| /*****************************************************************************/ |
| /* I2C Bus interface initialisation and I2C Commands */ |
| /* for PPC405GP */ |
| /* Author : AS HARNOIS */ |
| /* Date : 13.Dec.00 */ |
| /*****************************************************************************/ |
| |
| #include <common.h> |
| #include <ppc4xx.h> |
| #if defined(CONFIG_440) |
| # include <440_i2c.h> |
| #else |
| # include <405gp_i2c.h> |
| #endif |
| #include <i2c.h> |
| |
| #ifdef CONFIG_HARD_I2C |
| |
| #define IIC_OK 0 |
| #define IIC_NOK 1 |
| #define IIC_NOK_LA 2 /* Lost arbitration */ |
| #define IIC_NOK_ICT 3 /* Incomplete transfer */ |
| #define IIC_NOK_XFRA 4 /* Transfer aborted */ |
| #define IIC_NOK_DATA 5 /* No data in buffer */ |
| #define IIC_NOK_TOUT 6 /* Transfer timeout */ |
| |
| #define IIC_TIMEOUT 1 /* 1 seconde */ |
| |
| |
| static void _i2c_bus_reset (void) |
| { |
| int i, status; |
| |
| /* Reset status register */ |
| /* write 1 in SCMP and IRQA to clear these fields */ |
| out8 (IIC_STS, 0x0A); |
| |
| /* write 1 in IRQP IRQD LA ICT XFRA to clear these fields */ |
| out8 (IIC_EXTSTS, 0x8F); |
| __asm__ volatile ("eieio"); |
| |
| /* |
| * Get current state, reset bus |
| * only if no transfers are pending. |
| */ |
| i = 10; |
| do { |
| /* Get status */ |
| status = in8 (IIC_STS); |
| udelay (500); /* 500us */ |
| i--; |
| } while ((status & IIC_STS_PT) && (i > 0)); |
| /* Soft reset controller */ |
| status = in8 (IIC_XTCNTLSS); |
| out8 (IIC_XTCNTLSS, (status | IIC_XTCNTLSS_SRST)); |
| __asm__ volatile ("eieio"); |
| |
| /* make sure where in initial state, data hi, clock hi */ |
| out8 (IIC_DIRECTCNTL, 0xC); |
| for (i = 0; i < 10; i++) { |
| if ((in8 (IIC_DIRECTCNTL) & 0x3) != 0x3) { |
| /* clock until we get to known state */ |
| out8 (IIC_DIRECTCNTL, 0x8); /* clock lo */ |
| udelay (100); /* 100us */ |
| out8 (IIC_DIRECTCNTL, 0xC); /* clock hi */ |
| udelay (100); /* 100us */ |
| } else { |
| break; |
| } |
| } |
| /* send start condition */ |
| out8 (IIC_DIRECTCNTL, 0x4); |
| udelay (1000); /* 1ms */ |
| /* send stop condition */ |
| out8 (IIC_DIRECTCNTL, 0xC); |
| udelay (1000); /* 1ms */ |
| /* Unreset controller */ |
| out8 (IIC_XTCNTLSS, (status & ~IIC_XTCNTLSS_SRST)); |
| udelay (1000); /* 1ms */ |
| } |
| |
| void i2c_init (int speed, int slaveadd) |
| { |
| sys_info_t sysInfo; |
| unsigned long freqOPB; |
| int val, divisor; |
| |
| #ifdef CFG_I2C_INIT_BOARD |
| /* call board specific i2c bus reset routine before accessing the */ |
| /* environment, which might be in a chip on that bus. For details */ |
| /* about this problem see doc/I2C_Edge_Conditions. */ |
| i2c_init_board(); |
| #endif |
| |
| /* Handle possible failed I2C state */ |
| /* FIXME: put this into i2c_init_board()? */ |
| _i2c_bus_reset (); |
| |
| /* clear lo master address */ |
| out8 (IIC_LMADR, 0); |
| |
| /* clear hi master address */ |
| out8 (IIC_HMADR, 0); |
| |
| /* clear lo slave address */ |
| out8 (IIC_LSADR, 0); |
| |
| /* clear hi slave address */ |
| out8 (IIC_HSADR, 0); |
| |
| /* Clock divide Register */ |
| /* get OPB frequency */ |
| get_sys_info (&sysInfo); |
| freqOPB = sysInfo.freqPLB / sysInfo.pllOpbDiv; |
| /* set divisor according to freqOPB */ |
| divisor = (freqOPB - 1) / 10000000; |
| if (divisor == 0) |
| divisor = 1; |
| out8 (IIC_CLKDIV, divisor); |
| |
| /* no interrupts */ |
| out8 (IIC_INTRMSK, 0); |
| |
| /* clear transfer count */ |
| out8 (IIC_XFRCNT, 0); |
| |
| /* clear extended control & stat */ |
| /* write 1 in SRC SRS SWC SWS to clear these fields */ |
| out8 (IIC_XTCNTLSS, 0xF0); |
| |
| /* Mode Control Register |
| Flush Slave/Master data buffer */ |
| out8 (IIC_MDCNTL, IIC_MDCNTL_FSDB | IIC_MDCNTL_FMDB); |
| __asm__ volatile ("eieio"); |
| |
| |
| val = in8(IIC_MDCNTL); |
| __asm__ volatile ("eieio"); |
| |
| /* Ignore General Call, slave transfers are ignored, |
| disable interrupts, exit unknown bus state, enable hold |
