blob: e5c0e12faa392f0ffd0a2e0cdf593b266dda726a [file] [log] [blame]
/*
* Atmel DataFlash probing
*
* Copyright (C) 2004-2009, 2015 Freescale Semiconductor, Inc.
* Haikun Wang (haikun.wang@freescale.com)
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <spi.h>
#include <spi_flash.h>
#include <div64.h>
#include <linux/err.h>
#include <linux/math64.h>
#include "sf_internal.h"
/* reads can bypass the buffers */
#define OP_READ_CONTINUOUS 0xE8
#define OP_READ_PAGE 0xD2
/* group B requests can run even while status reports "busy" */
#define OP_READ_STATUS 0xD7 /* group B */
/* move data between host and buffer */
#define OP_READ_BUFFER1 0xD4 /* group B */
#define OP_READ_BUFFER2 0xD6 /* group B */
#define OP_WRITE_BUFFER1 0x84 /* group B */
#define OP_WRITE_BUFFER2 0x87 /* group B */
/* erasing flash */
#define OP_ERASE_PAGE 0x81
#define OP_ERASE_BLOCK 0x50
/* move data between buffer and flash */
#define OP_TRANSFER_BUF1 0x53
#define OP_TRANSFER_BUF2 0x55
#define OP_MREAD_BUFFER1 0xD4
#define OP_MREAD_BUFFER2 0xD6
#define OP_MWERASE_BUFFER1 0x83
#define OP_MWERASE_BUFFER2 0x86
#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
/* write to buffer, then write-erase to flash */
#define OP_PROGRAM_VIA_BUF1 0x82
#define OP_PROGRAM_VIA_BUF2 0x85
/* compare buffer to flash */
#define OP_COMPARE_BUF1 0x60
#define OP_COMPARE_BUF2 0x61
/* read flash to buffer, then write-erase to flash */
#define OP_REWRITE_VIA_BUF1 0x58
#define OP_REWRITE_VIA_BUF2 0x59
/*
* newer chips report JEDEC manufacturer and device IDs; chip
* serial number and OTP bits; and per-sector writeprotect.
*/
#define OP_READ_ID 0x9F
#define OP_READ_SECURITY 0x77
#define OP_WRITE_SECURITY_REVC 0x9A
#define OP_WRITE_SECURITY 0x9B /* revision D */
struct dataflash {
uint8_t command[16];
unsigned short page_offset; /* offset in flash address */
};
/* Return the status of the DataFlash device */
static inline int dataflash_status(struct spi_slave *spi)
{
int ret;
u8 status;
/*
* NOTE: at45db321c over 25 MHz wants to write
* a dummy byte after the opcode...
*/
ret = spi_flash_cmd(spi, OP_READ_STATUS, &status, 1);
return ret ? -EIO : status;
}
/*
* Poll the DataFlash device until it is READY.
* This usually takes 5-20 msec or so; more for sector erase.
* ready: return > 0
*/
static int dataflash_waitready(struct spi_slave *spi)
{
int status;
int timeout = 2 * CONFIG_SYS_HZ;
int timebase;
timebase = get_timer(0);
do {
status = dataflash_status(spi);
if (status < 0)
status = 0;
if (status & (1 << 7)) /* RDY/nBSY */
return status;
mdelay(3);
} while (get_timer(timebase) < timeout);
return -ETIME;
}
/* Erase pages of flash */
static int spi_dataflash_erase(struct udevice *dev, u32 offset, size_t len)
{
struct dataflash *dataflash;
struct spi_flash *spi_flash;
struct spi_slave *spi;
unsigned blocksize;
uint8_t *command;
uint32_t rem;
int status;
dataflash = dev_get_priv(dev);
spi_flash = dev_get_uclass_priv(dev);
spi = spi_flash->spi;
blocksize = spi_flash->page_size << 3;
memset(dataflash->command, 0 , sizeof(dataflash->command));
command = dataflash->command;
debug("%s: erase addr=0x%x len 0x%x\n", dev->name, offset, len);
div_u64_rem(len, spi_flash->page_size, &rem);
if (rem) {
printf("%s: len(0x%x) isn't the multiple of page size(0x%x)\n",
dev->name, len, spi_flash->page_size);
return -EINVAL;
}
div_u64_rem(offset, spi_flash->page_size, &rem);
if (rem) {
printf("%s: offset(0x%x) isn't the multiple of page size(0x%x)\n",
dev->name, offset, spi_flash->page_size);
return -EINVAL;
}
status = spi_claim_bus(spi);
if (status) {
debug("dataflash: unable to claim SPI bus\n");
return status;
}
while (len > 0) {
unsigned int pageaddr;
int do_block;
/*
* Calculate flash page address; use block erase (for speed) if
* we're at a block boundary and need to erase the whole block.
