| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2020 Marvell International Ltd. |
| */ |
| |
| #include <command.h> |
| #include <dm.h> |
| #include <hang.h> |
| #include <i2c.h> |
| #include <ram.h> |
| #include <time.h> |
| |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| |
| #include <mach/octeon_ddr.h> |
| |
| /* Random number generator stuff */ |
| |
| #define CVMX_OCT_DID_RNG 8ULL |
| |
| static u64 cvmx_rng_get_random64(void) |
| { |
| return csr_rd(cvmx_build_io_address(CVMX_OCT_DID_RNG, 0)); |
| } |
| |
| static void cvmx_rng_enable(void) |
| { |
| u64 val; |
| |
| val = csr_rd(CVMX_RNM_CTL_STATUS); |
| val |= BIT(0) | BIT(1); |
| csr_wr(CVMX_RNM_CTL_STATUS, val); |
| } |
| |
| #define RLEVEL_PRINTALL_DEFAULT 1 |
| #define WLEVEL_PRINTALL_DEFAULT 1 |
| |
| /* |
| * Define how many HW WL samples to take for majority voting. |
| * MUST BE odd!! |
| * Assume there should only be 2 possible values that will show up, |
| * so treat ties as a problem!!! |
| * NOTE: Do not change this without checking the code!!! |
| */ |
| #define WLEVEL_LOOPS_DEFAULT 5 |
| |
| #define ENABLE_COMPUTED_VREF_ADJUSTMENT 1 |
| #define SW_WLEVEL_HW_DEFAULT 1 |
| #define DEFAULT_BEST_RANK_SCORE 9999999 |
| #define MAX_RANK_SCORE_LIMIT 99 |
| |
| /* |
| * Define how many HW RL samples per rank to take multiple samples will |
| * allow looking for the best sample score |
| */ |
| #define RLEVEL_SAMPLES_DEFAULT 3 |
| |
| #define ddr_seq_print(format, ...) do {} while (0) |
| |
| struct wlevel_bitcnt { |
| int bitcnt[4]; |
| }; |
| |
| static void display_dac_dbi_settings(int lmc, int dac_or_dbi, |
| int ecc_ena, int *settings, char *title); |
| |
| static unsigned short load_dac_override(struct ddr_priv *priv, int if_num, |
| int dac_value, int byte); |
| |
| /* "mode" arg */ |
| #define DBTRAIN_TEST 0 |
| #define DBTRAIN_DBI 1 |
| #define DBTRAIN_LFSR 2 |
| |
| static int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr, |
| int mode, u64 *xor_data); |
| |
| #define LMC_DDR3_RESET_ASSERT 0 |
| #define LMC_DDR3_RESET_DEASSERT 1 |
| |
| static void cn7xxx_lmc_ddr3_reset(struct ddr_priv *priv, int if_num, int reset) |
| { |
| union cvmx_lmcx_reset_ctl reset_ctl; |
| |
| /* |
| * 4. Deassert DDRn_RESET_L pin by writing |
| * LMC(0..3)_RESET_CTL[DDR3RST] = 1 |
| * without modifying any other LMC(0..3)_RESET_CTL fields. |
| * 5. Read LMC(0..3)_RESET_CTL and wait for the result. |
| * 6. Wait a minimum of 500us. This guarantees the necessary T = 500us |
| * delay between DDRn_RESET_L deassertion and DDRn_DIMM*_CKE* |
| * assertion. |
| */ |
| debug("LMC%d %s DDR_RESET_L\n", if_num, |
| (reset == |
| LMC_DDR3_RESET_DEASSERT) ? "De-asserting" : "Asserting"); |
| |
| reset_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num)); |
| reset_ctl.cn78xx.ddr3rst = reset; |
| lmc_wr(priv, CVMX_LMCX_RESET_CTL(if_num), reset_ctl.u64); |
| |
| lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num)); |
| |
| udelay(500); |
| } |
| |
| static void perform_lmc_reset(struct ddr_priv *priv, int node, int if_num) |
| { |
| /* |
| * 5.9.6 LMC RESET Initialization |
| * |
| * The purpose of this step is to assert/deassert the RESET# pin at the |
| * DDR3/DDR4 parts. |
| * |
| * This LMC RESET step is done for all enabled LMCs. |
| * |
| * It may be appropriate to skip this step if the DDR3/DDR4 DRAM parts |
| * are in self refresh and are currently preserving their |
| * contents. (Software can determine this via |
| * LMC(0..3)_RESET_CTL[DDR3PSV] in some circumstances.) The remainder of |
| * this section assumes that the DRAM contents need not be preserved. |
