blob: 6bec68d1daed74305fd393277adbd2fdf1629dd1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Marvell International Ltd.
*/
#include <command.h>
#include <config.h>
#include <dm.h>
#include <hang.h>
#include <i2c.h>
#include <ram.h>
#include <time.h>
#include <asm/sections.h>
#include <linux/io.h>
#include <mach/octeon_ddr.h>
#define CONFIG_REF_HERTZ 50000000
DECLARE_GLOBAL_DATA_PTR;
/* Sign of an integer */
static s64 _sign(s64 v)
{
return (v < 0);
}
#ifndef DDR_NO_DEBUG
char *lookup_env(struct ddr_priv *priv, const char *format, ...)
{
char *s;
unsigned long value;
va_list args;
char buffer[64];
va_start(args, format);
vsnprintf(buffer, sizeof(buffer), format, args);
va_end(args);
s = ddr_getenv_debug(priv, buffer);
if (s) {
value = simple_strtoul(s, NULL, 0);
printf("Parameter found in environment %s=\"%s\" 0x%lx (%ld)\n",
buffer, s, value, value);
}
return s;
}
char *lookup_env_ull(struct ddr_priv *priv, const char *format, ...)
{
char *s;
u64 value;
va_list args;
char buffer[64];
va_start(args, format);
vsnprintf(buffer, sizeof(buffer), format, args);
va_end(args);
s = ddr_getenv_debug(priv, buffer);
if (s) {
value = simple_strtoull(s, NULL, 0);
printf("Parameter found in environment. %s = 0x%016llx\n",
buffer, value);
}
return s;
}
#else
char *lookup_env(struct ddr_priv *priv, const char *format, ...)
{
return NULL;
}
char *lookup_env_ull(struct ddr_priv *priv, const char *format, ...)
{
return NULL;
}
#endif
/* Number of L2C Tag-and-data sections (TADs) that are connected to LMC. */
#define CVMX_L2C_TADS ((OCTEON_IS_MODEL(OCTEON_CN68XX) || \
OCTEON_IS_MODEL(OCTEON_CN73XX) || \
OCTEON_IS_MODEL(OCTEON_CNF75XX)) ? 4 : \
(OCTEON_IS_MODEL(OCTEON_CN78XX)) ? 8 : 1)
/* Number of L2C IOBs connected to LMC. */
#define CVMX_L2C_IOBS ((OCTEON_IS_MODEL(OCTEON_CN68XX) || \
OCTEON_IS_MODEL(OCTEON_CN78XX) || \
OCTEON_IS_MODEL(OCTEON_CN73XX) || \
OCTEON_IS_MODEL(OCTEON_CNF75XX)) ? 2 : 1)
#define CVMX_L2C_MAX_MEMSZ_ALLOWED (OCTEON_IS_OCTEON2() ? \
(32 * CVMX_L2C_TADS) : \
(OCTEON_IS_MODEL(OCTEON_CN70XX) ? \
512 : (OCTEON_IS_OCTEON3() ? 1024 : 0)))
/**
* Initialize the BIG address in L2C+DRAM to generate proper error
* on reading/writing to an non-existent memory location.
*
* @param node OCX CPU node number
* @param mem_size Amount of DRAM configured in MB.
* @param mode Allow/Disallow reporting errors L2C_INT_SUM[BIGRD,BIGWR].
*/
static void cvmx_l2c_set_big_size(struct ddr_priv *priv, u64 mem_size, int mode)
{
if ((OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) &&
!OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
union cvmx_l2c_big_ctl big_ctl;
int bits = 0, zero_bits = 0;
u64 mem;
if (mem_size > (CVMX_L2C_MAX_MEMSZ_ALLOWED * 1024ull)) {
printf("WARNING: Invalid memory size(%lld) requested, should be <= %lld\n",
mem_size,
(u64)CVMX_L2C_MAX_MEMSZ_ALLOWED * 1024);
mem_size = CVMX_L2C_MAX_MEMSZ_ALLOWED * 1024;
}
mem = mem_size;
while (mem) {
if ((mem & 1) == 0)
zero_bits++;
bits++;
mem >>= 1;
}
if ((bits - zero_bits) != 1 || (bits - 9) <= 0) {
printf("ERROR: Invalid DRAM size (%lld) requested, refer to L2C_BIG_CTL[maxdram] for valid options.\n",
mem_size);
return;
}
/*
* The BIG/HOLE is logic is not supported in pass1 as per
* Errata L2C-17736
*/
if (mode == 0 && OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X))
mode = 1;
big_ctl.u64 = 0;
big_ctl.s.maxdram = bits - 9;
big_ctl.cn61xx.disable = mode;
l2c_wr(priv, CVMX_L2C_BIG_CTL, big_ctl.u64);
}
}
static u32 octeon3_refclock(u32 alt_refclk, u32 ddr_hertz,
struct dimm_config *dimm_config)
{
u32 ddr_ref_hertz = CONFIG_REF_HERTZ;
int ddr_type;
int spd_dimm_type;
debug("%s(%u, %u, %p)\n", __func__, alt_refclk, ddr_hertz, dimm_config);
/* Octeon 3 case... */
/* we know whether alternate refclk is always wanted
* we also know already if we want 2133 MT/s
* if alt refclk not always wanted, then probe DDR and
* DIMM type if DDR4 and RDIMMs, then set desired refclk
* to 100MHz, otherwise to default (50MHz)
* depend on ddr_initialize() to do the refclk selection
* and validation/
*/
if (alt_refclk) {
/*
* If alternate refclk was specified, let it override
* everything
*/
ddr_ref_hertz = alt_refclk * 1000000;
printf("%s: DRAM init: %d MHz refclk is REQUESTED ALWAYS\n",
__func__, alt_refclk);
} else if (ddr_hertz > 1000000000) {
ddr_type = get_ddr_type(dimm_config, 0);
spd_dimm_type = get_dimm_module_type(dimm_config, 0, ddr_type);
debug("ddr type: 0x%x, dimm type: 0x%x\n", ddr_type,
spd_dimm_type);
/* Is DDR4 and RDIMM just to be sure. */
if (ddr_type == DDR4_DRAM &&
(spd_dimm_type == 1 || spd_dimm_type == 5 ||
spd_dimm_type == 8)) {
/* Yes, we require 100MHz refclk, so set it. */
ddr_ref_hertz = 100000000;
puts("DRAM init: 100 MHz refclk is REQUIRED\n");
}
}
debug("%s: speed: %u\n", __func__, ddr_ref_hertz);
return ddr_ref_hertz;
}
int encode_row_lsb_ddr3(int row_lsb)
{
int row_lsb_start = 14;
/* Decoding for row_lsb */
/* 000: row_lsb = mem_adr[14] */
/* 001: row_lsb = mem_adr[15] */
/* 010: row_lsb = mem_adr[16] */
/* 011: row_lsb = mem_adr[17] */
/* 100: row_lsb = mem_adr[18] */
/* 101: row_lsb = mem_adr[19] */
/* 110: row_lsb = mem_adr[20] */
/* 111: RESERVED */
if (octeon_is_cpuid(OCTEON_CN6XXX) ||
octeon_is_cpuid(OCTEON_CNF7XXX) || octeon_is_cpuid(OCTEON_CN7XXX))
row_lsb_start = 14;
else
printf("ERROR: Unsupported Octeon model: 0x%x\n",
read_c0_prid());
return row_lsb - row_lsb_start;
}
int encode_pbank_lsb_ddr3(int pbank_lsb)
{
/* Decoding for pbank_lsb */
/* 0000:DIMM = mem_adr[28] / rank = mem_adr[27] (if RANK_ENA) */
/* 0001:DIMM = mem_adr[29] / rank = mem_adr[28] " */
/* 0010:DIMM = mem_adr[30] / rank = mem_adr[29] " */
/* 0011:DIMM = mem_adr[31] / rank = mem_adr[30] " */
/* 0100:DIMM = mem_adr[32] / rank = mem_adr[31] " */
/* 0101:DIMM = mem_adr[33] / rank = mem_adr[32] " */
/* 0110:DIMM = mem_adr[34] / rank = mem_adr[33] " */
/* 0111:DIMM = 0 / rank = mem_adr[34] " */
/* 1000-1111: RESERVED */
int pbank_lsb_start = 0;
if (octeon_is_cpuid(OCTEON_CN6XXX) ||
octeon_is_cpuid(OCTEON_CNF7XXX) || octeon_is_cpuid(OCTEON_CN7XXX))
pbank_lsb_start = 28;
else
printf("ERROR: Unsupported Octeon model: 0x%x\n",
read_c0_prid());
return pbank_lsb - pbank_lsb_start;
}
static void set_ddr_clock_initialized(struct ddr_priv *priv, int if_num,
bool inited_flag)
{
priv->ddr_clock_initialized[if_num] = inited_flag;
}
static int ddr_clock_initialized(struct ddr_priv *priv, int if_num)
{
return priv->ddr_clock_initialized[if_num];
}
static void set_ddr_memory_preserved(struct ddr_priv *priv)
{
priv->ddr_memory_preserved = true;
}
bool ddr_memory_preserved(struct ddr_priv *priv)
{
return priv->ddr_memory_preserved;
}
static void cn78xx_lmc_dreset_init(struct ddr_priv *priv, int if_num)
{
union cvmx_lmcx_dll_ctl2 dll_ctl2;
/*
* The remainder of this section describes the sequence for LMCn.
*
* 1. If not done already, write LMC(0..3)_DLL_CTL2 to its reset value
* (except without changing the LMC(0..3)_DLL_CTL2[INTF_EN] value from
* that set in the prior Step 3), including
* LMC(0..3)_DLL_CTL2[DRESET] = 1.
*
* 2. Without changing any other LMC(0..3)_DLL_CTL2 fields, write
* LMC(0..3)_DLL_CTL2[DLL_BRINGUP] = 1.
*/
dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(if_num));
dll_ctl2.cn78xx.dll_bringup = 1;
lmc_wr(priv, CVMX_LMCX_DLL_CTL2(if_num), dll_ctl2.u64);
/*
* 3. Read LMC(0..3)_DLL_CTL2 and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DLL_CTL2(if_num));
/*
* 4. Wait for a minimum of 10 LMC CK cycles.
*/
udelay(1);
/*
* 5. Without changing any other fields in LMC(0..3)_DLL_CTL2, write
* LMC(0..3)_DLL_CTL2[QUAD_DLL_ENA] = 1.
* LMC(0..3)_DLL_CTL2[QUAD_DLL_ENA] must not change after this point
* without restarting the LMCn DRESET initialization sequence.
*/
dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(if_num));
dll_ctl2.cn78xx.quad_dll_ena = 1;
lmc_wr(priv, CVMX_LMCX_DLL_CTL2(if_num), dll_ctl2.u64);
/*
* 6. Read LMC(0..3)_DLL_CTL2 and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DLL_CTL2(if_num));
/*
* 7. Wait a minimum of 10 us.
*/
udelay(10);
/*
* 8. Without changing any other fields in LMC(0..3)_DLL_CTL2, write
* LMC(0..3)_DLL_CTL2[DLL_BRINGUP] = 0.
* LMC(0..3)_DLL_CTL2[DLL_BRINGUP] must not change after this point
* without restarting the LMCn DRESET initialization sequence.