*/
pageaddr = div_u64(offset, spi_flash->page_size);
do_block = (pageaddr & 0x7) == 0 && len >= blocksize;
pageaddr = pageaddr << dataflash->page_offset;
command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
command[1] = (uint8_t)(pageaddr >> 16);
command[2] = (uint8_t)(pageaddr >> 8);
command[3] = 0;
debug("%s ERASE %s: (%x) %x %x %x [%d]\n",
dev->name, do_block ? "block" : "page",
command[0], command[1], command[2], command[3],
pageaddr);
status = spi_flash_cmd_write(spi, command, 4, NULL, 0);
if (status < 0) {
debug("%s: erase send command error!\n", dev->name);
return -EIO;
}
status = dataflash_waitready(spi);
if (status < 0) {
debug("%s: erase waitready error!\n", dev->name);
return status;
}
if (do_block) {
offset += blocksize;
len -= blocksize;
} else {
offset += spi_flash->page_size;
len -= spi_flash->page_size;
}
}
spi_release_bus(spi);
return 0;
}
/*
* Read from the DataFlash device.
* offset : Start offset in flash device
* len : Amount to read
* buf : Buffer containing the data
*/
static int spi_dataflash_read(struct udevice *dev, u32 offset, size_t len,
void *buf)
{
struct dataflash *dataflash;
struct spi_flash *spi_flash;
struct spi_slave *spi;
unsigned int addr;
uint8_t *command;
int status;
dataflash = dev_get_priv(dev);
spi_flash = dev_get_uclass_priv(dev);
spi = spi_flash->spi;
memset(dataflash->command, 0 , sizeof(dataflash->command));
command = dataflash->command;
debug("%s: erase addr=0x%x len 0x%x\n", dev->name, offset, len);
debug("READ: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
/* Calculate flash page/byte address */
addr = (((unsigned)offset / spi_flash->page_size)
<< dataflash->page_offset)
+ ((unsigned)offset % spi_flash->page_size);
status = spi_claim_bus(spi);
if (status) {
debug("dataflash: unable to claim SPI bus\n");
return status;
}
/*
* Continuous read, max clock = f(car) which may be less than
* the peak rate available. Some chips support commands with
* fewer "don't care" bytes. Both buffers stay unchanged.
*/
command[0] = OP_READ_CONTINUOUS;
command[1] = (uint8_t)(addr >> 16);
command[2] = (uint8_t)(addr >> 8);
command[3] = (uint8_t)(addr >> 0);
/* plus 4 "don't care" bytes, command len: 4 + 4 "don't care" bytes */
status = spi_flash_cmd_read(spi, command, 8, buf, len);
spi_release_bus(spi);
return status;
}
/*
* Write to the DataFlash device.
* offset : Start offset in flash device
* len : Amount to write
* buf : Buffer containing the data
*/
int spi_dataflash_write(struct udevice *dev, u32 offset, size_t len,
const void *buf)
{
struct dataflash *dataflash;
struct spi_flash *spi_flash;
struct spi_slave *spi;
uint8_t *command;
unsigned int pageaddr, addr, to, writelen;
size_t remaining = len;
u_char *writebuf = (u_char *)buf;
int status = -EINVAL;
dataflash = dev_get_priv(dev);
spi_flash = dev_get_uclass_priv(dev);
spi = spi_flash->spi;
memset(dataflash->command, 0 , sizeof(dataflash->command));
command = dataflash->command;
debug("%s: write 0x%x..0x%x\n", dev->name, offset, (offset + len));
pageaddr = ((unsigned)offset / spi_flash->page_size);
to = ((unsigned)offset % spi_flash->page_size);
if (to + len > spi_flash->page_size)
writelen = spi_flash->page_size - to;
else
writelen = len;
status = spi_claim_bus(spi);
if (status) {
debug("dataflash: unable to claim SPI bus\n");
return status;
}
while (remaining > 0) {
debug("write @ %d:%d len=%d\n", pageaddr, to, writelen);
/*
* REVISIT:
* (a) each page in a sector must be rewritten at least
* once every 10K sibling erase/program operations.
* (b) for pages that are already erased, we could
* use WRITE+MWRITE not PROGRAM for ~30% speedup.
* (c) WRITE to buffer could be done while waiting for
* a previous MWRITE/MWERASE to complete ...
* (d) error handling here seems to be mostly missing.
*
* Two persistent bits per page, plus a per-sector counter,
* could support (a) and (b) ... we might consider using
* the second half of sector zero, which is just one block,
* to track that state. (On AT91, that sector should also
* support boot-from-DataFlash.)
