blob: 51bcb0c5322863476cb3edb5c863a34a56ce38d3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2023 Bhupesh Sharma <bhupesh.sharma@linaro.org>
*
* Based on Linux driver
*/
#include <asm/io.h>
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <generic-phy.h>
#include <ufs.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include "ufs.h"
#include "ufs-qcom.h"
#define MSEC_PER_SEC (1000L)
#define USEC_PER_SEC (1000000L)
#define NSEC_PER_SEC (1000000000L)
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles);
static int ufs_qcom_clk_get(struct udevice *dev,
const char *name, struct clk **clk_out, bool optional)
{
struct clk *clk;
int err = 0;
clk = devm_clk_get(dev, name);
if (!IS_ERR(clk)) {
*clk_out = clk;
return 0;
}
err = PTR_ERR(clk);
if (optional && err == -ENOENT) {
*clk_out = NULL;
return 0;
}
if (err != -EPROBE_DEFER)
dev_err(dev, "failed to get %s err %d\n", name, err);
return err;
}
static int ufs_qcom_clk_enable(struct udevice *dev,
const char *name, struct clk *clk)
{
int err = 0;
err = clk_prepare_enable(clk);
if (err)
dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err);
return err;
}
static int ufs_qcom_enable_lane_clks(struct ufs_qcom_priv *priv)
{
int err;
struct udevice *dev = priv->hba->dev;
if (priv->is_lane_clks_enabled)
return 0;
err = ufs_qcom_clk_enable(dev, "rx_lane0_sync_clk",
priv->rx_l0_sync_clk);
if (err)
return err;
err = ufs_qcom_clk_enable(dev, "tx_lane0_sync_clk",
priv->tx_l0_sync_clk);
if (err)
goto disable_rx_l0;
err = ufs_qcom_clk_enable(dev, "rx_lane1_sync_clk",
priv->rx_l1_sync_clk);
if (err)
goto disable_tx_l0;
priv->is_lane_clks_enabled = true;
return 0;
disable_tx_l0:
clk_disable_unprepare(priv->tx_l0_sync_clk);
disable_rx_l0:
clk_disable_unprepare(priv->rx_l0_sync_clk);
return err;
}
static int ufs_qcom_init_lane_clks(struct ufs_qcom_priv *priv)
{
int err = 0;
struct udevice *dev = priv->hba->dev;
err = ufs_qcom_clk_get(dev, "rx_lane0_sync_clk",
&priv->rx_l0_sync_clk, false);
if (err)
return err;
err = ufs_qcom_clk_get(dev, "tx_lane0_sync_clk",
&priv->tx_l0_sync_clk, false);
if (err)
return err;
err = ufs_qcom_clk_get(dev, "rx_lane1_sync_clk",
&priv->rx_l1_sync_clk, false);
if (err)
return err;
return 0;
}
static int ufs_qcom_enable_core_clks(struct ufs_qcom_priv *priv)
{
int err;
struct udevice *dev = priv->hba->dev;
if (priv->is_core_clks_enabled)
return 0;
err = ufs_qcom_clk_enable(dev, "core_clk", priv->core_clk);
if (err)
return err;
err = ufs_qcom_clk_enable(dev, "bus_aggr_clk", priv->bus_aggr_clk);
if (err)
goto disable_core_clk;
err = ufs_qcom_clk_enable(dev, "iface_clk", priv->iface_clk);
if (err)
goto disable_bus_aggr_clk;
err = ufs_qcom_clk_enable(dev, "core_clk_unipro", priv->core_clk_unipro);
if (err)
goto disable_iface_clk;
priv->is_core_clks_enabled = true;
return 0;
disable_iface_clk:
clk_disable_unprepare(priv->iface_clk);
disable_bus_aggr_clk:
clk_disable_unprepare(priv->bus_aggr_clk);
disable_core_clk:
clk_disable_unprepare(priv->core_clk);
return err;
}
static int ufs_qcom_init_core_clks(struct ufs_qcom_priv *priv)
{
int err = 0;
struct udevice *dev = priv->hba->dev;
err = ufs_qcom_clk_get(dev, "core_clk",
&priv->core_clk, false);
if (err)
return err;
err = ufs_qcom_clk_get(dev, "bus_aggr_clk",
&priv->bus_aggr_clk, false);
if (err)
return err;
err = ufs_qcom_clk_get(dev, "iface_clk", &priv->iface_clk, false);
if (err)
return err;
err = ufs_qcom_clk_get(dev, "core_clk_unipro", &priv->core_clk_unipro, false);
if (err)
return err;
/* ref_clk is optional */
return 0;
}
