2);
channel++) {
const struct rk3399_sdram_channel *info = &params->ch[channel];
struct rk3399_msch_regs *ddr_msch_regs;
const struct rk3399_msch_timings *noc_timing;
if (params->ch[channel].cap_info.col == 0)
continue;
idx++;
sys_reg |= info->cap_info.row_3_4 <<
SYS_REG_ROW_3_4_SHIFT(channel);
sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(channel);
sys_reg |= (info->cap_info.rank - 1) <<
SYS_REG_RANK_SHIFT(channel);
sys_reg |= (info->cap_info.col - 9) <<
SYS_REG_COL_SHIFT(channel);
sys_reg |= info->cap_info.bk == 3 ? 0 : 1 <<
SYS_REG_BK_SHIFT(channel);
sys_reg |= (info->cap_info.cs0_row - 13) <<
SYS_REG_CS0_ROW_SHIFT(channel);
sys_reg |= (info->cap_info.cs1_row - 13) <<
SYS_REG_CS1_ROW_SHIFT(channel);
sys_reg |= (2 >> info->cap_info.bw) <<
SYS_REG_BW_SHIFT(channel);
sys_reg |= (2 >> info->cap_info.dbw) <<
SYS_REG_DBW_SHIFT(channel);
ddr_msch_regs = dram->chan[channel].msch;
noc_timing = &params->ch[channel].noc_timings;
writel(noc_timing->ddrtiminga0,
&ddr_msch_regs->ddrtiminga0);
writel(noc_timing->ddrtimingb0,
&ddr_msch_regs->ddrtimingb0);
writel(noc_timing->ddrtimingc0,
&ddr_msch_regs->ddrtimingc0);
writel(noc_timing->devtodev0,
&ddr_msch_regs->devtodev0);
writel(noc_timing->ddrmode,
&ddr_msch_regs->ddrmode);
/* rank 1 memory clock disable (dfi_dram_clk_disable = 1) */
if (params->ch[channel].cap_info.rank == 1)
setbits_le32(&dram->chan[channel].pctl->denali_ctl[276],
1 << 17);
}
writel(sys_reg, &dram->pmugrf->os_reg2);
rk_clrsetreg(&dram->pmusgrf->soc_con4, 0x1f << 10,
params->base.stride << 10);
/* reboot hold register set */
writel(PRESET_SGRF_HOLD(0) | PRESET_GPIO0_HOLD(1) |
PRESET_GPIO1_HOLD(1),
&dram->pmucru->pmucru_rstnhold_con[1]);
clrsetbits_le32(&dram->cru->glb_rst_con, 0x3, 0x3);
}
static int switch_to_phy_index1(struct dram_info *dram,
const struct rk3399_sdram_params *params)
{
u32 channel;
u32 *denali_phy;
u32 ch_count = params->base.num_channels;
int ret;
int i = 0;
writel(RK_CLRSETBITS(0x03 << 4 | 1 << 2 | 1,
1 << 4 | 1 << 2 | 1),
&dram->cic->cic_ctrl0);
while (!(readl(&dram->cic->cic_status0) & (1 << 2))) {
mdelay(10);
i++;
if (i > 10) {
debug("index1 frequency change overtime\n");
return -ETIME;
}
}
i = 0;
writel(RK_CLRSETBITS(1 << 1, 1 << 1), &dram->cic->cic_ctrl0);
while (!(readl(&dram->cic->cic_status0) & (1 << 0))) {
mdelay(10);
i++;
if (i > 10) {
debug("index1 frequency done overtime\n");
return -ETIME;
}
}
for (channel = 0; channel < ch_count; channel++) {
denali_phy = dram->chan[channel].publ->denali_phy;
clrsetbits_le32(&denali_phy[896], (0x3 << 8) | 1, 1 << 8);
ret = data_training(&dram->chan[channel], channel,
params, PI_FULL_TRAINING);
if (ret < 0) {
debug("index1 training failed\n");
return ret;
}
}
return 0;
}
static int sdram_init(struct dram_info *dram,
const struct rk3399_sdram_params *params)
{
unsigned char dramtype = params->base.dramtype;
unsigned int ddr_freq = params->base.ddr_freq;
struct rk3399_cru *cru = dram->cru;
int channel;
int ret;
debug("Starting SDRAM initialization...\n");
if ((dramtype == DDR3 && ddr_freq > 933) ||
(dramtype == LPDDR3 && ddr_freq > 933) ||
(dramtype == LPDDR4 && ddr_freq > 800)) {
debug("SDRAM frequency is to high!");
return -E2BIG;
}
for (channel = 0; channel < 2; channel++) {
const struct chan_info *chan = &dram->chan[channel];
struct rk3399_ddr_publ_regs *publ = chan->publ;
phy_pctrl_reset(cru, channel);
phy_dll_bypass_set(publ, ddr_freq);
if (channel >= params->base.num_channels)
continue;
ret = pctl_cfg(dram, chan, channel, params);
if (ret < 0) {
printf("%s: pctl config failed\n", __func__);
return ret;
}
/* start to trigger initialization */
pctl_start(dram, channel);
/* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */
if (dramtype == LPDDR3)
udelay(10);
if (data_training(chan, channel, params, PI_FULL_TRAINING)) {
printf("%s: data training failed\n", __func__);
return -EIO;
}
set_ddrconfig(chan, params, channel,
params->ch[channel].cap_info.ddrconfig);
}
dram_all_config(dram, params);
switch_to_phy_index1(dram, params);
debug("Finish SDRAM initialization...\n");
return 0;
}