*/
dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(if_num));
dll_ctl2.cn78xx.dll_bringup = 0;
lmc_wr(priv, CVMX_LMCX_DLL_CTL2(if_num), dll_ctl2.u64);
/*
* 9. Read LMC(0..3)_DLL_CTL2 and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DLL_CTL2(if_num));
/*
* 10. Without changing any other fields in LMC(0..3)_DLL_CTL2, write
* LMC(0..3)_DLL_CTL2[DRESET] = 0.
* LMC(0..3)_DLL_CTL2[DRESET] must not change after this point without
* restarting the LMCn DRESET initialization sequence.
*
* After completing LMCn DRESET initialization, all LMC CSRs may be
* accessed. Prior to completing LMC DRESET initialization, only
* LMC(0..3)_DDR_PLL_CTL, LMC(0..3)_DLL_CTL2, LMC(0..3)_RESET_CTL, and
* LMC(0..3)_COMP_CTL2 LMC CSRs can be accessed.
*/
dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(if_num));
dll_ctl2.cn78xx.dreset = 0;
lmc_wr(priv, CVMX_LMCX_DLL_CTL2(if_num), dll_ctl2.u64);
}
int initialize_ddr_clock(struct ddr_priv *priv, struct ddr_conf *ddr_conf,
u32 cpu_hertz, u32 ddr_hertz, u32 ddr_ref_hertz,
int if_num, u32 if_mask)
{
char *s;
if (ddr_clock_initialized(priv, if_num))
return 0;
if (!ddr_clock_initialized(priv, 0)) { /* Do this once */
union cvmx_lmcx_reset_ctl reset_ctl;
int i;
/*
* Check to see if memory is to be preserved and set global
* flag
*/
for (i = 3; i >= 0; --i) {
if ((if_mask & (1 << i)) == 0)
continue;
reset_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RESET_CTL(i));
if (reset_ctl.s.ddr3psv == 1) {
debug("LMC%d Preserving memory\n", i);
set_ddr_memory_preserved(priv);
/* Re-initialize flags */
reset_ctl.s.ddr3pwarm = 0;
reset_ctl.s.ddr3psoft = 0;
reset_ctl.s.ddr3psv = 0;
lmc_wr(priv, CVMX_LMCX_RESET_CTL(i),
reset_ctl.u64);
}
}
}
/*
* ToDo: Add support for these SoCs:
*
* if (octeon_is_cpuid(OCTEON_CN63XX) ||
* octeon_is_cpuid(OCTEON_CN66XX) ||
* octeon_is_cpuid(OCTEON_CN61XX) || octeon_is_cpuid(OCTEON_CNF71XX))
*
* and
*
* if (octeon_is_cpuid(OCTEON_CN68XX))
*
* and
*
* if (octeon_is_cpuid(OCTEON_CN70XX))
*
*/
if (octeon_is_cpuid(OCTEON_CN78XX) || octeon_is_cpuid(OCTEON_CN73XX) ||
octeon_is_cpuid(OCTEON_CNF75XX)) {
union cvmx_lmcx_dll_ctl2 dll_ctl2;
union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
union cvmx_lmcx_ddr_pll_ctl ddr_pll_ctl;
struct dimm_config *dimm_config_table =
ddr_conf->dimm_config_table;
int en_idx, save_en_idx, best_en_idx = 0;
u64 clkf, clkr, max_clkf = 127;
u64 best_clkf = 0, best_clkr = 0;
u64 best_pll_MHz = 0;
u64 pll_MHz;
u64 min_pll_MHz = 800;
u64 max_pll_MHz = 5000;
u64 error;
u64 best_error;
u64 best_calculated_ddr_hertz = 0;
u64 calculated_ddr_hertz = 0;
u64 orig_ddr_hertz = ddr_hertz;
const int _en[] = { 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 };
int override_pll_settings;
int new_bwadj;
int ddr_type;
int i;
/* ddr_type only indicates DDR4 or DDR3 */
ddr_type = (read_spd(&dimm_config_table[0], 0,
DDR4_SPD_KEY_BYTE_DEVICE_TYPE) ==
0x0C) ? DDR4_DRAM : DDR3_DRAM;
/*
* 5.9 LMC Initialization Sequence
*
* There are 13 parts to the LMC initialization procedure:
*
* 1. DDR PLL initialization
*
* 2. LMC CK initialization
*
* 3. LMC interface enable initialization
*
* 4. LMC DRESET initialization
*
* 5. LMC CK local initialization
*
* 6. LMC RESET initialization
*
* 7. Early LMC initialization
*
* 8. LMC offset training
*
* 9. LMC internal Vref training
*
* 10. LMC deskew training
*
* 11. LMC write leveling
*
* 12. LMC read leveling
*
* 13. Final LMC initialization
*
* CN78XX supports two modes:
*
* - two-LMC mode: both LMCs 2/3 must not be enabled
* (LMC2/3_DLL_CTL2[DRESET] must be set to 1 and
* LMC2/3_DLL_CTL2[INTF_EN]
* must be set to 0) and both LMCs 0/1 must be enabled).
*
* - four-LMC mode: all four LMCs 0..3 must be enabled.
*
* Steps 4 and 6..13 should each be performed for each
* enabled LMC (either twice or four times). Steps 1..3 and
* 5 are more global in nature and each must be executed
* exactly once (not once per LMC) each time the DDR PLL
* changes or is first brought up. Steps 1..3 and 5 need
* not be performed if the DDR PLL is stable.
*
* Generally, the steps are performed in order. The exception
* is that the CK local initialization (step 5) must be
* performed after some DRESET initializations (step 4) and
* before other DRESET initializations when the DDR PLL is
* brought up or changed. (The CK local initialization uses
* information from some LMCs to bring up the other local
* CKs.) The following text describes these ordering
* requirements in more detail.
*
* Following any chip reset, the DDR PLL must be brought up,
* and all 13 steps should be executed. Subsequently, it is
* possible to execute only steps 4 and 6..13, or to execute
* only steps 8..13.
*
* The remainder of this section covers these initialization
* steps in sequence.
*/
/* Do the following init only once */
if (if_num != 0)
goto not_if0;
/* Only for interface #0 ... */
/*
* 5.9.3 LMC Interface-Enable Initialization
*
* LMC interface-enable initialization (Step 3) must be#
* performed after Step 2 for each chip reset and whenever
* the DDR clock speed changes. This step needs to be
* performed only once, not once per LMC. Perform the
* following three substeps for the LMC interface-enable
* initialization:
*
* 1. Without changing any other LMC2_DLL_CTL2 fields
* (LMC(0..3)_DLL_CTL2 should be at their reset values after
* Step 1), write LMC2_DLL_CTL2[INTF_EN] = 1 if four-LMC
* mode is desired.
*
* 2. Without changing any other LMC3_DLL_CTL2 fields, write
* LMC3_DLL_CTL2[INTF_EN] = 1 if four-LMC mode is desired.
*
* 3. Read LMC2_DLL_CTL2 and wait for the result.
*
* The LMC2_DLL_CTL2[INTF_EN] and LMC3_DLL_CTL2[INTF_EN]
* values should not be changed by software from this point.
*/
for (i = 0; i < 4; ++i) {
if ((if_mask & (1 << i)) == 0)
continue;
dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(i));
dll_ctl2.cn78xx.byp_setting = 0;
dll_ctl2.cn78xx.byp_sel = 0;
dll_ctl2.cn78xx.quad_dll_ena = 0;
dll_ctl2.cn78xx.dreset = 1;
dll_ctl2.cn78xx.dll_bringup = 0;
dll_ctl2.cn78xx.intf_en = 0;
lmc_wr(priv, CVMX_LMCX_DLL_CTL2(i), dll_ctl2.u64);
}
/*
* ###### Interface enable (intf_en) deferred until after
* DDR_DIV_RESET=0 #######
*/
/*
* 5.9.1 DDR PLL Initialization
*
* DDR PLL initialization (Step 1) must be performed for each
* chip reset and whenever the DDR clock speed changes. This
* step needs to be performed only once, not once per LMC.
*
* Perform the following eight substeps to initialize the
* DDR PLL:
*
* 1. If not done already, write all fields in
* LMC(0..3)_DDR_PLL_CTL and
* LMC(0..1)_DLL_CTL2 to their reset values, including:
*
* .. LMC0_DDR_PLL_CTL[DDR_DIV_RESET] = 1
* .. LMC0_DLL_CTL2[DRESET] = 1
*
* This substep is not necessary after a chip reset.
*
*/
ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
ddr_pll_ctl.cn78xx.reset_n = 0;
ddr_pll_ctl.cn78xx.ddr_div_reset = 1;
ddr_pll_ctl.cn78xx.phy_dcok = 0;
/*
* 73XX pass 1.3 has LMC0 DCLK_INVERT tied to 1; earlier
* 73xx passes are tied to 0
*
* 75XX needs LMC0 DCLK_INVERT set to 1 to minimize duty
* cycle falling points
*
* and we default all other chips LMC0 to DCLK_INVERT=0
*/
ddr_pll_ctl.cn78xx.dclk_invert =
!!(octeon_is_cpuid(OCTEON_CN73XX_PASS1_3) ||
octeon_is_cpuid(OCTEON_CNF75XX));
/*
* allow override of LMC0 desired setting for DCLK_INVERT,
* but not on 73XX;
* we cannot change LMC0 DCLK_INVERT on 73XX any pass
*/
if (!(octeon_is_cpuid(OCTEON_CN73XX))) {
s = lookup_env(priv, "ddr0_set_dclk_invert");
if (s) {
ddr_pll_ctl.cn78xx.dclk_invert =
!!simple_strtoul(s, NULL, 0);
debug("LMC0: override DDR_PLL_CTL[dclk_invert] to %d\n",
ddr_pll_ctl.cn78xx.dclk_invert);
}
}
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(0), ddr_pll_ctl.u64);
debug("%-45s : 0x%016llx\n", "LMC0: DDR_PLL_CTL",
ddr_pll_ctl.u64);
// only when LMC1 is active
if (if_mask & 0x2) {
/*
* For CNF75XX, both LMC0 and LMC1 use the same PLL,
* so we use the LMC0 setting of DCLK_INVERT for LMC1.
*/
if (!octeon_is_cpuid(OCTEON_CNF75XX)) {
int override = 0;
/*
* by default, for non-CNF75XX, we want
* LMC1 toggled LMC0
*/
int lmc0_dclk_invert =
ddr_pll_ctl.cn78xx.dclk_invert;
/*
* FIXME: work-around for DDR3 UDIMM problems
* is to use LMC0 setting on LMC1 and if
* 73xx pass 1.3, we want to default LMC1
* DCLK_INVERT to LMC0, not the invert of LMC0
*/
int lmc1_dclk_invert;
lmc1_dclk_invert =
((ddr_type == DDR4_DRAM) &&
!octeon_is_cpuid(OCTEON_CN73XX_PASS1_3))
? lmc0_dclk_invert ^ 1 :
lmc0_dclk_invert;
/*
* allow override of LMC1 desired setting for
* DCLK_INVERT
*/
s = lookup_env(priv, "ddr1_set_dclk_invert");
if (s) {
lmc1_dclk_invert =
!!simple_strtoul(s, NULL, 0);
override = 1;
}
debug("LMC1: %s DDR_PLL_CTL[dclk_invert] to %d (LMC0 %d)\n",
(override) ? "override" :
"default", lmc1_dclk_invert,
lmc0_dclk_invert);
ddr_pll_ctl.cn78xx.dclk_invert =
lmc1_dclk_invert;
}
// but always write LMC1 CSR if it is active
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(1), ddr_pll_ctl.u64);
debug("%-45s : 0x%016llx\n",
"LMC1: DDR_PLL_CTL", ddr_pll_ctl.u64);
}
/*
* 2. If the current DRAM contents are not preserved (see
* LMC(0..3)_RESET_ CTL[DDR3PSV]), this is also an appropriate
* time to assert the RESET# pin of the DDR3/DDR4 DRAM parts.