static void ufs_qcom_select_unipro_mode(struct ufs_qcom_priv *priv)
{
ufshcd_rmwl(priv->hba, QUNIPRO_SEL,
ufs_qcom_cap_qunipro(priv) ? QUNIPRO_SEL : 0,
REG_UFS_CFG1);
if (priv->hw_ver.major == 0x05)
ufshcd_rmwl(priv->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
/* make sure above configuration is applied before we return */
mb();
}
/*
* ufs_qcom_reset - reset host controller and PHY
*/
static int ufs_qcom_reset(struct ufs_hba *hba)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
int ret = 0;
ret = reset_assert(&priv->core_reset);
if (ret) {
dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
__func__, ret);
return ret;
}
/*
* The hardware requirement for delay between assert/deassert
* is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
* ~125us (4/32768). To be on the safe side add 200us delay.
*/
udelay(210);
ret = reset_deassert(&priv->core_reset);
if (ret)
dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
__func__, ret);
udelay(1100);
return 0;
}
static void ufs_qcom_set_caps(struct ufs_hba *hba)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
if (priv->hw_ver.major >= 0x2) {
priv->caps = UFS_QCOM_CAP_QUNIPRO |
UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE;
}
}
/**
* ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
* @hba: host controller instance
*
* QCOM UFS host controller might have some non standard behaviours (quirks)
* than what is specified by UFSHCI specification. Advertise all such
* quirks to standard UFS host controller driver so standard takes them into
* account.
*/
static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
if (priv->hw_ver.major == 0x01) {
hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE;
if (priv->hw_ver.minor == 0x0001 && priv->hw_ver.step == 0x0001)
hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR;
hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC;
}
if (priv->hw_ver.major == 0x2) {
hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
if (!ufs_qcom_cap_qunipro(priv))
/* Legacy UniPro mode still need following quirks */
hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP);
}
if (priv->hw_ver.major > 0x3)
hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
if (ofnode_device_is_compatible(dev_ofnode(hba->dev), "qcom,sm8250-ufshc"))
hba->quirks |= UFSHCD_QUIRK_SKIP_CHANGE_POWER_MODE;
}
static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_hba *hba, bool enable)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
if (priv->dev_ref_clk_ctrl_mmio &&
(enable ^ priv->is_dev_ref_clk_enabled)) {
u32 temp = readl_relaxed(priv->dev_ref_clk_ctrl_mmio);
if (enable)
temp |= priv->dev_ref_clk_en_mask;
else
temp &= ~priv->dev_ref_clk_en_mask;
/*
* If we are here to disable this clock it might be immediately
* after entering into hibern8 in which case we need to make
* sure that device ref_clk is active for specific time after
* hibern8 enter.
*/
if (!enable)
udelay(10);
writel_relaxed(temp, priv->dev_ref_clk_ctrl_mmio);
/*
* Make sure the write to ref_clk reaches the destination and
* not stored in a Write Buffer (WB).
*/
readl(priv->dev_ref_clk_ctrl_mmio);
/*
* If we call hibern8 exit after this, we need to make sure that
* device ref_clk is stable for at least 1us before the hibern8
* exit command.
*/
if (enable)
udelay(1);
priv->is_dev_ref_clk_enabled = enable;
}
}
/**
* ufs_qcom_setup_clocks - enables/disable clocks
* @hba: host controller instance
* @on: If true, enable clocks else disable them.
* @status: PRE_CHANGE or POST_CHANGE notify
*
* Returns 0 on success, non-zero on failure.