| SCL |
| 100kHz normaly or FastMode for 400kHz and above |
| */ |
| |
| val |= IIC_MDCNTL_EUBS|IIC_MDCNTL_HSCL; |
| if( speed >= 400000 ){ |
| val |= IIC_MDCNTL_FSM; |
| } |
| out8 (IIC_MDCNTL, val); |
| |
| /* clear control reg */ |
| out8 (IIC_CNTL, 0x00); |
| __asm__ volatile ("eieio"); |
| |
| } |
| |
| /* |
| This code tries to use the features of the 405GP i2c |
| controller. It will transfer up to 4 bytes in one pass |
| on the loop. It only does out8(lbz) to the buffer when it |
| is possible to do out16(lhz) transfers. |
| |
| cmd_type is 0 for write 1 for read. |
| |
| addr_len can take any value from 0-255, it is only limited |
| by the char, we could make it larger if needed. If it is |
| 0 we skip the address write cycle. |
| |
| Typical case is a Write of an addr followd by a Read. The |
| IBM FAQ does not cover this. On the last byte of the write |
| we don't set the creg CHT bit, and on the first bytes of the |
| read we set the RPST bit. |
| |
| It does not support address only transfers, there must be |
| a data part. If you want to write the address yourself, put |
| it in the data pointer. |
| |
| It does not support transfer to/from address 0. |
| |
| It does not check XFRCNT. |
| */ |
| static |
| int i2c_transfer(unsigned char cmd_type, |
| unsigned char chip, |
| unsigned char addr[], |
| unsigned char addr_len, |
| unsigned char data[], |
| unsigned short data_len ) |
| { |
| unsigned char* ptr; |
| int reading; |
| int tran,cnt; |
| int result; |
| int status; |
| int i; |
| uchar creg; |
| |
| if( data == 0 || data_len == 0 ){ |
| /*Don't support data transfer of no length or to address 0*/ |
| printf( "i2c_transfer: bad call\n" ); |
| return IIC_NOK; |
| } |
| if( addr && addr_len ){ |
| ptr = addr; |
| cnt = addr_len; |
| reading = 0; |
| }else{ |
| ptr = data; |
| cnt = data_len; |
| reading = cmd_type; |
| } |
| |
| /*Clear Stop Complete Bit*/ |
| out8(IIC_STS,IIC_STS_SCMP); |
| /* Check init */ |
| i=10; |
| do { |
| /* Get status */ |
| status = in8(IIC_STS); |
| __asm__ volatile("eieio"); |
| i--; |
| } while ((status & IIC_STS_PT) && (i>0)); |
| |
| if (status & IIC_STS_PT) { |
| result = IIC_NOK_TOUT; |
| return(result); |
| } |
| /*flush the Master/Slave Databuffers*/ |
| out8(IIC_MDCNTL, ((in8(IIC_MDCNTL))|IIC_MDCNTL_FMDB|IIC_MDCNTL_FSDB)); |
| /*need to wait 4 OPB clocks? code below should take that long*/ |
| |
| /* 7-bit adressing */ |
| out8(IIC_HMADR,0); |
| out8(IIC_LMADR, chip); |
| __asm__ volatile("eieio"); |
| |
| tran = 0; |
| result = IIC_OK; |
| creg = 0; |
| |
| while ( tran != cnt && (result == IIC_OK)) { |
| int bc,j; |
| |
| /* Control register = |
| Normal transfer, 7-bits adressing, Transfer up to bc bytes, Normal start, |
| Transfer is a sequence of transfers |
| */ |
| creg |= IIC_CNTL_PT; |
| |
| bc = (cnt - tran) > 4 ? 4 : |
| cnt - tran; |
| creg |= (bc-1)<<4; |
| /* if the real cmd type is write continue trans*/ |
| if ( (!cmd_type && (ptr == addr)) || ((tran+bc) != cnt) ) |
| creg |= IIC_CNTL_CHT; |
| |
| if (reading) |
| creg |= IIC_CNTL_READ; |
| else { |
| for(j=0; j<bc; j++) { |
| /* Set buffer */ |
| out8(IIC_MDBUF,ptr[tran+j]); |
| __asm__ volatile("eieio"); |
| } |
| } |
| out8(IIC_CNTL, creg ); |
| __asm__ volatile("eieio"); |
| |
| /* Transfer is in progress |
| we have to wait for upto 5 bytes of data |
| 1 byte chip address+r/w bit then bc bytes |
| of data. |
| udelay(10) is 1 bit time at 100khz |
| Doubled for slop. 20 is too small. |
| */ |
| i=2*5*8; |
| do { |
| /* Get status */ |
| status = in8(IIC_STS); |
| __asm__ volatile("eieio"); |
| udelay (10); |
| i--; |
| } while ((status & IIC_STS_PT) && !(status & IIC_STS_ERR) |
| && (i>0)); |
| |
| if (status & IIC_STS_ERR) { |
| result = IIC_NOK; |
| status = in8 (IIC_EXTSTS); |
| /* Lost arbitration? */ |
| if (status & IIC_EXTSTS_LA) |
| result = IIC_NOK_LA; |
| /* Incomplete transfer? */ |
| if (status & IIC_EXTSTS_ICT) |