static int rk3399_dmc_ofdata_to_platdata(struct udevice *dev)
{
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rockchip_dmc_plat *plat = dev_get_platdata(dev);
int ret;
ret = dev_read_u32_array(dev, "rockchip,sdram-params",
(u32 *)&plat->sdram_params,
sizeof(plat->sdram_params) / sizeof(u32));
if (ret) {
printf("%s: Cannot read rockchip,sdram-params %d\n",
__func__, ret);
return ret;
}
ret = regmap_init_mem(dev_ofnode(dev), &plat->map);
if (ret)
printf("%s: regmap failed %d\n", __func__, ret);
#endif
return 0;
}
#if CONFIG_IS_ENABLED(OF_PLATDATA)
static int conv_of_platdata(struct udevice *dev)
{
struct rockchip_dmc_plat *plat = dev_get_platdata(dev);
struct dtd_rockchip_rk3399_dmc *dtplat = &plat->dtplat;
int ret;
ret = regmap_init_mem_platdata(dev, dtplat->reg,
ARRAY_SIZE(dtplat->reg) / 2,
&plat->map);
if (ret)
return ret;
return 0;
}
#endif
static int rk3399_dmc_init(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
struct rockchip_dmc_plat *plat = dev_get_platdata(dev);
int ret;
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3399_sdram_params *params = &plat->sdram_params;
#else
struct dtd_rockchip_rk3399_dmc *dtplat = &plat->dtplat;
struct rk3399_sdram_params *params =
(void *)dtplat->rockchip_sdram_params;
ret = conv_of_platdata(dev);
if (ret)
return ret;
#endif
priv->cic = syscon_get_first_range(ROCKCHIP_SYSCON_CIC);
priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
priv->pmusgrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUSGRF);
priv->pmucru = rockchip_get_pmucru();
priv->cru = rockchip_get_cru();
priv->chan[0].pctl = regmap_get_range(plat->map, 0);
priv->chan[0].pi = regmap_get_range(plat->map, 1);
priv->chan[0].publ = regmap_get_range(plat->map, 2);
priv->chan[0].msch = regmap_get_range(plat->map, 3);
priv->chan[1].pctl = regmap_get_range(plat->map, 4);
priv->chan[1].pi = regmap_get_range(plat->map, 5);
priv->chan[1].publ = regmap_get_range(plat->map, 6);
priv->chan[1].msch = regmap_get_range(plat->map, 7);
debug("con reg %p %p %p %p %p %p %p %p\n",
priv->chan[0].pctl, priv->chan[0].pi,
priv->chan[0].publ, priv->chan[0].msch,
priv->chan[1].pctl, priv->chan[1].pi,
priv->chan[1].publ, priv->chan[1].msch);
debug("cru %p, cic %p, grf %p, sgrf %p, pmucru %p\n", priv->cru,
priv->cic, priv->pmugrf, priv->pmusgrf, priv->pmucru);
#if CONFIG_IS_ENABLED(OF_PLATDATA)
ret = clk_get_by_index_platdata(dev, 0, dtplat->clocks, &priv->ddr_clk);
#else
ret = clk_get_by_index(dev, 0, &priv->ddr_clk);
#endif
if (ret) {
printf("%s clk get failed %d\n", __func__, ret);
return ret;
}
ret = clk_set_rate(&priv->ddr_clk, params->base.ddr_freq * MHz);
if (ret < 0) {
printf("%s clk set failed %d\n", __func__, ret);
return ret;
}
ret = sdram_init(priv, params);
if (ret < 0) {
printf("%s DRAM init failed %d\n", __func__, ret);
return ret;
}
return 0;
}
#endif
static int rk3399_dmc_probe(struct udevice *dev)
{
#if defined(CONFIG_TPL_BUILD) || \
(!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD))
if (rk3399_dmc_init(dev))
return 0;
#else
struct dram_info *priv = dev_get_priv(dev);
priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
debug("%s: pmugrf = %p\n", __func__, priv->pmugrf);
priv->info.base = CONFIG_SYS_SDRAM_BASE;
priv->info.size =
rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg2);
#endif
return 0;
}
static int rk3399_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops rk3399_dmc_ops = {
.get_info = rk3399_dmc_get_info,
};
static const struct udevice_id rk3399_dmc_ids[] = {
{ .compatible = "rockchip,rk3399-dmc" },
{ }
};
U_BOOT_DRIVER(dmc_rk3399) = {
.name = "rockchip_rk3399_dmc",
.id = UCLASS_RAM,
.of_match = rk3399_dmc_ids,
.ops = &rk3399_dmc_ops,
#if defined(CONFIG_TPL_BUILD) || \
(!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD))
.ofdata_to_platdata = rk3399_dmc_ofdata_to_platdata,
#endif
.probe = rk3399_dmc_probe,
.priv_auto_alloc_size = sizeof(struct dram_info),
#if defined(CONFIG_TPL_BUILD) || \
(!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD))
.platdata_auto_alloc_size = sizeof(struct rockchip_dmc_plat),
#endif
};