*/
static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
enum ufs_notify_change_status status)
{
switch (status) {
case PRE_CHANGE:
if (!on) {
/* disable device ref_clk */
ufs_qcom_dev_ref_clk_ctrl(hba, false);
}
break;
case POST_CHANGE:
if (on) {
/* enable the device ref clock for HS mode*/
ufs_qcom_dev_ref_clk_ctrl(hba, true);
}
break;
}
return 0;
}
static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
struct phy phy;
int ret;
/* Reset UFS Host Controller and PHY */
ret = ufs_qcom_reset(hba);
if (ret)
dev_warn(hba->dev, "%s: host reset returned %d\n",
__func__, ret);
/* get phy */
ret = generic_phy_get_by_name(hba->dev, "ufsphy", &phy);
if (ret) {
dev_warn(hba->dev, "%s: Unable to get QMP ufs phy, ret = %d\n",
__func__, ret);
return ret;
}
/* phy initialization */
ret = generic_phy_init(&phy);
if (ret) {
dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
__func__, ret);
return ret;
}
/* power on phy */
ret = generic_phy_power_on(&phy);
if (ret) {
dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
__func__, ret);
goto out_disable_phy;
}
ufs_qcom_select_unipro_mode(priv);
return 0;
out_disable_phy:
generic_phy_exit(&phy);
return ret;
}
static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
{
int err, retry_count = 50;
u32 tx_fsm_val = 0;
do {
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err || tx_fsm_val == TX_FSM_HIBERN8)
break;
/* max. 200us */
udelay(200);
retry_count--;
} while (retry_count != 0);
/*
* check the state again.
*/
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err) {
dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
__func__, err);
} else if (tx_fsm_val != TX_FSM_HIBERN8) {
err = tx_fsm_val;
dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
__func__, err);
}
return err;
}
/*
* The UTP controller has a number of internal clock gating cells (CGCs).
* Internal hardware sub-modules within the UTP controller control the CGCs.
* Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
* in a specific operation, UTP controller CGCs are by default disabled and
* this function enables them (after every UFS link startup) to save some power
* leakage.
*/
static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
{
ufshcd_writel(hba,
ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL,
REG_UFS_CFG2);
/* Ensure that HW clock gating is enabled before next operations */
mb();
}
static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
int err = 0;
switch (status) {
case PRE_CHANGE:
ufs_qcom_power_up_sequence(hba);
/*
* The PHY PLL output is the source of tx/rx lane symbol
* clocks, hence, enable the lane clocks only after PHY
* is initialized.
*/
err = ufs_qcom_enable_core_clks(priv);
if (err < 0)
return err;
err = ufs_qcom_enable_lane_clks(priv);
if (err < 0)
return err;
break;
case POST_CHANGE:
/* check if UFS PHY moved from DISABLED to HIBERN8 */
err = ufs_qcom_check_hibern8(hba);
ufs_qcom_enable_hw_clk_gating(hba);
break;
default:
dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
err = -EINVAL;
break;
}
return err;
}
/*
* Returns zero for success and non-zero in case of a failure
*/
static int ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear,
u32 hs, u32 rate, bool update_link_startup_timer)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
u32 core_clk_period_in_ns;
u32 tx_clk_cycles_per_us = 0;
unsigned long core_clk_rate = 0;
u32 core_clk_cycles_per_us = 0;
static u32 pwm_fr_table[][2] = {
{UFS_PWM_G1, 0x1},
{UFS_PWM_G2, 0x1},
{UFS_PWM_G3, 0x1},
{UFS_PWM_G4, 0x1},
};
static u32 hs_fr_table_rA[][2] = {
{UFS_HS_G1, 0x1F},
{UFS_HS_G2, 0x3e},
{UFS_HS_G3, 0x7D},
};
static u32 hs_fr_table_rB[][2] = {
{UFS_HS_G1, 0x24},
{UFS_HS_G2, 0x49},
{UFS_HS_G3, 0x92},
};
/*
* The Qunipro controller does not use following registers:
* SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG &
* UFS_REG_PA_LINK_STARTUP_TIMER
* But UTP controller uses SYS1CLK_1US_REG register for Interrupt
* Aggregation logic.