| result = IIC_NOK_ICT; |
| /* Transfer aborted? */ |
| if (status & IIC_EXTSTS_XFRA) |
| result = IIC_NOK_XFRA; |
| } else if ( status & IIC_STS_PT) { |
| result = IIC_NOK_TOUT; |
| } |
| /* Command is reading => get buffer */ |
| if ((reading) && (result == IIC_OK)) { |
| /* Are there data in buffer */ |
| if (status & IIC_STS_MDBS) { |
| /* |
| even if we have data we have to wait 4OPB clocks |
| for it to hit the front of the FIFO, after that |
| we can just read. We should check XFCNT here and |
| if the FIFO is full there is no need to wait. |
| */ |
| udelay (1); |
| for(j=0;j<bc;j++) { |
| ptr[tran+j] = in8(IIC_MDBUF); |
| __asm__ volatile("eieio"); |
| } |
| } else |
| result = IIC_NOK_DATA; |
| } |
| creg = 0; |
| tran+=bc; |
| if( ptr == addr && tran == cnt ) { |
| ptr = data; |
| cnt = data_len; |
| tran = 0; |
| reading = cmd_type; |
| if( reading ) |
| creg = IIC_CNTL_RPST; |
| } |
| } |
| return (result); |
| } |
| |
| int i2c_probe (uchar chip) |
| { |
| uchar buf[1]; |
| |
| buf[0] = 0; |
| |
| /* |
| * What is needed is to send the chip address and verify that the |
| * address was <ACK>ed (i.e. there was a chip at that address which |
| * drove the data line low). |
| */ |
| return(i2c_transfer (1, chip << 1, 0,0, buf, 1) != 0); |
| } |
| |
| |
| int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len) |
| { |
| uchar xaddr[4]; |
| int ret; |
| |
| if ( alen > 4 ) { |
| printf ("I2C read: addr len %d not supported\n", alen); |
| return 1; |
| } |
| |
| if ( alen > 0 ) { |
| xaddr[0] = (addr >> 24) & 0xFF; |
| xaddr[1] = (addr >> 16) & 0xFF; |
| xaddr[2] = (addr >> 8) & 0xFF; |
| xaddr[3] = addr & 0xFF; |
| } |
| |
| |
| #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW |
| /* |
| * EEPROM chips that implement "address overflow" are ones |
| * like Catalyst 24WC04/08/16 which has 9/10/11 bits of |
| * address and the extra bits end up in the "chip address" |
| * bit slots. This makes a 24WC08 (1Kbyte) chip look like |
| * four 256 byte chips. |
| * |
| * Note that we consider the length of the address field to |
| * still be one byte because the extra address bits are |
| * hidden in the chip address. |
| */ |
| if( alen > 0 ) |
| chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); |
| #endif |
| if( (ret = i2c_transfer( 1, chip<<1, &xaddr[4-alen], alen, buffer, len )) != 0) { |
| printf( "I2c read: failed %d\n", ret); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len) |
| { |
| uchar xaddr[4]; |
| |
| if ( alen > 4 ) { |
| printf ("I2C write: addr len %d not supported\n", alen); |
| return 1; |
| |
| } |
| if ( alen > 0 ) { |
| xaddr[0] = (addr >> 24) & 0xFF; |
| xaddr[1] = (addr >> 16) & 0xFF; |
| xaddr[2] = (addr >> 8) & 0xFF; |
| xaddr[3] = addr & 0xFF; |
| } |
| |
| #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW |
| /* |
| * EEPROM chips that implement "address overflow" are ones |
| * like Catalyst 24WC04/08/16 which has 9/10/11 bits of |
| * address and the extra bits end up in the "chip address" |
| * bit slots. This makes a 24WC08 (1Kbyte) chip look like |
| * four 256 byte chips. |
| * |
| * Note that we consider the length of the address field to |
| * still be one byte because the extra address bits are |
| * hidden in the chip address. |
| */ |
| if( alen > 0 ) |
| chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); |
| #endif |
| |
| return (i2c_transfer( 0, chip<<1, &xaddr[4-alen], alen, buffer, len ) != 0); |
| } |
| |
| /*----------------------------------------------------------------------- |
| * Read a register |
| */ |
| uchar i2c_reg_read(uchar i2c_addr, uchar reg) |
| { |
| char buf; |
| |
| i2c_read(i2c_addr, reg, 1, &buf, 1); |
| |
| return(buf); |
| } |
| |
| /*----------------------------------------------------------------------- |
| * Write a register |
| */ |
| void i2c_reg_write(uchar i2c_addr, uchar reg, uchar val) |
| { |
| i2c_write(i2c_addr, reg, 1, &val, 1); |
| } |
| #endif /* CONFIG_HARD_I2C */ |