| * |
| * The remainder of this section assumes that the CN78XX DDRn_RESET_L |
| * pin is attached to the RESET# pin of the attached DDR3/DDR4 parts, |
| * as will be appropriate in many systems. |
| * |
| * (In other systems, such as ones that can preserve DDR3/DDR4 part |
| * contents while CN78XX is powered down, it will not be appropriate to |
| * directly attach the CN78XX DDRn_RESET_L pin to DRESET# of the |
| * DDR3/DDR4 parts, and this section may not apply.) |
| * |
| * The remainder of this section describes the sequence for LMCn. |
| * |
| * Perform the following six substeps for LMC reset initialization: |
| * |
| * 1. If not done already, assert DDRn_RESET_L pin by writing |
| * LMC(0..3)_RESET_ CTL[DDR3RST] = 0 without modifying any other |
| * LMC(0..3)_RESET_CTL fields. |
| */ |
| |
| if (!ddr_memory_preserved(priv)) { |
| /* |
| * 2. Read LMC(0..3)_RESET_CTL and wait for the result. |
| */ |
| |
| lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num)); |
| |
| /* |
| * 3. Wait until RESET# assertion-time requirement from JEDEC |
| * DDR3/DDR4 specification is satisfied (200 us during a |
| * power-on ramp, 100ns when power is already stable). |
| */ |
| |
| udelay(200); |
| |
| /* |
| * 4. Deassert DDRn_RESET_L pin by writing |
| * LMC(0..3)_RESET_CTL[DDR3RST] = 1 |
| * without modifying any other LMC(0..3)_RESET_CTL fields. |
| * 5. Read LMC(0..3)_RESET_CTL and wait for the result. |
| * 6. Wait a minimum of 500us. This guarantees the necessary |
| * T = 500us delay between DDRn_RESET_L deassertion and |
| * DDRn_DIMM*_CKE* assertion. |
| */ |
| cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT); |
| |
| /* Toggle Reset Again */ |
| /* That is, assert, then de-assert, one more time */ |
| cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_ASSERT); |
| cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT); |
| } |
| } |
| |
| void oct3_ddr3_seq(struct ddr_priv *priv, int rank_mask, int if_num, |
| int sequence) |
| { |
| /* |
| * 3. Without changing any other fields in LMC(0)_CONFIG, write |
| * LMC(0)_CONFIG[RANKMASK] then write both |
| * LMC(0)_SEQ_CTL[SEQ_SEL,INIT_START] = 1 with a single CSR write |
| * operation. LMC(0)_CONFIG[RANKMASK] bits should be set to indicate |
| * the ranks that will participate in the sequence. |
| * |
| * The LMC(0)_SEQ_CTL[SEQ_SEL] value should select power-up/init or |
| * selfrefresh exit, depending on whether the DRAM parts are in |
| * self-refresh and whether their contents should be preserved. While |
| * LMC performs these sequences, it will not perform any other DDR3 |
| * transactions. When the sequence is complete, hardware sets the |
| * LMC(0)_CONFIG[INIT_STATUS] bits for the ranks that have been |
| * initialized. |
| * |
| * If power-up/init is selected immediately following a DRESET |
| * assertion, LMC executes the sequence described in the "Reset and |
| * Initialization Procedure" section of the JEDEC DDR3 |
| * specification. This includes activating CKE, writing all four DDR3 |
| * mode registers on all selected ranks, and issuing the required |
| * ZQCL |
| * command. The LMC(0)_CONFIG[RANKMASK] value should select all ranks |
| * with attached DRAM in this case. If LMC(0)_CONTROL[RDIMM_ENA] = 1, |
| * LMC writes the JEDEC standard SSTE32882 control words selected by |
| * LMC(0)_DIMM_CTL[DIMM*_WMASK] between DDR_CKE* signal assertion and |
| * the first DDR3 mode register write operation. |
| * LMC(0)_DIMM_CTL[DIMM*_WMASK] should be cleared to 0 if the |
| * corresponding DIMM is not present. |