*/
if (ufs_qcom_cap_qunipro(priv))
return 0;
if (gear == 0) {
dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear);
return -EINVAL;
}
core_clk_rate = clk_get_rate(priv->core_clk);
/* If frequency is smaller than 1MHz, set to 1MHz */
if (core_clk_rate < DEFAULT_CLK_RATE_HZ)
core_clk_rate = DEFAULT_CLK_RATE_HZ;
core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC;
if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (ufs_qcom_cap_qunipro(priv))
return 0;
core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate;
core_clk_period_in_ns <<= OFFSET_CLK_NS_REG;
core_clk_period_in_ns &= MASK_CLK_NS_REG;
switch (hs) {
case FASTAUTO_MODE:
case FAST_MODE:
if (rate == PA_HS_MODE_A) {
if (gear > ARRAY_SIZE(hs_fr_table_rA)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rA));
return -EINVAL;
}
tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1];
} else if (rate == PA_HS_MODE_B) {
if (gear > ARRAY_SIZE(hs_fr_table_rB)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rB));
return -EINVAL;
}
tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1];
} else {
dev_err(hba->dev, "%s: invalid rate = %d\n",
__func__, rate);
return -EINVAL;
}
break;
case SLOWAUTO_MODE:
case SLOW_MODE:
if (gear > ARRAY_SIZE(pwm_fr_table)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(pwm_fr_table));
return -EINVAL;
}
tx_clk_cycles_per_us = pwm_fr_table[gear-1][1];
break;
case UNCHANGED:
default:
dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs);
return -EINVAL;
}
if (ufshcd_readl(hba, REG_UFS_TX_SYMBOL_CLK_NS_US) !=
(core_clk_period_in_ns | tx_clk_cycles_per_us)) {
/* this register 2 fields shall be written at once */
ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us,
REG_UFS_TX_SYMBOL_CLK_NS_US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (update_link_startup_timer && priv->hw_ver.major != 0x5) {
ufshcd_writel(hba, ((core_clk_rate / MSEC_PER_SEC) * 100),
REG_UFS_CFG0);
/*
* make sure that this configuration is applied before
* we return
*/
mb();
}
return 0;
}
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles)
{
int err;
u32 core_clk_ctrl_reg;
if (clk_cycles > DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK)
return -EINVAL;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
&core_clk_ctrl_reg);
if (err)
return err;
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK;
core_clk_ctrl_reg |= clk_cycles;
/* Clear CORE_CLK_DIV_EN */
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
return ufshcd_dme_set(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
core_clk_ctrl_reg);
}
/* TBD: Move this to common framework layer */
u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
{
/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
switch (hba->version) {
case UFSHCI_VERSION_10:
case UFSHCI_VERSION_11:
return UFS_UNIPRO_VER_1_41;
case UFSHCI_VERSION_20:
case UFSHCI_VERSION_21:
default:
return UFS_UNIPRO_VER_1_6;
}
}
static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
int err = 0;
switch (status) {
case PRE_CHANGE:
if (ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE,
0, true)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
return -EINVAL;
}
if (ufs_qcom_cap_qunipro(priv))
/*
* set unipro core clock cycles to 150 & clear clock
* divider
*/
err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba,
150);
/*
* Some UFS devices (and may be host) have issues if LCC is
* enabled. So we are setting PA_Local_TX_LCC_Enable to 0
* before link startup which will make sure that both host
* and device TX LCC are disabled once link startup is
* completed.
*/
if (ufshcd_get_local_unipro_ver(hba) != UFS_UNIPRO_VER_1_41)
err = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0);
break;
default:
break;
}
return err;
}
/**
* ufs_qcom_init - bind phy with controller
* @hba: host controller instance
*
* Powers up PHY enabling clocks and regulators.