*/
addr = pageaddr << dataflash->page_offset;
/* (1) Maybe transfer partial page to Buffer1 */
if (writelen != spi_flash->page_size) {
command[0] = OP_TRANSFER_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = 0;
debug("TRANSFER: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
status = spi_flash_cmd_write(spi, command, 4, NULL, 0);
if (status < 0) {
debug("%s: write(<pagesize) command error!\n",
dev->name);
return -EIO;
}
status = dataflash_waitready(spi);
if (status < 0) {
debug("%s: write(<pagesize) waitready error!\n",
dev->name);
return status;
}
}
/* (2) Program full page via Buffer1 */
addr += to;
command[0] = OP_PROGRAM_VIA_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = (addr & 0x000000FF);
debug("PROGRAM: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
status = spi_flash_cmd_write(spi, command,
4, writebuf, writelen);
if (status < 0) {
debug("%s: write send command error!\n", dev->name);
return -EIO;
}
status = dataflash_waitready(spi);
if (status < 0) {
debug("%s: write waitready error!\n", dev->name);
return status;
}
#ifdef CONFIG_SPI_DATAFLASH_WRITE_VERIFY
/* (3) Compare to Buffer1 */
addr = pageaddr << dataflash->page_offset;
command[0] = OP_COMPARE_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = 0;
debug("COMPARE: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
status = spi_flash_cmd_write(spi, command,
4, writebuf, writelen);
if (status < 0) {
debug("%s: write(compare) send command error!\n",
dev->name);
return -EIO;
}
status = dataflash_waitready(spi);
/* Check result of the compare operation */
if (status & (1 << 6)) {
printf("dataflash: write compare page %u, err %d\n",
pageaddr, status);
remaining = 0;
status = -EIO;
break;
} else {
status = 0;
}
#endif /* CONFIG_SPI_DATAFLASH_WRITE_VERIFY */
remaining = remaining - writelen;
pageaddr++;
to = 0;
writebuf += writelen;
if (remaining > spi_flash->page_size)
writelen = spi_flash->page_size;
else
writelen = remaining;
}
spi_release_bus(spi);
return 0;
}
static int add_dataflash(struct udevice *dev, char *name, int nr_pages,
int pagesize, int pageoffset, char revision)
{
struct spi_flash *spi_flash;
struct dataflash *dataflash;
dataflash = dev_get_priv(dev);
spi_flash = dev_get_uclass_priv(dev);
dataflash->page_offset = pageoffset;
spi_flash->name = name;
spi_flash->page_size = pagesize;
spi_flash->size = nr_pages * pagesize;
spi_flash->erase_size = pagesize;
#ifndef CONFIG_SPL_BUILD
printf("SPI DataFlash: Detected %s with page size ", spi_flash->name);
print_size(spi_flash->page_size, ", erase size ");
print_size(spi_flash->erase_size, ", total ");
print_size(spi_flash->size, "");
printf(", revision %c", revision);
puts("\n");
#endif
return 0;
}
struct flash_info {
char *name;
/*
* JEDEC id has a high byte of zero plus three data bytes:
* the manufacturer id, then a two byte device id.
*/
uint32_t jedec_id;
/* The size listed here is what works with OP_ERASE_PAGE. */
unsigned nr_pages;
uint16_t pagesize;
uint16_t pageoffset;
uint16_t flags;
#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
#define IS_POW2PS 0x0001 /* uses 2^N byte pages */
};
static struct flash_info dataflash_data[] = {
/*
* NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
* one with IS_POW2PS and the other without. The entry with the
* non-2^N byte page size can't name exact chip revisions without
* losing backwards compatibility for cmdlinepart.
*
* Those two entries have different name spelling format in order to
* show their difference obviously.
* The upper case refer to the chip isn't in normal 2^N bytes page-size
* mode.
* The lower case refer to the chip is in normal 2^N bytes page-size
* mode.
*
* These newer chips also support 128-byte security registers (with
* 64 bytes one-time-programmable) and software write-protection.
*/
{ "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
{ "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
{ "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
{ "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
{ "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
{ "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
{ "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
{ "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
{ "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
{ "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
{ "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
};
static struct flash_info *jedec_probe(struct spi_slave *spi)
{
int tmp;
uint8_t id[5];
uint32_t jedec;
struct flash_info *info;
int status;
/*
* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*
* If the vendor ID isn't Atmel's (0x1f), assume this call failed.
* That's not an error; only rev C and newer chips handle it, and
* only Atmel sells these chips.