| * |
| * If self-refresh exit is selected, LMC executes the required SRX |
| * command followed by a refresh and ZQ calibration. Section 4.5 |
| * describes behavior of a REF + ZQCS. LMC does not write the DDR3 |
| * mode registers as part of this sequence, and the mode register |
| * parameters must match at self-refresh entry and exit times. |
| * |
| * 4. Read LMC(0)_SEQ_CTL and wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] |
| * to be set. |
| * |
| * 5. Read LMC(0)_CONFIG[INIT_STATUS] and confirm that all ranks have |
| * been initialized. |
| */ |
| |
| union cvmx_lmcx_seq_ctl seq_ctl; |
| union cvmx_lmcx_config lmc_config; |
| int timeout; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| lmc_config.s.rankmask = rank_mask; |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64); |
| |
| seq_ctl.u64 = 0; |
| |
| seq_ctl.s.init_start = 1; |
| seq_ctl.s.seq_sel = sequence; |
| |
| ddr_seq_print |
| ("Performing LMC sequence: rank_mask=0x%02x, sequence=0x%x, %s\n", |
| rank_mask, sequence, sequence_str[sequence]); |
| |
| if (seq_ctl.s.seq_sel == 3) |
| debug("LMC%d: Exiting Self-refresh Rank_mask:%x\n", if_num, |
| rank_mask); |
| |
| lmc_wr(priv, CVMX_LMCX_SEQ_CTL(if_num), seq_ctl.u64); |
| lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num)); |
| |
| timeout = 100; |
| do { |
| udelay(100); /* Wait a while */ |
| seq_ctl.u64 = lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num)); |
| if (--timeout == 0) { |
| printf("Sequence %d timed out\n", sequence); |
| break; |
| } |
| } while (seq_ctl.s.seq_complete != 1); |
| |
| ddr_seq_print(" LMC sequence=%x: Completed.\n", sequence); |
| } |
| |
| #define bdk_numa_get_address(n, p) ((p) | ((u64)n) << CVMX_NODE_MEM_SHIFT) |
| #define AREA_BASE_OFFSET BIT_ULL(26) |
| |
| static int test_dram_byte64(struct ddr_priv *priv, int lmc, u64 p, |
| u64 bitmask, u64 *xor_data) |
| { |
| u64 p1, p2, d1, d2; |
| u64 v, v1; |
| u64 p2offset = (1ULL << 26); // offset to area 2 |
| u64 datamask; |
| u64 xor; |
| u64 i, j, k; |
| u64 ii; |
| int errors = 0; |
| //u64 index; |
| u64 pattern1 = cvmx_rng_get_random64(); |
| u64 pattern2 = 0; |
| u64 bad_bits[2] = { 0, 0 }; |
| int kbitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18; |
| union cvmx_l2c_ctl l2c_ctl; |
| int burst; |
| int saved_dissblkdty; |
| int node = 0; |
| |
| // Force full cacheline write-backs to boost traffic |
| l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL_REL); |
| saved_dissblkdty = l2c_ctl.cn78xx.dissblkdty; |
| l2c_ctl.cn78xx.dissblkdty = 1; |
| l2c_wr(priv, CVMX_L2C_CTL_REL, l2c_ctl.u64); |
| |
| if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX)) |
| kbitno = 18; |
| |
| // Byte lanes may be clear in the mask to indicate no testing on that |
| //lane. |
| datamask = bitmask; |
| |
| /* |
| * Add offset to both test regions to not clobber boot stuff |
| * when running from L2 for NAND boot. |
| */ |
| p += AREA_BASE_OFFSET; // make sure base is out of the way of boot |
| |
| // final address must include LMC and node |
| p |= (lmc << 7); /* Map address into proper interface */ |
| p = bdk_numa_get_address(node, p); /* Map to node */ |
| p |= 1ull << 63; |
| |
| #define II_INC BIT_ULL(22) |
| #define II_MAX BIT_ULL(22) |
| #define K_INC BIT_ULL(14) |
| #define K_MAX BIT_ULL(kbitno) |
| #define J_INC BIT_ULL(9) |
| #define J_MAX BIT_ULL(12) |
| #define I_INC BIT_ULL(3) |
| #define I_MAX BIT_ULL(7) |
| |
| debug("N%d.LMC%d: %s: phys_addr=0x%llx/0x%llx (0x%llx)\n", |
| node, lmc, __func__, p, p + p2offset, 1ULL << kbitno); |
| |