* If desired, write
* LMC0_RESET_ CTL[DDR3RST] = 0 without modifying any other
* LMC0_RESET_CTL fields to assert the DDR_RESET_L pin.
* No action is required here to assert DDR_RESET_L
* following a chip reset. Refer to Section 5.9.6. Do this
* for all enabled LMCs.
*/
for (i = 0; (!ddr_memory_preserved(priv)) && i < 4; ++i) {
union cvmx_lmcx_reset_ctl reset_ctl;
if ((if_mask & (1 << i)) == 0)
continue;
reset_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RESET_CTL(i));
reset_ctl.cn78xx.ddr3rst = 0; /* Reset asserted */
debug("LMC%d Asserting DDR_RESET_L\n", i);
lmc_wr(priv, CVMX_LMCX_RESET_CTL(i), reset_ctl.u64);
lmc_rd(priv, CVMX_LMCX_RESET_CTL(i));
}
/*
* 3. Without changing any other LMC0_DDR_PLL_CTL values,
* write LMC0_DDR_PLL_CTL[CLKF] with a value that gives a
* desired DDR PLL speed. The LMC0_DDR_PLL_CTL[CLKF] value
* should be selected in conjunction with the post-scalar
* divider values for LMC (LMC0_DDR_PLL_CTL[DDR_PS_EN]) so
* that the desired LMC CK speeds are is produced (all
* enabled LMCs must run the same speed). Section 5.14
* describes LMC0_DDR_PLL_CTL[CLKF] and
* LMC0_DDR_PLL_CTL[DDR_PS_EN] programmings that produce
* the desired LMC CK speed. Section 5.9.2 describes LMC CK
* initialization, which can be done separately from the DDR
* PLL initialization described in this section.
*
* The LMC0_DDR_PLL_CTL[CLKF] value must not change after
* this point without restarting this SDRAM PLL
* initialization sequence.
*/
/* Init to max error */
error = ddr_hertz;
best_error = ddr_hertz;
debug("DDR Reference Hertz = %d\n", ddr_ref_hertz);
while (best_error == ddr_hertz) {
for (clkr = 0; clkr < 4; ++clkr) {
for (en_idx =
sizeof(_en) / sizeof(int) -
1; en_idx >= 0; --en_idx) {
save_en_idx = en_idx;
clkf =
((ddr_hertz) *
(clkr + 1) * (_en[save_en_idx]));
clkf = divide_nint(clkf, ddr_ref_hertz)
- 1;
pll_MHz =
ddr_ref_hertz *
(clkf + 1) / (clkr + 1) / 1000000;
calculated_ddr_hertz =
ddr_ref_hertz *
(clkf +
1) / ((clkr +
1) * (_en[save_en_idx]));
error =
ddr_hertz - calculated_ddr_hertz;
if (pll_MHz < min_pll_MHz ||
pll_MHz > max_pll_MHz)
continue;
if (clkf > max_clkf) {
/*
* PLL requires clkf to be
* limited
*/
continue;
}
if (abs(error) > abs(best_error))
continue;
debug("clkr: %2llu, en[%d]: %2d, clkf: %4llu, pll_MHz: %4llu, ddr_hertz: %8llu, error: %8lld\n",
clkr, save_en_idx,
_en[save_en_idx], clkf, pll_MHz,
calculated_ddr_hertz, error);
/* Favor the highest PLL frequency. */
if (abs(error) < abs(best_error) ||
pll_MHz > best_pll_MHz) {
best_pll_MHz = pll_MHz;
best_calculated_ddr_hertz =
calculated_ddr_hertz;
best_error = error;
best_clkr = clkr;
best_clkf = clkf;
best_en_idx = save_en_idx;
}
}
}
override_pll_settings = 0;
s = lookup_env(priv, "ddr_pll_clkr");
if (s) {
best_clkr = simple_strtoul(s, NULL, 0);
override_pll_settings = 1;
}
s = lookup_env(priv, "ddr_pll_clkf");
if (s) {
best_clkf = simple_strtoul(s, NULL, 0);
override_pll_settings = 1;
}
s = lookup_env(priv, "ddr_pll_en_idx");
if (s) {
best_en_idx = simple_strtoul(s, NULL, 0);
override_pll_settings = 1;
}
if (override_pll_settings) {
best_pll_MHz =
ddr_ref_hertz * (best_clkf +
1) /
(best_clkr + 1) / 1000000;
best_calculated_ddr_hertz =
ddr_ref_hertz * (best_clkf +
1) /
((best_clkr + 1) * (_en[best_en_idx]));
best_error =
ddr_hertz - best_calculated_ddr_hertz;
}
debug("clkr: %2llu, en[%d]: %2d, clkf: %4llu, pll_MHz: %4llu, ddr_hertz: %8llu, error: %8lld <==\n",
best_clkr, best_en_idx, _en[best_en_idx],
best_clkf, best_pll_MHz,
best_calculated_ddr_hertz, best_error);
/*
* Try lowering the frequency if we can't get a
* working configuration
*/
if (best_error == ddr_hertz) {
if (ddr_hertz < orig_ddr_hertz - 10000000)
break;
ddr_hertz -= 1000000;
best_error = ddr_hertz;
}
}
if (best_error == ddr_hertz) {
printf("ERROR: Can not compute a legal DDR clock speed configuration.\n");
return -1;
}
new_bwadj = (best_clkf + 1) / 10;
debug("bwadj: %2d\n", new_bwadj);
s = lookup_env(priv, "ddr_pll_bwadj");
if (s) {
new_bwadj = strtoul(s, NULL, 0);
debug("bwadj: %2d\n", new_bwadj);
}
for (i = 0; i < 2; ++i) {
if ((if_mask & (1 << i)) == 0)
continue;
ddr_pll_ctl.u64 =
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
debug("LMC%d: DDR_PLL_CTL : 0x%016llx\n",
i, ddr_pll_ctl.u64);
ddr_pll_ctl.cn78xx.ddr_ps_en = best_en_idx;
ddr_pll_ctl.cn78xx.clkf = best_clkf;
ddr_pll_ctl.cn78xx.clkr = best_clkr;
ddr_pll_ctl.cn78xx.reset_n = 0;
ddr_pll_ctl.cn78xx.bwadj = new_bwadj;
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(i), ddr_pll_ctl.u64);
debug("LMC%d: DDR_PLL_CTL : 0x%016llx\n",
i, ddr_pll_ctl.u64);
/*
* For cnf75xx LMC0 and LMC1 use the same PLL so
* only program LMC0 PLL.
*/
if (octeon_is_cpuid(OCTEON_CNF75XX))
break;
}
for (i = 0; i < 4; ++i) {
if ((if_mask & (1 << i)) == 0)
continue;
/*
* 4. Read LMC0_DDR_PLL_CTL and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
/*
* 5. Wait a minimum of 3 us.
*/
udelay(3); /* Wait 3 us */
/*
* 6. Write LMC0_DDR_PLL_CTL[RESET_N] = 1 without
* changing any other LMC0_DDR_PLL_CTL values.
*/
ddr_pll_ctl.u64 =
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
ddr_pll_ctl.cn78xx.reset_n = 1;
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(i), ddr_pll_ctl.u64);
/*
* 7. Read LMC0_DDR_PLL_CTL and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
/*
* 8. Wait a minimum of 25 us.
*/
udelay(25); /* Wait 25 us */
/*
* For cnf75xx LMC0 and LMC1 use the same PLL so
* only program LMC0 PLL.
*/
if (octeon_is_cpuid(OCTEON_CNF75XX))
break;
}
for (i = 0; i < 4; ++i) {
if ((if_mask & (1 << i)) == 0)
continue;
/*
* 5.9.2 LMC CK Initialization
*
* DDR PLL initialization must be completed prior to
* starting LMC CK initialization.
*
* Perform the following substeps to initialize the
* LMC CK:
*
* 1. Without changing any other LMC(0..3)_DDR_PLL_CTL
* values, write
* LMC(0..3)_DDR_PLL_CTL[DDR_DIV_RESET] = 1 and
* LMC(0..3)_DDR_PLL_CTL[DDR_PS_EN] with the
* appropriate value to get the desired LMC CK speed.
* Section 5.14 discusses CLKF and DDR_PS_EN
* programmings. The LMC(0..3)_DDR_PLL_CTL[DDR_PS_EN]
* must not change after this point without restarting
* this LMC CK initialization sequence.
*/
ddr_pll_ctl.u64 = lmc_rd(priv,
CVMX_LMCX_DDR_PLL_CTL(i));
ddr_pll_ctl.cn78xx.ddr_div_reset = 1;
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(i), ddr_pll_ctl.u64);
/*
* 2. Without changing any other fields in
* LMC(0..3)_DDR_PLL_CTL, write
* LMC(0..3)_DDR_PLL_CTL[DDR4_MODE] = 0.
*/
ddr_pll_ctl.u64 =
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
ddr_pll_ctl.cn78xx.ddr4_mode =
(ddr_type == DDR4_DRAM) ? 1 : 0;
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(i), ddr_pll_ctl.u64);
/*
* 3. Read LMC(0..3)_DDR_PLL_CTL and wait for the
* result.
*/
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
/*
* 4. Wait a minimum of 1 us.
*/
udelay(1); /* Wait 1 us */
/*
* ###### Steps 5 through 7 deferred until after
* DDR_DIV_RESET=0 #######
*/
/*
* 8. Without changing any other LMC(0..3)_COMP_CTL2
* values, write
* LMC(0..3)_COMP_CTL2[CK_CTL,CONTROL_CTL,CMD_CTL]
* to the desired DDR*_CK_*_P control and command
* signals drive strength.