*/
tmp = spi_flash_cmd(spi, CMD_READ_ID, id, sizeof(id));
if (tmp < 0) {
printf("dataflash: error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
}
if (id[0] != 0x1f)
return NULL;
jedec = id[0];
jedec = jedec << 8;
jedec |= id[1];
jedec = jedec << 8;
jedec |= id[2];
for (tmp = 0, info = dataflash_data;
tmp < ARRAY_SIZE(dataflash_data);
tmp++, info++) {
if (info->jedec_id == jedec) {
if (info->flags & SUP_POW2PS) {
status = dataflash_status(spi);
if (status < 0) {
debug("dataflash: status error %d\n",
status);
return NULL;
}
if (status & 0x1) {
if (info->flags & IS_POW2PS)
return info;
} else {
if (!(info->flags & IS_POW2PS))
return info;
}
} else {
return info;
}
}
}
/*
* Treat other chips as errors ... we won't know the right page
* size (it might be binary) even when we can tell which density
* class is involved (legacy chip id scheme).
*/
printf("dataflash: JEDEC id %06x not handled\n", jedec);
return ERR_PTR(-ENODEV);
}
/*
* Detect and initialize DataFlash device, using JEDEC IDs on newer chips
* or else the ID code embedded in the status bits:
*
* Device Density ID code #Pages PageSize Offset
* AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
* AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
* AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
* AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
* AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
* AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
* AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
* AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
*/
static int spi_dataflash_probe(struct udevice *dev)
{
struct spi_slave *spi = dev_get_parent_priv(dev);
struct spi_flash *spi_flash;
struct flash_info *info;
int status;
spi_flash = dev_get_uclass_priv(dev);
spi_flash->spi = spi;
spi_flash->dev = dev;
status = spi_claim_bus(spi);
if (status)
return status;
/*
* Try to detect dataflash by JEDEC ID.
* If it succeeds we know we have either a C or D part.
* D will support power of 2 pagesize option.
* Both support the security register, though with different
* write procedures.
*/
info = jedec_probe(spi);
if (IS_ERR(info))
goto err_jedec_probe;
if (info != NULL) {
status = add_dataflash(dev, info->name, info->nr_pages,
info->pagesize, info->pageoffset,
(info->flags & SUP_POW2PS) ? 'd' : 'c');
if (status < 0)
goto err_status;
}
/*
* Older chips support only legacy commands, identifing
* capacity using bits in the status byte.
*/
status = dataflash_status(spi);
if (status <= 0 || status == 0xff) {
printf("dataflash: read status error %d\n", status);
if (status == 0 || status == 0xff)
status = -ENODEV;
goto err_jedec_probe;
}
/*
* if there's a device there, assume it's dataflash.
* board setup should have set spi->max_speed_max to
* match f(car) for continuous reads, mode 0 or 3.
*/
switch (status & 0x3c) {
case 0x0c: /* 0 0 1 1 x x */
status = add_dataflash(dev, "AT45DB011B", 512, 264, 9, 0);
break;
case 0x14: /* 0 1 0 1 x x */
status = add_dataflash(dev, "AT45DB021B", 1024, 264, 9, 0);
break;
case 0x1c: /* 0 1 1 1 x x */
status = add_dataflash(dev, "AT45DB041x", 2048, 264, 9, 0);
break;
case 0x24: /* 1 0 0 1 x x */
status = add_dataflash(dev, "AT45DB081B", 4096, 264, 9, 0);
break;
case 0x2c: /* 1 0 1 1 x x */
status = add_dataflash(dev, "AT45DB161x", 4096, 528, 10, 0);
break;
case 0x34: /* 1 1 0 1 x x */
status = add_dataflash(dev, "AT45DB321x", 8192, 528, 10, 0);
break;
case 0x38: /* 1 1 1 x x x */
case 0x3c:
status = add_dataflash(dev, "AT45DB642x", 8192, 1056, 11, 0);
break;
/* obsolete AT45DB1282 not (yet?) supported */
default:
printf("dataflash: unsupported device (%x)\n", status & 0x3c);
status = -ENODEV;
goto err_status;
}
return status;
err_status:
spi_free_slave(spi);
err_jedec_probe:
spi_release_bus(spi);
return status;
}
static const struct dm_spi_flash_ops spi_dataflash_ops = {
.read = spi_dataflash_read,
.write = spi_dataflash_write,
.erase = spi_dataflash_erase,
};
static const struct udevice_id spi_dataflash_ids[] = {
{ .compatible = "atmel,at45", },
{ .compatible = "atmel,dataflash", },
{ }
};
U_BOOT_DRIVER(spi_dataflash) = {
.name = "spi_dataflash",
.id = UCLASS_SPI_FLASH,
.of_match = spi_dataflash_ids,
.probe = spi_dataflash_probe,
.priv_auto_alloc_size = sizeof(struct dataflash),
.ops = &spi_dataflash_ops,
};