*
* Returns -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_qcom_init(struct ufs_hba *hba)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
int err;
priv->hba = hba;
/* setup clocks */
ufs_qcom_setup_clocks(hba, true, PRE_CHANGE);
ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
ufs_qcom_get_controller_revision(hba, &priv->hw_ver.major,
&priv->hw_ver.minor, &priv->hw_ver.step);
dev_info(hba->dev, "Qcom UFS HC version: %d.%d.%d\n", priv->hw_ver.major,
priv->hw_ver.minor, priv->hw_ver.step);
/*
* for newer controllers, device reference clock control bit has
* moved inside UFS controller register address space itself.
*/
if (priv->hw_ver.major >= 0x02) {
priv->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
priv->dev_ref_clk_en_mask = BIT(26);
}
err = ufs_qcom_init_core_clks(priv);
if (err) {
dev_err(hba->dev, "failed to initialize core clocks, err:%d\n", err);
return err;
}
err = ufs_qcom_init_lane_clks(priv);
if (err) {
dev_err(hba->dev, "failed to initialize lane clocks, err:%d\n", err);
return err;
}
ufs_qcom_set_caps(hba);
ufs_qcom_advertise_quirks(hba);
ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
/* Power up the PHY using UFS_HS_G3. */
priv->hs_gear = UFS_HS_G3;
return 0;
}
static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
{
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
dev_info(hba->dev, "clk: %s, rate: %lu\n", "bus_aggr_clk",
clk_get_rate(priv->bus_aggr_clk));
dev_info(hba->dev, "clk: %s, rate: %lu\n", "iface_clk",
clk_get_rate(priv->iface_clk));
dev_info(hba->dev, "clk: %s, rate: %lu\n", "core_clk_unipro",
clk_get_rate(priv->core_clk_unipro));
}
static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
{
u32 reg;
struct ufs_qcom_priv *priv = dev_get_priv(hba->dev);
ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
"HCI Vendor Specific Registers ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_UFS_DBG_RD_REG_OCSC);
ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
reg = ufshcd_readl(hba, REG_UFS_CFG1);
reg |= UTP_DBG_RAMS_EN;
ufshcd_writel(hba, reg, REG_UFS_CFG1);
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_UFS_DBG_RD_EDTL_RAM);
ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_UFS_DBG_RD_DESC_RAM);
ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_UFS_DBG_RD_PRDT_RAM);
ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
/* clear bit 17 - UTP_DBG_RAMS_EN */
ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_DBG_RD_REG_UAWM);
ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_DBG_RD_REG_UARM);
ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_DBG_RD_REG_TXUC);
ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_DBG_RD_REG_RXUC);
ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_DBG_RD_REG_DFC);
ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_DBG_RD_REG_TRLUT);
ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
reg = ufs_qcom_get_debug_reg_offset(priv, UFS_DBG_RD_REG_TMRLUT);
ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
ufshcd_print_clk_freqs(hba);
}
static struct ufs_hba_ops ufs_qcom_hba_ops = {
.init = ufs_qcom_init,
.dbg_register_dump = ufs_qcom_dump_dbg_regs,
.hce_enable_notify = ufs_qcom_hce_enable_notify,
.link_startup_notify = ufs_qcom_link_startup_notify,
};
static int ufs_qcom_probe(struct udevice *dev)
{
struct ufs_qcom_priv *priv = dev_get_priv(dev);
int ret;
/* get resets */
ret = reset_get_by_name(dev, "rst", &priv->core_reset);
if (ret) {
dev_err(dev, "failed to get reset, ret:%d\n", ret);
return ret;
}
ret = ufshcd_probe(dev, &ufs_qcom_hba_ops);
if (ret) {
dev_err(dev, "ufshcd_probe() failed, ret:%d\n", ret);
return ret;
}
return 0;
}
static int ufs_qcom_bind(struct udevice *dev)
{
struct udevice *scsi_dev;
return ufs_scsi_bind(dev, &scsi_dev);
}
static const struct udevice_id ufs_qcom_ids[] = {
{ .compatible = "qcom,ufshc" },
{},
};
U_BOOT_DRIVER(qcom_ufshcd) = {
.name = "qcom-ufshcd",
.id = UCLASS_UFS,
.of_match = ufs_qcom_ids,
.probe = ufs_qcom_probe,
.bind = ufs_qcom_bind,
.priv_auto = sizeof(struct ufs_qcom_priv),
};