*/
union cvmx_lmcx_comp_ctl2 comp_ctl2;
const struct ddr3_custom_config *custom_lmc_config =
&ddr_conf->custom_lmc_config;
comp_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(i));
/* Default 4=34.3 ohm */
comp_ctl2.cn78xx.dqx_ctl =
(custom_lmc_config->dqx_ctl ==
0) ? 4 : custom_lmc_config->dqx_ctl;
/* Default 4=34.3 ohm */
comp_ctl2.cn78xx.ck_ctl =
(custom_lmc_config->ck_ctl ==
0) ? 4 : custom_lmc_config->ck_ctl;
/* Default 4=34.3 ohm */
comp_ctl2.cn78xx.cmd_ctl =
(custom_lmc_config->cmd_ctl ==
0) ? 4 : custom_lmc_config->cmd_ctl;
comp_ctl2.cn78xx.rodt_ctl = 0x4; /* 60 ohm */
comp_ctl2.cn70xx.ptune_offset =
(abs(custom_lmc_config->ptune_offset) & 0x7)
| (_sign(custom_lmc_config->ptune_offset) << 3);
comp_ctl2.cn70xx.ntune_offset =
(abs(custom_lmc_config->ntune_offset) & 0x7)
| (_sign(custom_lmc_config->ntune_offset) << 3);
s = lookup_env(priv, "ddr_clk_ctl");
if (s) {
comp_ctl2.cn78xx.ck_ctl =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_ck_ctl");
if (s) {
comp_ctl2.cn78xx.ck_ctl =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_cmd_ctl");
if (s) {
comp_ctl2.cn78xx.cmd_ctl =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_dqx_ctl");
if (s) {
comp_ctl2.cn78xx.dqx_ctl =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_ptune_offset");
if (s) {
comp_ctl2.cn78xx.ptune_offset =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_ntune_offset");
if (s) {
comp_ctl2.cn78xx.ntune_offset =
simple_strtoul(s, NULL, 0);
}
lmc_wr(priv, CVMX_LMCX_COMP_CTL2(i), comp_ctl2.u64);
/*
* 9. Read LMC(0..3)_DDR_PLL_CTL and wait for the
* result.
*/
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
/*
* 10. Wait a minimum of 200 ns.
*/
udelay(1); /* Wait 1 us */
/*
* 11. Without changing any other
* LMC(0..3)_DDR_PLL_CTL values, write
* LMC(0..3)_DDR_PLL_CTL[DDR_DIV_RESET] = 0.
*/
ddr_pll_ctl.u64 = lmc_rd(priv,
CVMX_LMCX_DDR_PLL_CTL(i));
ddr_pll_ctl.cn78xx.ddr_div_reset = 0;
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(i), ddr_pll_ctl.u64);
/*
* 12. Read LMC(0..3)_DDR_PLL_CTL and wait for the
* result.
*/
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
/*
* 13. Wait a minimum of 200 ns.
*/
udelay(1); /* Wait 1 us */
}
/*
* Relocated Interface Enable (intf_en) Step
*/
for (i = (octeon_is_cpuid(OCTEON_CN73XX) ||
octeon_is_cpuid(OCTEON_CNF75XX)) ? 1 : 2;
i < 4; ++i) {
/*
* This step is only necessary for LMC 2 and 3 in
* 4-LMC mode. The mask will cause the unpopulated
* interfaces to be skipped.
*/
if ((if_mask & (1 << i)) == 0)
continue;
dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(i));
dll_ctl2.cn78xx.intf_en = 1;
lmc_wr(priv, CVMX_LMCX_DLL_CTL2(i), dll_ctl2.u64);
lmc_rd(priv, CVMX_LMCX_DLL_CTL2(i));
}
/*
* Relocated PHY_DCOK Step
*/
for (i = 0; i < 4; ++i) {
if ((if_mask & (1 << i)) == 0)
continue;
/*
* 5. Without changing any other fields in
* LMC(0..3)_DDR_PLL_CTL, write
* LMC(0..3)_DDR_PLL_CTL[PHY_DCOK] = 1.
*/
ddr_pll_ctl.u64 = lmc_rd(priv,
CVMX_LMCX_DDR_PLL_CTL(i));
ddr_pll_ctl.cn78xx.phy_dcok = 1;
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(i), ddr_pll_ctl.u64);
/*
* 6. Read LMC(0..3)_DDR_PLL_CTL and wait for
* the result.
*/
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(i));
/*
* 7. Wait a minimum of 20 us.
*/
udelay(20); /* Wait 20 us */
}
/*
* 5.9.4 LMC DRESET Initialization
*
* All of the DDR PLL, LMC global CK, and LMC interface
* enable initializations must be completed prior to starting
* this LMC DRESET initialization (Step 4).
*
* This LMC DRESET step is done for all enabled LMCs.
*
* There are special constraints on the ordering of DRESET
* initialization (Steps 4) and CK local initialization
* (Step 5) whenever CK local initialization must be executed.
* CK local initialization must be executed whenever the DDR
* PLL is being brought up (for each chip reset* and whenever
* the DDR clock speed changes).
*
* When Step 5 must be executed in the two-LMC mode case:
* - LMC0 DRESET initialization must occur before Step 5.
* - LMC1 DRESET initialization must occur after Step 5.
*
* When Step 5 must be executed in the four-LMC mode case:
* - LMC2 and LMC3 DRESET initialization must occur before
* Step 5.
* - LMC0 and LMC1 DRESET initialization must occur after
* Step 5.
*/
if (octeon_is_cpuid(OCTEON_CN73XX)) {
/* ONE-LMC or TWO-LMC MODE BEFORE STEP 5 for cn73xx */
cn78xx_lmc_dreset_init(priv, 0);
} else if (octeon_is_cpuid(OCTEON_CNF75XX)) {
if (if_mask == 0x3) {
/*
* 2-LMC Mode: LMC1 DRESET must occur
* before Step 5
*/
cn78xx_lmc_dreset_init(priv, 1);
}
} else {
/* TWO-LMC MODE DRESET BEFORE STEP 5 */
if (if_mask == 0x3)
cn78xx_lmc_dreset_init(priv, 0);
/* FOUR-LMC MODE BEFORE STEP 5 */
if (if_mask == 0xf) {
cn78xx_lmc_dreset_init(priv, 2);
cn78xx_lmc_dreset_init(priv, 3);
}
}
/*
* 5.9.5 LMC CK Local Initialization
*
* All of DDR PLL, LMC global CK, and LMC interface-enable
* initializations must be completed prior to starting this
* LMC CK local initialization (Step 5).
*
* LMC CK Local initialization must be performed for each
* chip reset and whenever the DDR clock speed changes. This
* step needs to be performed only once, not once per LMC.
*
* There are special constraints on the ordering of DRESET
* initialization (Steps 4) and CK local initialization
* (Step 5) whenever CK local initialization must be executed.
* CK local initialization must be executed whenever the
* DDR PLL is being brought up (for each chip reset and
* whenever the DDR clock speed changes).
*
* When Step 5 must be executed in the two-LMC mode case:
* - LMC0 DRESET initialization must occur before Step 5.
* - LMC1 DRESET initialization must occur after Step 5.
*
* When Step 5 must be executed in the four-LMC mode case:
* - LMC2 and LMC3 DRESET initialization must occur before
* Step 5.
* - LMC0 and LMC1 DRESET initialization must occur after
* Step 5.
*
* LMC CK local initialization is different depending on
* whether two-LMC or four-LMC modes are desired.
*/
if (if_mask == 0x3) {
int temp_lmc_if_num = octeon_is_cpuid(OCTEON_CNF75XX) ?
1 : 0;
/*
* 5.9.5.1 LMC CK Local Initialization for Two-LMC
* Mode
*
* 1. Write LMC0_DLL_CTL3 to its reset value. (Note
* that LMC0_DLL_CTL3[DLL_90_BYTE_SEL] = 0x2 .. 0x8
* should also work.)
*/
ddr_dll_ctl3.u64 = 0;
ddr_dll_ctl3.cn78xx.dclk90_recal_dis = 1;
if (octeon_is_cpuid(OCTEON_CNF75XX))
ddr_dll_ctl3.cn78xx.dll90_byte_sel = 7;
else
ddr_dll_ctl3.cn78xx.dll90_byte_sel = 1;
lmc_wr(priv,
CVMX_LMCX_DLL_CTL3(temp_lmc_if_num),
ddr_dll_ctl3.u64);
/*
* 2. Read LMC0_DLL_CTL3 and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DLL_CTL3(temp_lmc_if_num));
/*
* 3. Without changing any other fields in
* LMC0_DLL_CTL3, write
* LMC0_DLL_CTL3[DCLK90_FWD] = 1. Writing
* LMC0_DLL_CTL3[DCLK90_FWD] = 1
* causes clock-delay information to be forwarded
* from LMC0 to LMC1.
*/
ddr_dll_ctl3.cn78xx.dclk90_fwd = 1;
lmc_wr(priv,
CVMX_LMCX_DLL_CTL3(temp_lmc_if_num),
ddr_dll_ctl3.u64);
/*
* 4. Read LMC0_DLL_CTL3 and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DLL_CTL3(temp_lmc_if_num));
}
if (if_mask == 0xf) {
/*
* 5.9.5.2 LMC CK Local Initialization for Four-LMC
* Mode
*
* 1. Write LMC2_DLL_CTL3 to its reset value except
* LMC2_DLL_CTL3[DLL90_BYTE_SEL] = 0x7.
*/
ddr_dll_ctl3.u64 = 0;
ddr_dll_ctl3.cn78xx.dclk90_recal_dis = 1;
ddr_dll_ctl3.cn78xx.dll90_byte_sel = 7;
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(2), ddr_dll_ctl3.u64);
/*
* 2. Write LMC3_DLL_CTL3 to its reset value except
* LMC3_DLL_CTL3[DLL90_BYTE_SEL] = 0x2.
*/
ddr_dll_ctl3.u64 = 0;
ddr_dll_ctl3.cn78xx.dclk90_recal_dis = 1;
ddr_dll_ctl3.cn78xx.dll90_byte_sel = 2;
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(3), ddr_dll_ctl3.u64);
/*
* 3. Read LMC3_DLL_CTL3 and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DLL_CTL3(3));
/*
* 4. Without changing any other fields in
* LMC2_DLL_CTL3, write LMC2_DLL_CTL3[DCLK90_FWD] = 1
* and LMC2_DLL_CTL3[DCLK90_RECAL_ DIS] = 1.
* Writing LMC2_DLL_CTL3[DCLK90_FWD] = 1 causes LMC 2
* to forward clockdelay information to LMC0. Setting
* LMC2_DLL_CTL3[DCLK90_RECAL_DIS] to 1 prevents LMC2
* from periodically recalibrating this delay
* information.
*/
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(2));
ddr_dll_ctl3.cn78xx.dclk90_fwd = 1;
ddr_dll_ctl3.cn78xx.dclk90_recal_dis = 1;
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(2), ddr_dll_ctl3.u64);
/*
* 5. Without changing any other fields in
* LMC3_DLL_CTL3, write LMC3_DLL_CTL3[DCLK90_FWD] = 1
* and LMC3_DLL_CTL3[DCLK90_RECAL_ DIS] = 1.
* Writing LMC3_DLL_CTL3[DCLK90_FWD] = 1 causes LMC3
* to forward clockdelay information to LMC1. Setting
* LMC3_DLL_CTL3[DCLK90_RECAL_DIS] to 1 prevents LMC3
* from periodically recalibrating this delay
* information.
*/
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(3));
ddr_dll_ctl3.cn78xx.dclk90_fwd = 1;
ddr_dll_ctl3.cn78xx.dclk90_recal_dis = 1;
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(3), ddr_dll_ctl3.u64);
/*
* 6. Read LMC3_DLL_CTL3 and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_DLL_CTL3(3));
}
if (octeon_is_cpuid(OCTEON_CNF75XX)) {
/*
* cnf75xx 2-LMC Mode: LMC0 DRESET must occur after
* Step 5, Do LMC0 for 1-LMC Mode here too
*/
cn78xx_lmc_dreset_init(priv, 0);
}
/* TWO-LMC MODE AFTER STEP 5 */
if (if_mask == 0x3) {
if (octeon_is_cpuid(OCTEON_CNF75XX)) {
/*
* cnf75xx 2-LMC Mode: LMC0 DRESET must
* occur after Step 5
*/
cn78xx_lmc_dreset_init(priv, 0);
} else {
cn78xx_lmc_dreset_init(priv, 1);
}
}
/* FOUR-LMC MODE AFTER STEP 5 */
if (if_mask == 0xf) {
cn78xx_lmc_dreset_init(priv, 0);
cn78xx_lmc_dreset_init(priv, 1);
/*
* Enable periodic recalibration of DDR90 delay
* line in.
*/
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(0));
ddr_dll_ctl3.cn78xx.dclk90_recal_dis = 0;
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(0), ddr_dll_ctl3.u64);
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(1));
ddr_dll_ctl3.cn78xx.dclk90_recal_dis = 0;
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(1), ddr_dll_ctl3.u64);
}
/* Enable fine tune mode for all LMCs */
for (i = 0; i < 4; ++i) {
if ((if_mask & (1 << i)) == 0)
continue;
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(i));
ddr_dll_ctl3.cn78xx.fine_tune_mode = 1;
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(i), ddr_dll_ctl3.u64);
}
/*
* Enable the trim circuit on the appropriate channels to
* adjust the DDR clock duty cycle for chips that support
* it
*/
if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
octeon_is_cpuid(OCTEON_CN73XX) ||
octeon_is_cpuid(OCTEON_CNF75XX)) {
union cvmx_lmcx_phy_ctl lmc_phy_ctl;
int i;
for (i = 0; i < 4; ++i) {
if ((if_mask & (1 << i)) == 0)
continue;
lmc_phy_ctl.u64 =
lmc_rd(priv, CVMX_LMCX_PHY_CTL(i));
if (octeon_is_cpuid(OCTEON_CNF75XX) ||
octeon_is_cpuid(OCTEON_CN73XX_PASS1_3)) {
/* Both LMCs */
lmc_phy_ctl.s.lv_mode = 0;
} else {
/* Odd LMCs = 0, Even LMCs = 1 */
lmc_phy_ctl.s.lv_mode = (~i) & 1;
}
debug("LMC%d: PHY_CTL : 0x%016llx\n",
i, lmc_phy_ctl.u64);
lmc_wr(priv, CVMX_LMCX_PHY_CTL(i),
lmc_phy_ctl.u64);
}
}
}
/*
* 5.9.6 LMC RESET Initialization
*
* NOTE: this is now done as the first step in
* init_octeon3_ddr3_interface, rather than the last step in clock
* init. This reorg allows restarting per-LMC initialization should
* problems be encountered, rather than being forced to resort to
* resetting the chip and starting all over.
*
* Look for the code in octeon3_lmc.c: perform_lmc_reset().
*/
/* Fallthrough for all interfaces... */
not_if0:
/*
* Start the DDR clock so that its frequency can be measured.
* For some chips we must activate the memory controller with
* init_start to make the DDR clock start to run.
*/
if ((!octeon_is_cpuid(OCTEON_CN6XXX)) &&
(!octeon_is_cpuid(OCTEON_CNF7XXX)) &&
(!octeon_is_cpuid(OCTEON_CN7XXX))) {
union cvmx_lmcx_mem_cfg0 mem_cfg0;
mem_cfg0.u64 = 0;
mem_cfg0.s.init_start = 1;
lmc_wr(priv, CVMX_LMCX_MEM_CFG0(if_num), mem_cfg0.u64);
lmc_rd(priv, CVMX_LMCX_MEM_CFG0(if_num));
}
set_ddr_clock_initialized(priv, if_num, 1);
return 0;
}
static void octeon_ipd_delay_cycles(u64 cycles)
{
u64 start = csr_rd(CVMX_IPD_CLK_COUNT);
while (start + cycles > csr_rd(CVMX_IPD_CLK_COUNT))
;
}
static void octeon_ipd_delay_cycles_o3(u64 cycles)
{
u64 start = csr_rd(CVMX_FPA_CLK_COUNT);
while (start + cycles > csr_rd(CVMX_FPA_CLK_COUNT))
;
}
static u32 measure_octeon_ddr_clock(struct ddr_priv *priv,
struct ddr_conf *ddr_conf, u32 cpu_hertz,
u32 ddr_hertz, u32 ddr_ref_hertz,
int if_num, u32 if_mask)
{
u64 core_clocks;
u64 ddr_clocks;
u64 calc_ddr_hertz;
if (ddr_conf) {
if (initialize_ddr_clock(priv, ddr_conf, cpu_hertz,
ddr_hertz, ddr_ref_hertz, if_num,
if_mask) != 0)
return 0;
}
/* Dynamically determine the DDR clock speed */
if (OCTEON_IS_OCTEON2() || octeon_is_cpuid(OCTEON_CN70XX)) {
core_clocks = csr_rd(CVMX_IPD_CLK_COUNT);
ddr_clocks = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
/* How many cpu cycles to measure over */
octeon_ipd_delay_cycles(100000000);
core_clocks = csr_rd(CVMX_IPD_CLK_COUNT) - core_clocks;
ddr_clocks =
lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num)) - ddr_clocks;
calc_ddr_hertz = ddr_clocks * gd->bus_clk / core_clocks;
} else if (octeon_is_cpuid(OCTEON_CN7XXX)) {
core_clocks = csr_rd(CVMX_FPA_CLK_COUNT);
ddr_clocks = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
/* How many cpu cycles to measure over */
octeon_ipd_delay_cycles_o3(100000000);
core_clocks = csr_rd(CVMX_FPA_CLK_COUNT) - core_clocks;
ddr_clocks =
lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num)) - ddr_clocks;
calc_ddr_hertz = ddr_clocks * gd->bus_clk / core_clocks;
} else {
core_clocks = csr_rd(CVMX_IPD_CLK_COUNT);
/*
* ignore overflow, starts counting when we enable the
* controller
*/
ddr_clocks = lmc_rd(priv, CVMX_LMCX_DCLK_CNT_LO(if_num));
/* How many cpu cycles to measure over */
octeon_ipd_delay_cycles(100000000);
core_clocks = csr_rd(CVMX_IPD_CLK_COUNT) - core_clocks;
ddr_clocks =
lmc_rd(priv, CVMX_LMCX_DCLK_CNT_LO(if_num)) - ddr_clocks;
calc_ddr_hertz = ddr_clocks * cpu_hertz / core_clocks;
}
debug("core clocks: %llu, ddr clocks: %llu, calc rate: %llu\n",
core_clocks, ddr_clocks, calc_ddr_hertz);
debug("LMC%d: Measured DDR clock: %lld, cpu clock: %u, ddr clocks: %llu\n",
if_num, calc_ddr_hertz, cpu_hertz, ddr_clocks);
/* Check for unreasonable settings. */
if (calc_ddr_hertz < 10000) {
udelay(8000000 * 100);
printf("DDR clock misconfigured on interface %d. Resetting...\n",
if_num);
do_reset(NULL, 0, 0, NULL);
}
return calc_ddr_hertz;
}
u64 lmc_ddr3_rl_dbg_read(struct ddr_priv *priv, int if_num, int idx)
{
union cvmx_lmcx_rlevel_dbg rlevel_dbg;
union cvmx_lmcx_rlevel_ctl rlevel_ctl;
rlevel_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
rlevel_ctl.s.byte = idx;
lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
rlevel_dbg.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_DBG(if_num));
return rlevel_dbg.s.bitmask;
}
u64 lmc_ddr3_wl_dbg_read(struct ddr_priv *priv, int if_num, int idx)
{
union cvmx_lmcx_wlevel_dbg wlevel_dbg;
wlevel_dbg.u64 = 0;
wlevel_dbg.s.byte = idx;
lmc_wr(priv, CVMX_LMCX_WLEVEL_DBG(if_num), wlevel_dbg.u64);
lmc_rd(priv, CVMX_LMCX_WLEVEL_DBG(if_num));
wlevel_dbg.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_DBG(if_num));
return wlevel_dbg.s.bitmask;
}
int validate_ddr3_rlevel_bitmask(struct rlevel_bitmask *rlevel_bitmask_p,
int ddr_type)
{
int i;
int errors = 0;
u64 mask = 0; /* Used in 64-bit comparisons */
u8 mstart = 0;
u8 width = 0;
u8 firstbit = 0;
u8 lastbit = 0;
u8 bubble = 0;
u8 tbubble = 0;
u8 blank = 0;
u8 narrow = 0;
u8 trailing = 0;
u64 bitmask = rlevel_bitmask_p->bm;
u8 extras = 0;
u8 toolong = 0;
u64 temp;
if (bitmask == 0) {
blank += RLEVEL_BITMASK_BLANK_ERROR;
} else {
/* Look for fb, the first bit */
temp = bitmask;
while (!(temp & 1)) {
firstbit++;
temp >>= 1;
}
/* Look for lb, the last bit */
lastbit = firstbit;
while ((temp >>= 1))
lastbit++;
/*
* Start with the max range to try to find the largest mask
* within the bitmask data
*/
width = MASKRANGE_BITS;
for (mask = MASKRANGE; mask > 0; mask >>= 1, --width) {
for (mstart = lastbit - width + 1; mstart >= firstbit;
--mstart) {
temp = mask << mstart;
if ((bitmask & temp) == temp)
goto done_now;
}
}
done_now:
/* look for any more contiguous 1's to the right of mstart */
if (width == MASKRANGE_BITS) { // only when maximum mask
while ((bitmask >> (mstart - 1)) & 1) {
// slide right over more 1's
--mstart;
// count the number of extra bits only for DDR4
if (ddr_type == DDR4_DRAM)
extras++;
}
}
/* Penalize any extra 1's beyond the maximum desired mask */
if (extras > 0)
toolong =
RLEVEL_BITMASK_TOOLONG_ERROR * ((1 << extras) - 1);
/* Detect if bitmask is too narrow. */
if (width < 4)
narrow = (4 - width) * RLEVEL_BITMASK_NARROW_ERROR;
/*
* detect leading bubble bits, that is, any 0's between first
* and mstart
*/
temp = bitmask >> (firstbit + 1);
i = mstart - firstbit - 1;
while (--i >= 0) {
if ((temp & 1) == 0)
bubble += RLEVEL_BITMASK_BUBBLE_BITS_ERROR;
temp >>= 1;
}
temp = bitmask >> (mstart + width + extras);
i = lastbit - (mstart + width + extras - 1);
while (--i >= 0) {
if (temp & 1) {
/*
* Detect 1 bits after the trailing end of
* the mask, including last.
*/
trailing += RLEVEL_BITMASK_TRAILING_BITS_ERROR;
} else {
/*
* Detect trailing bubble bits, that is,
* any 0's between end-of-mask and last
*/
tbubble += RLEVEL_BITMASK_BUBBLE_BITS_ERROR;
}
temp >>= 1;
}
}
errors = bubble + tbubble + blank + narrow + trailing + toolong;
/* Pass out useful statistics */
rlevel_bitmask_p->mstart = mstart;
rlevel_bitmask_p->width = width;
debug_bitmask_print("bm:%08lx mask:%02lx, width:%2u, mstart:%2d, fb:%2u, lb:%2u (bu:%2d, tb:%2d, bl:%2d, n:%2d, t:%2d, x:%2d) errors:%3d %s\n",
(unsigned long)bitmask, mask, width, mstart,
firstbit, lastbit, bubble, tbubble, blank,
narrow, trailing, toolong, errors,
(errors) ? "=> invalid" : "");
return errors;
}
int compute_ddr3_rlevel_delay(u8 mstart, u8 width,
union cvmx_lmcx_rlevel_ctl rlevel_ctl)
{
int delay;
debug_bitmask_print(" offset_en:%d", rlevel_ctl.s.offset_en);
if (rlevel_ctl.s.offset_en) {
delay = max((int)mstart,
(int)(mstart + width - 1 - rlevel_ctl.s.offset));
} else {
/* if (rlevel_ctl.s.offset) { *//* Experimental */
if (0) {
delay = max(mstart + rlevel_ctl.s.offset, mstart + 1);
/*
* Insure that the offset delay falls within the
* bitmask
*/
delay = min(delay, mstart + width - 1);
} else {
/* Round down */
delay = (width - 1) / 2 + mstart;
}
}
return delay;
}
/* Default ODT config must disable ODT */
/* Must be const (read only) so that the structure is in flash */
const struct dimm_odt_config disable_odt_config[] = {
/* 1 */ { 0, 0x0000, {.u64 = 0x0000}, {.u64 = 0x0000}, 0, 0x0000, 0 },
/* 2 */ { 0, 0x0000, {.u64 = 0x0000}, {.u64 = 0x0000}, 0, 0x0000, 0 },
/* 3 */ { 0, 0x0000, {.u64 = 0x0000}, {.u64 = 0x0000}, 0, 0x0000, 0 },
/* 4 */ { 0, 0x0000, {.u64 = 0x0000}, {.u64 = 0x0000}, 0, 0x0000, 0 },
};
/* Memory controller setup function */
static int init_octeon_dram_interface(struct ddr_priv *priv,
struct ddr_conf *ddr_conf,
u32 ddr_hertz, u32 cpu_hertz,
u32 ddr_ref_hertz, int if_num,
u32 if_mask)
{
u32 mem_size_mbytes = 0;
char *s;
s = lookup_env(priv, "ddr_timing_hertz");
if (s)
ddr_hertz = simple_strtoul(s, NULL, 0);
if (OCTEON_IS_OCTEON3()) {
int lmc_restart_retries = 0;
#define DEFAULT_RESTART_RETRIES 3
int lmc_restart_retries_limit = DEFAULT_RESTART_RETRIES;
s = lookup_env(priv, "ddr_restart_retries_limit");
if (s)
lmc_restart_retries_limit = simple_strtoul(s, NULL, 0);
restart_lmc_init:
mem_size_mbytes = init_octeon3_ddr3_interface(priv, ddr_conf,
ddr_hertz,
cpu_hertz,
ddr_ref_hertz,
if_num, if_mask);
if (mem_size_mbytes == 0) { // 0 means restart is possible
if (lmc_restart_retries < lmc_restart_retries_limit) {
lmc_restart_retries++;
printf("N0.LMC%d Configuration problem: attempting LMC reset and init restart %d\n",
if_num, lmc_restart_retries);
goto restart_lmc_init;
} else {
if (lmc_restart_retries_limit > 0) {
printf("INFO: N0.LMC%d Configuration: fatal problem remains after %d LMC init retries - Resetting node...\n",
if_num, lmc_restart_retries);
mdelay(500);
do_reset(NULL, 0, 0, NULL);
} else {
// return an error, no restart
mem_size_mbytes = -1;
}
}
}
}
debug("N0.LMC%d Configuration Completed: %d MB\n",
if_num, mem_size_mbytes);
return mem_size_mbytes;
}
#define WLEVEL_BYTE_BITS 5
#define WLEVEL_BYTE_MSK ((1ULL << 5) - 1)
void upd_wl_rank(union cvmx_lmcx_wlevel_rankx *lmc_wlevel_rank,
int byte, int delay)
{
union cvmx_lmcx_wlevel_rankx temp_wlevel_rank;
if (byte >= 0 && byte <= 8) {
temp_wlevel_rank.u64 = lmc_wlevel_rank->u64;
temp_wlevel_rank.u64 &=
~(WLEVEL_BYTE_MSK << (WLEVEL_BYTE_BITS * byte));
temp_wlevel_rank.u64 |=
((delay & WLEVEL_BYTE_MSK) << (WLEVEL_BYTE_BITS * byte));
lmc_wlevel_rank->u64 = temp_wlevel_rank.u64;
}
}
int get_wl_rank(union cvmx_lmcx_wlevel_rankx *lmc_wlevel_rank, int byte)
{
int delay = 0;
if (byte >= 0 && byte <= 8)
delay =
((lmc_wlevel_rank->u64) >> (WLEVEL_BYTE_BITS *
byte)) & WLEVEL_BYTE_MSK;
return delay;
}
void upd_rl_rank(union cvmx_lmcx_rlevel_rankx *lmc_rlevel_rank,
int byte, int delay)
{
union cvmx_lmcx_rlevel_rankx temp_rlevel_rank;
if (byte >= 0 && byte <= 8) {
temp_rlevel_rank.u64 =
lmc_rlevel_rank->u64 & ~(RLEVEL_BYTE_MSK <<
(RLEVEL_BYTE_BITS * byte));
temp_rlevel_rank.u64 |=
((delay & RLEVEL_BYTE_MSK) << (RLEVEL_BYTE_BITS * byte));
lmc_rlevel_rank->u64 = temp_rlevel_rank.u64;
}
}
int get_rl_rank(union cvmx_lmcx_rlevel_rankx *lmc_rlevel_rank, int byte)
{
int delay = 0;
if (byte >= 0 && byte <= 8)
delay =
((lmc_rlevel_rank->u64) >> (RLEVEL_BYTE_BITS *
byte)) & RLEVEL_BYTE_MSK;
return delay;
}
void rlevel_to_wlevel(union cvmx_lmcx_rlevel_rankx *lmc_rlevel_rank,
union cvmx_lmcx_wlevel_rankx *lmc_wlevel_rank, int byte)
{
int byte_delay = get_rl_rank(lmc_rlevel_rank, byte);
debug("Estimating Wlevel delay byte %d: ", byte);
debug("Rlevel=%d => ", byte_delay);
byte_delay = divide_roundup(byte_delay, 2) & 0x1e;
debug("Wlevel=%d\n", byte_delay);
upd_wl_rank(lmc_wlevel_rank, byte, byte_delay);
}
/* Delay trend: constant=0, decreasing=-1, increasing=1 */
static s64 calc_delay_trend(s64 v)
{
if (v == 0)
return 0;
if (v < 0)
return -1;
return 1;
}
/*
* Evaluate delay sequence across the whole range of byte delays while
* keeping track of the overall delay trend, increasing or decreasing.
* If the trend changes charge an error amount to the score.
*/
// NOTE: "max_adj_delay_inc" argument is, by default, 1 for DDR3 and 2 for DDR4
int nonseq_del(struct rlevel_byte_data *rlevel_byte, int start, int end,
int max_adj_delay_inc)
{
s64 error = 0;
s64 delay_trend, prev_trend = 0;
int byte_idx;
s64 seq_err;
s64 adj_err;
s64 delay_inc;
s64 delay_diff;
for (byte_idx = start; byte_idx < end; ++byte_idx) {
delay_diff = rlevel_byte[byte_idx + 1].delay -
rlevel_byte[byte_idx].delay;
delay_trend = calc_delay_trend(delay_diff);
/*
* Increment error each time the trend changes to the
* opposite direction.
*/
if (prev_trend != 0 && delay_trend != 0 &&
prev_trend != delay_trend) {
seq_err = RLEVEL_NONSEQUENTIAL_DELAY_ERROR;
} else {
seq_err = 0;
}
// how big was the delay change, if any
delay_inc = abs(delay_diff);
/*
* Even if the trend did not change to the opposite direction,
* check for the magnitude of the change, and scale the
* penalty by the amount that the size is larger than the
* provided limit.
*/
if (max_adj_delay_inc != 0 && delay_inc > max_adj_delay_inc) {
adj_err = (delay_inc - max_adj_delay_inc) *
RLEVEL_ADJACENT_DELAY_ERROR;
} else {
adj_err = 0;
}
rlevel_byte[byte_idx + 1].sqerrs = seq_err + adj_err;
error += seq_err + adj_err;
debug_bitmask_print("Byte %d: %d, Byte %d: %d, delay_trend: %ld, prev_trend: %ld, [%ld/%ld]%s%s\n",
byte_idx + 0,
rlevel_byte[byte_idx + 0].delay,
byte_idx + 1,
rlevel_byte[byte_idx + 1].delay,
delay_trend,
prev_trend, seq_err, adj_err,
(seq_err) ?
" => Nonsequential byte delay" : "",
(adj_err) ?
" => Adjacent delay error" : "");
if (delay_trend != 0)
prev_trend = delay_trend;
}
return (int)error;
}
int roundup_ddr3_wlevel_bitmask(int bitmask)
{
int shifted_bitmask;
int leader;
int delay;
for (leader = 0; leader < 8; ++leader) {
shifted_bitmask = (bitmask >> leader);
if ((shifted_bitmask & 1) == 0)
break;
}
for (leader = leader; leader < 16; ++leader) {
shifted_bitmask = (bitmask >> (leader % 8));
if (shifted_bitmask & 1)
break;
}
delay = (leader & 1) ? leader + 1 : leader;
delay = delay % 8;
return delay;
}
/* Octeon 2 */
static void oct2_ddr3_seq(struct ddr_priv *priv, int rank_mask, int if_num,
int sequence)
{
char *s;
#ifdef DEBUG_PERFORM_DDR3_SEQUENCE
static const char * const sequence_str[] = {
"power-up/init",
"read-leveling",
"self-refresh entry",
"self-refresh exit",
"precharge power-down entry",
"precharge power-down exit",
"write-leveling",
"illegal"
};
#endif
union cvmx_lmcx_control lmc_control;
union cvmx_lmcx_config lmc_config;
int save_ddr2t;
lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
save_ddr2t = lmc_control.s.ddr2t;
if (save_ddr2t == 0 && octeon_is_cpuid(OCTEON_CN63XX_PASS1_X)) {
/* Some register parts (IDT and TI included) do not like
* the sequence that LMC generates for an MRS register
* write in 1T mode. In this case, the register part does
* not properly forward the MRS register write to the DRAM
* parts. See errata (LMC-14548) Issues with registered
* DIMMs.
*/
debug("Forcing DDR 2T during init seq. Re: Pass 1 LMC-14548\n");
lmc_control.s.ddr2t = 1;
}
s = lookup_env(priv, "ddr_init_2t");
if (s)
lmc_control.s.ddr2t = simple_strtoul(s, NULL, 0);
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), lmc_control.u64);
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
lmc_config.s.init_start = 1;
if (OCTEON_IS_OCTEON2())
lmc_config.cn63xx.sequence = sequence;
lmc_config.s.rankmask = rank_mask;
#ifdef DEBUG_PERFORM_DDR3_SEQUENCE
debug("Performing LMC sequence: rank_mask=0x%02x, sequence=%d, %s\n",
rank_mask, sequence, sequence_str[sequence]);
#endif
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
udelay(600); /* Wait a while */
lmc_control.s.ddr2t = save_ddr2t;
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), lmc_control.u64);
lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
}
/* Check to see if any custom offset values are used */
static int is_dll_offset_provided(const int8_t *dll_offset_table)
{
int i;
if (!dll_offset_table) /* Check for pointer to table. */
return 0;
for (i = 0; i < 9; ++i) {
if (dll_offset_table[i] != 0)
return 1;
}
return 0;
}
void change_dll_offset_enable(struct ddr_priv *priv, int if_num, int change)
{
union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
SET_DDR_DLL_CTL3(offset_ena, !!change);
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
}
unsigned short load_dll_offset(struct ddr_priv *priv, int if_num,
int dll_offset_mode, int byte_offset, int byte)
{
union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
int field_width = 6;
/*
* byte_sel:
* 0x1 = byte 0, ..., 0x9 = byte 8
* 0xA = all bytes
*/
int byte_sel = (byte == 10) ? byte : byte + 1;
if (octeon_is_cpuid(OCTEON_CN6XXX))
field_width = 5;
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
SET_DDR_DLL_CTL3(load_offset, 0);
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
SET_DDR_DLL_CTL3(mode_sel, dll_offset_mode);
SET_DDR_DLL_CTL3(offset,
(abs(byte_offset) & (~(-1 << field_width))) |
(_sign(byte_offset) << field_width));
SET_DDR_DLL_CTL3(byte_sel, byte_sel);
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
SET_DDR_DLL_CTL3(load_offset, 1);
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
return (unsigned short)GET_DDR_DLL_CTL3(offset);
}
void process_custom_dll_offsets(struct ddr_priv *priv, int if_num,
const char *enable_str,
const int8_t *offsets, const char *byte_str,
int mode)
{
const char *s;
int enabled;
int provided;
int byte_offset;
unsigned short offset[9] = { 0 };
int byte;
s = lookup_env(priv, enable_str);
if (s)
enabled = !!simple_strtol(s, NULL, 0);
else
enabled = -1;
/*
* enabled == -1: no override, do only configured offsets if provided
* enabled == 0: override OFF, do NOT do it even if configured
* offsets provided
* enabled == 1: override ON, do it for overrides plus configured
* offsets
*/
if (enabled == 0)
return;
provided = is_dll_offset_provided(offsets);
if (enabled < 0 && !provided)
return;
change_dll_offset_enable(priv, if_num, 0);
for (byte = 0; byte < 9; ++byte) {
// always take the provided, if available
byte_offset = (provided) ? offsets[byte] : 0;
// then, if enabled, use any overrides present
if (enabled > 0) {
s = lookup_env(priv, byte_str, if_num, byte);
if (s)
byte_offset = simple_strtol(s, NULL, 0);
}
offset[byte] =
load_dll_offset(priv, if_num, mode, byte_offset, byte);
}
change_dll_offset_enable(priv, if_num, 1);
debug("N0.LMC%d: DLL %s Offset 8:0 : 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",
if_num, (mode == 2) ? "Read " : "Write",
offset[8], offset[7], offset[6], offset[5], offset[4],
offset[3], offset[2], offset[1], offset[0]);
}
void ddr_init_seq(struct ddr_priv *priv, int rank_mask, int if_num)
{
char *s;
int ddr_init_loops = 1;
int rankx;
s = lookup_env(priv, "ddr%d_init_loops", if_num);
if (s)
ddr_init_loops = simple_strtoul(s, NULL, 0);
while (ddr_init_loops--) {
for (rankx = 0; rankx < 8; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
if (OCTEON_IS_OCTEON3()) {
/* power-up/init */
oct3_ddr3_seq(priv, 1 << rankx, if_num, 0);
} else {
/* power-up/init */
oct2_ddr3_seq(priv, 1 << rankx, if_num, 0);
}
udelay(1000); /* Wait a while. */
s = lookup_env(priv, "ddr_sequence1");
if (s) {
int sequence1;
sequence1 = simple_strtoul(s, NULL, 0);
if (OCTEON_IS_OCTEON3()) {
oct3_ddr3_seq(priv, 1 << rankx,
if_num, sequence1);
} else {
oct2_ddr3_seq(priv, 1 << rankx,
if_num, sequence1);
}
}
s = lookup_env(priv, "ddr_sequence2");
if (s) {
int sequence2;
sequence2 = simple_strtoul(s, NULL, 0);
if (OCTEON_IS_OCTEON3())
oct3_ddr3_seq(priv, 1 << rankx,
if_num, sequence2);
else
oct2_ddr3_seq(priv, 1 << rankx,
if_num, sequence2);
}
}
}
}
static int octeon_ddr_initialize(struct ddr_priv *priv, u32 cpu_hertz,
u32 ddr_hertz, u32 ddr_ref_hertz,
u32 if_mask,
struct ddr_conf *ddr_conf,
u32 *measured_ddr_hertz)
{
u32 ddr_conf_valid_mask = 0;
int memsize_mbytes = 0;
char *eptr;
int if_idx;
u32 ddr_max_speed = 667000000;
u32 calc_ddr_hertz = -1;
int val;
int ret;
if (env_get("ddr_verbose") || env_get("ddr_prompt"))
priv->flags |= FLAG_DDR_VERBOSE;
#ifdef DDR_VERBOSE
priv->flags |= FLAG_DDR_VERBOSE;
#endif
if (env_get("ddr_trace_init")) {
printf("Parameter ddr_trace_init found in environment.\n");
priv->flags |= FLAG_DDR_TRACE_INIT;
priv->flags |= FLAG_DDR_VERBOSE;
}
priv->flags |= FLAG_DDR_DEBUG;
val = env_get_ulong("ddr_debug", 10, (u32)-1);
switch (val) {
case 0:
priv->flags &= ~FLAG_DDR_DEBUG;
printf("Parameter ddr_debug clear in environment\n");
break;
case (u32)-1:
break;
default:
printf("Parameter ddr_debug set in environment\n");
priv->flags |= FLAG_DDR_DEBUG;
priv->flags |= FLAG_DDR_VERBOSE;
break;
}
if (env_get("ddr_prompt"))
priv->flags |= FLAG_DDR_PROMPT;
/* Force ddr_verbose for failsafe debugger */
if (priv->flags & FLAG_FAILSAFE_MODE)
priv->flags |= FLAG_DDR_VERBOSE;
#ifdef DDR_DEBUG
priv->flags |= FLAG_DDR_DEBUG;
/* Keep verbose on while we are still debugging. */
priv->flags |= FLAG_DDR_VERBOSE;
#endif
if ((octeon_is_cpuid(OCTEON_CN61XX) ||
octeon_is_cpuid(OCTEON_CNF71XX)) && ddr_max_speed > 533333333) {
ddr_max_speed = 533333333;
} else if (octeon_is_cpuid(OCTEON_CN7XXX)) {
/* Override speed restrictions to support internal testing. */
ddr_max_speed = 1210000000;
}
if (ddr_hertz > ddr_max_speed) {
printf("DDR clock speed %u exceeds maximum supported DDR speed, reducing to %uHz\n",
ddr_hertz, ddr_max_speed);
ddr_hertz = ddr_max_speed;
}
if (OCTEON_IS_OCTEON3()) { // restrict check
if (ddr_hertz > cpu_hertz) {
printf("\nFATAL ERROR: DDR speed %u exceeds CPU speed %u, exiting...\n\n",
ddr_hertz, cpu_hertz);
return -1;
}
}
/* Enable L2 ECC */
eptr = env_get("disable_l2_ecc");
if (eptr) {
printf("Disabling L2 ECC based on disable_l2_ecc environment variable\n");
union cvmx_l2c_ctl l2c_val;
l2c_val.u64 = l2c_rd(priv, CVMX_L2C_CTL);
l2c_val.s.disecc = 1;
l2c_wr(priv, CVMX_L2C_CTL, l2c_val.u64);
} else {
union cvmx_l2c_ctl l2c_val;
l2c_val.u64 = l2c_rd(priv, CVMX_L2C_CTL);
l2c_val.s.disecc = 0;
l2c_wr(priv, CVMX_L2C_CTL, l2c_val.u64);
}
/*
* Init the L2C, must be done before DRAM access so that we
* know L2 is empty
*/
eptr = env_get("disable_l2_index_aliasing");
if (eptr) {
union cvmx_l2c_ctl l2c_val;
puts("L2 index aliasing disabled.\n");
l2c_val.u64 = l2c_rd(priv, CVMX_L2C_CTL);
l2c_val.s.disidxalias = 1;
l2c_wr(priv, CVMX_L2C_CTL, l2c_val.u64);
} else {
union cvmx_l2c_ctl l2c_val;
/* Enable L2C index aliasing */
l2c_val.u64 = l2c_rd(priv, CVMX_L2C_CTL);
l2c_val.s.disidxalias = 0;
l2c_wr(priv, CVMX_L2C_CTL, l2c_val.u64);
}
if (OCTEON_IS_OCTEON3()) {
/*
* rdf_cnt: Defines the sample point of the LMC response data in
* the DDR-clock/core-clock crossing. For optimal
* performance set to 10 * (DDR-clock period/core-clock
* period) - 1. To disable set to 0. All other values
* are reserved.
*/
union cvmx_l2c_ctl l2c_ctl;
u64 rdf_cnt;
char *s;
l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
/*
* It is more convenient to compute the ratio using clock
* frequencies rather than clock periods.
*/
rdf_cnt = (((u64)10 * cpu_hertz) / ddr_hertz) - 1;
rdf_cnt = rdf_cnt < 256 ? rdf_cnt : 255;
l2c_ctl.cn78xx.rdf_cnt = rdf_cnt;
s = lookup_env(priv, "early_fill_count");
if (s)
l2c_ctl.cn78xx.rdf_cnt = simple_strtoul(s, NULL, 0);
debug("%-45s : %d, cpu_hertz:%d, ddr_hertz:%d\n",
"EARLY FILL COUNT ", l2c_ctl.cn78xx.rdf_cnt, cpu_hertz,
ddr_hertz);
l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
}
/* Check for lower DIMM socket populated */
for (if_idx = 0; if_idx < 4; ++if_idx) {
if ((if_mask & (1 << if_idx)) &&
validate_dimm(priv,
&ddr_conf[(int)if_idx].dimm_config_table[0],
0))
ddr_conf_valid_mask |= (1 << if_idx);
}
if (octeon_is_cpuid(OCTEON_CN68XX) || octeon_is_cpuid(OCTEON_CN78XX)) {
int four_lmc_mode = 1;
char *s;
if (priv->flags & FLAG_FAILSAFE_MODE)
four_lmc_mode = 0;
/* Pass 1.0 disable four LMC mode.
* See errata (LMC-15811)
*/
if (octeon_is_cpuid(OCTEON_CN68XX_PASS1_0))
four_lmc_mode = 0;
s = env_get("ddr_four_lmc");
if (s) {
four_lmc_mode = simple_strtoul(s, NULL, 0);
printf("Parameter found in environment. ddr_four_lmc = %d\n",
four_lmc_mode);
}
if (!four_lmc_mode) {
puts("Forcing two-LMC Mode.\n");
/* Invalidate LMC[2:3] */
ddr_conf_valid_mask &= ~(3 << 2);
}
} else if (octeon_is_cpuid(OCTEON_CN73XX)) {
int one_lmc_mode = 0;
char *s;
s = env_get("ddr_one_lmc");
if (s) {
one_lmc_mode = simple_strtoul(s, NULL, 0);
printf("Parameter found in environment. ddr_one_lmc = %d\n",
one_lmc_mode);
}
if (one_lmc_mode) {
puts("Forcing one-LMC Mode.\n");
/* Invalidate LMC[1:3] */
ddr_conf_valid_mask &= ~(1 << 1);
}
}
if (!ddr_conf_valid_mask) {
printf
("ERROR: No valid DIMMs detected on any DDR interface.\n");
hang();
return -1; // testr-only: no ret negativ!!!
}
/*
* We measure the DDR frequency by counting DDR clocks. We can
* confirm or adjust the expected frequency as necessary. We use
* the measured frequency to make accurate timing calculations
* used to configure the controller.
*/
for (if_idx = 0; if_idx < 4; ++if_idx) {
u32 tmp_hertz;
if (!(ddr_conf_valid_mask & (1 << if_idx)))
continue;
try_again:
/*
* only check for alternate refclk wanted on chips that
* support it
*/
if ((octeon_is_cpuid(OCTEON_CN73XX)) ||
(octeon_is_cpuid(OCTEON_CNF75XX)) ||
(octeon_is_cpuid(OCTEON_CN78XX_PASS2_X))) {
// only need do this if we are LMC0
if (if_idx == 0) {
union cvmx_lmcx_ddr_pll_ctl ddr_pll_ctl;
ddr_pll_ctl.u64 =
lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
/*
* If we are asking for 100 MHz refclk, we can
* only get it via alternate, so switch to it
*/
if (ddr_ref_hertz == 100000000) {
ddr_pll_ctl.cn78xx.dclk_alt_refclk_sel =
1;
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(0),
ddr_pll_ctl.u64);
udelay(1000); // wait 1 msec
} else {
/*
* If we are NOT asking for 100MHz,
* then reset to (assumed) 50MHz and go
* on
*/
ddr_pll_ctl.cn78xx.dclk_alt_refclk_sel =
0;
lmc_wr(priv, CVMX_LMCX_DDR_PLL_CTL(0),
ddr_pll_ctl.u64);
udelay(1000); // wait 1 msec
}
}
} else {
if (ddr_ref_hertz == 100000000) {
debug("N0: DRAM init: requested 100 MHz refclk NOT SUPPORTED\n");
ddr_ref_hertz = CONFIG_REF_HERTZ;
}
}
tmp_hertz = measure_octeon_ddr_clock(priv, &ddr_conf[if_idx],
cpu_hertz, ddr_hertz,
ddr_ref_hertz, if_idx,
ddr_conf_valid_mask);
/*
* only check for alternate refclk acquired on chips that
* support it
*/
if ((octeon_is_cpuid(OCTEON_CN73XX)) ||
(octeon_is_cpuid(OCTEON_CNF75XX)) ||
(octeon_is_cpuid(OCTEON_CN78XX_PASS2_X))) {
/*
* if we are LMC0 and we are asked for 100 MHz refclk,
* we must be sure it is available
* If not, we print an error message, set to 50MHz,
* and go on...
*/
if (if_idx == 0 && ddr_ref_hertz == 100000000) {
/*
* Validate that the clock returned is close
* enough to the clock desired
*/
// FIXME: is 5% close enough?
int hertz_diff =
abs((int)tmp_hertz - (int)ddr_hertz);
if (hertz_diff > ((int)ddr_hertz * 5 / 100)) {
// nope, diff is greater than than 5%
debug("N0: DRAM init: requested 100 MHz refclk NOT FOUND\n");
ddr_ref_hertz = CONFIG_REF_HERTZ;
// clear the flag before trying again!!
set_ddr_clock_initialized(priv, 0, 0);
goto try_again;
} else {
debug("N0: DRAM Init: requested 100 MHz refclk FOUND and SELECTED\n");
}
}
}
if (tmp_hertz > 0)
calc_ddr_hertz = tmp_hertz;
debug("LMC%d: measured speed: %u hz\n", if_idx, tmp_hertz);
}
if (measured_ddr_hertz)
*measured_ddr_hertz = calc_ddr_hertz;
memsize_mbytes = 0;
for (if_idx = 0; if_idx < 4; ++if_idx) {
if (!(ddr_conf_valid_mask & (1 << if_idx)))
continue;
ret = init_octeon_dram_interface(priv, &ddr_conf[if_idx],
calc_ddr_hertz,
cpu_hertz, ddr_ref_hertz,
if_idx, ddr_conf_valid_mask);
if (ret > 0)
memsize_mbytes += ret;
}
if (memsize_mbytes == 0)
/* All interfaces failed to initialize, so return error */
return -1;
/*
* switch over to DBI mode only for chips that support it, and
* enabled by envvar
*/
if ((octeon_is_cpuid(OCTEON_CN73XX)) ||
(octeon_is_cpuid(OCTEON_CNF75XX)) ||
(octeon_is_cpuid(OCTEON_CN78XX_PASS2_X))) {
eptr = env_get("ddr_dbi_switchover");
if (eptr) {
printf("DBI Switchover starting...\n");
cvmx_dbi_switchover(priv);
printf("DBI Switchover finished.\n");
}
}
/* call HW-assist tuning here on chips that support it */
if ((octeon_is_cpuid(OCTEON_CN73XX)) ||
(octeon_is_cpuid(OCTEON_CNF75XX)) ||
(octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)))
cvmx_maybe_tune_node(priv, calc_ddr_hertz);
eptr = env_get("limit_dram_mbytes");
if (eptr) {
unsigned int mbytes = simple_strtoul(eptr, NULL, 10);
if (mbytes > 0) {
memsize_mbytes = mbytes;
printf("Limiting DRAM size to %d MBytes based on limit_dram_mbytes env. variable\n",
mbytes);
}
}
debug("LMC Initialization complete. Total DRAM %d MB\n",
memsize_mbytes);
return memsize_mbytes;
}
static int octeon_ddr_probe(struct udevice *dev)
{
struct ddr_priv *priv = dev_get_priv(dev);
struct ofnode_phandle_args l2c_node;
struct ddr_conf *ddr_conf_ptr;
u32 ddr_conf_valid_mask = 0;
u32 measured_ddr_hertz = 0;
int conf_table_count;
int def_ddr_freq;
u32 mem_mbytes = 0;
u32 ddr_hertz;
u32 ddr_ref_hertz;
int alt_refclk;
const char *eptr;
fdt_addr_t addr;
u64 *ptr;
u64 val;
int ret;
int i;
/* Don't try to re-init the DDR controller after relocation */
if (gd->flags & GD_FLG_RELOC)
return 0;
/*
* Dummy read all local variables into cache, so that they are
* locked in cache when the DDR code runs with flushes etc enabled
*/
ptr = (u64 *)_end;
for (i = 0; i < (0x100000 / sizeof(u64)); i++)
val = readq(ptr++);
/*
* The base addresses of LMC and L2C are read from the DT. This
* makes it possible to use the DDR init code without the need
* of the "node" variable, describing on which node to access. The
* node number is already included implicitly in the base addresses
* read from the DT this way.
*/
/* Get LMC base address */
priv->lmc_base = dev_remap_addr(dev);
debug("%s: lmc_base=%p\n", __func__, priv->lmc_base);
/* Get L2C base address */
ret = dev_read_phandle_with_args(dev, "l2c-handle", NULL, 0, 0,
&l2c_node);
if (ret) {
printf("Can't access L2C node!\n");
return -ENODEV;
}
addr = ofnode_get_addr(l2c_node.node);
if (addr == FDT_ADDR_T_NONE) {
printf("Can't access L2C node!\n");
return -ENODEV;
}
priv->l2c_base = map_physmem(addr, 0, MAP_NOCACHE);
debug("%s: l2c_base=%p\n", __func__, priv->l2c_base);
ddr_conf_ptr = octeon_ddr_conf_table_get(&conf_table_count,
&def_ddr_freq);
if (!ddr_conf_ptr) {
printf("ERROR: unable to determine DDR configuration\n");
return -ENODEV;
}
for (i = 0; i < conf_table_count; i++) {
if (ddr_conf_ptr[i].dimm_config_table[0].spd_addrs[0] ||
ddr_conf_ptr[i].dimm_config_table[0].spd_ptrs[0])
ddr_conf_valid_mask |= 1 << i;
}
/*
* Check for special case of mismarked 3005 samples,
* and adjust cpuid
*/
alt_refclk = 0;
ddr_hertz = def_ddr_freq * 1000000;
eptr = env_get("ddr_clock_hertz");
if (eptr) {
ddr_hertz = simple_strtoul(eptr, NULL, 0);
gd->mem_clk = divide_nint(ddr_hertz, 1000000);
printf("Parameter found in environment. ddr_clock_hertz = %d\n",
ddr_hertz);
}
ddr_ref_hertz = octeon3_refclock(alt_refclk,
ddr_hertz,
&ddr_conf_ptr[0].dimm_config_table[0]);
debug("Initializing DDR, clock = %uhz, reference = %uhz\n",
ddr_hertz, ddr_ref_hertz);
mem_mbytes = octeon_ddr_initialize(priv, gd->cpu_clk,
ddr_hertz, ddr_ref_hertz,
ddr_conf_valid_mask,
ddr_conf_ptr, &measured_ddr_hertz);
debug("Mem size in MBYTES: %u\n", mem_mbytes);
gd->mem_clk = divide_nint(measured_ddr_hertz, 1000000);
debug("Measured DDR clock %d Hz\n", measured_ddr_hertz);
if (measured_ddr_hertz != 0) {
if (!gd->mem_clk) {
/*
* If ddr_clock not set, use measured clock
* and don't warn
*/
gd->mem_clk = divide_nint(measured_ddr_hertz, 1000000);
} else if ((measured_ddr_hertz > ddr_hertz + 3000000) ||
(measured_ddr_hertz < ddr_hertz - 3000000)) {
printf("\nWARNING:\n");
printf("WARNING: Measured DDR clock mismatch! expected: %lld MHz, measured: %lldMHz, cpu clock: %lu MHz\n",
divide_nint(ddr_hertz, 1000000),
divide_nint(measured_ddr_hertz, 1000000),
gd->cpu_clk);
printf("WARNING:\n\n");
gd->mem_clk = divide_nint(measured_ddr_hertz, 1000000);
}
}
if (!mem_mbytes)
return -ENODEV;
priv->info.base = CONFIG_SYS_SDRAM_BASE;
priv->info.size = MB(mem_mbytes);
/*
* For 6XXX generate a proper error when reading/writing
* non-existent memory locations.
*/
cvmx_l2c_set_big_size(priv, mem_mbytes, 0);
debug("Ram size %uMiB\n", mem_mbytes);
return 0;
}
static int octeon_get_info(struct udevice *dev, struct ram_info *info)
{
struct ddr_priv *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops octeon_ops = {
.get_info = octeon_get_info,
};
static const struct udevice_id octeon_ids[] = {
{.compatible = "cavium,octeon-7xxx-ddr4" },
{ }
};
U_BOOT_DRIVER(octeon_ddr) = {
.name = "octeon_ddr",
.id = UCLASS_RAM,
.of_match = octeon_ids,
.ops = &octeon_ops,
.probe = octeon_ddr_probe,
.plat_auto = sizeof(struct ddr_priv),
};