| // loops are ordered so that only a single 64-bit slot is written to |
| // each cacheline at one time, then the cachelines are forced out; |
| // this should maximize read/write traffic |
| |
| // FIXME? extend the range of memory tested!! |
| for (ii = 0; ii < II_MAX; ii += II_INC) { |
| for (i = 0; i < I_MAX; i += I_INC) { |
| for (k = 0; k < K_MAX; k += K_INC) { |
| for (j = 0; j < J_MAX; j += J_INC) { |
| p1 = p + ii + k + j; |
| p2 = p1 + p2offset; |
| |
| v = pattern1 * (p1 + i); |
| // write the same thing to both areas |
| v1 = v; |
| |
| cvmx_write64_uint64(p1 + i, v); |
| cvmx_write64_uint64(p2 + i, v1); |
| |
| CVMX_CACHE_WBIL2(p1, 0); |
| CVMX_CACHE_WBIL2(p2, 0); |
| } |
| } |
| } |
| } |
| |
| CVMX_DCACHE_INVALIDATE; |
| |
| debug("N%d.LMC%d: dram_tuning_mem_xor: done INIT loop\n", node, lmc); |
| |
| /* Make a series of passes over the memory areas. */ |
| |
| for (burst = 0; burst < 1 /* was: dram_tune_use_bursts */ ; burst++) { |
| u64 this_pattern = cvmx_rng_get_random64(); |
| |
| pattern2 ^= this_pattern; |
| |
| /* |
| * XOR the data with a random value, applying the change to both |
| * memory areas. |
| */ |
| |
| // FIXME? extend the range of memory tested!! |
| for (ii = 0; ii < II_MAX; ii += II_INC) { |
| // FIXME: rearranged, did not make much difference? |
| for (i = 0; i < I_MAX; i += I_INC) { |
| for (k = 0; k < K_MAX; k += K_INC) { |
| for (j = 0; j < J_MAX; j += J_INC) { |
| p1 = p + ii + k + j; |
| p2 = p1 + p2offset; |
| |
| v = cvmx_read64_uint64(p1 + |
| i) ^ |
| this_pattern; |
| v1 = cvmx_read64_uint64(p2 + |
| i) ^ |
| this_pattern; |
| |
| cvmx_write64_uint64(p1 + i, v); |
| cvmx_write64_uint64(p2 + i, v1); |
| |
| CVMX_CACHE_WBIL2(p1, 0); |
| CVMX_CACHE_WBIL2(p2, 0); |
| } |
| } |
| } |
| } |
| |
| CVMX_DCACHE_INVALIDATE; |
| |
| debug("N%d.LMC%d: dram_tuning_mem_xor: done MODIFY loop\n", |
| node, lmc); |
| |
| /* |
| * Look for differences in the areas. If there is a mismatch, |
| * reset both memory locations with the same pattern. Failing |
| * to do so means that on all subsequent passes the pair of |
| * locations remain out of sync giving spurious errors. |
| */ |
| |
| // FIXME: Change the loop order so that an entire cache line |
| // is compared at one time. This is so that a read |
| // error that occurs *anywhere* on the cacheline will |
| // be caught, rather than comparing only 1 cacheline |
| // slot at a time, where an error on a different |
| // slot will be missed that time around |
| // Does the above make sense? |
| |
| // FIXME? extend the range of memory tested!! |
| for (ii = 0; ii < II_MAX; ii += II_INC) { |
| for (k = 0; k < K_MAX; k += K_INC) { |
| for (j = 0; j < J_MAX; j += J_INC) { |
| p1 = p + ii + k + j; |
| p2 = p1 + p2offset; |
| |
| // process entire cachelines in the |
| //innermost loop |
| for (i = 0; i < I_MAX; i += I_INC) { |
| int bybit = 1; |
| // start in byte lane 0 |
| u64 bymsk = 0xffULL; |
| |
| // FIXME: this should predict |
| // what we find...??? |
| v = ((p1 + i) * pattern1) ^ |
| pattern2; |
| d1 = cvmx_read64_uint64(p1 + i); |
| d2 = cvmx_read64_uint64(p2 + i); |
| |
| // union of error bits only in |
| // active byte lanes |
| xor = ((d1 ^ v) | (d2 ^ v)) & |
| datamask; |
| |
| if (!xor) |
| continue; |
| |
| // accumulate bad bits |
| bad_bits[0] |= xor; |
| |
| while (xor != 0) { |
| debug("ERROR(%03d): [0x%016llX] [0x%016llX] expected 0x%016llX d1 %016llX d2 %016llX\n", |
| burst, p1, p2, v, |
| d1, d2); |
| // error(s) in this lane |
| if (xor & bymsk) { |
| // set the byte |
| // error bit |
| errors |= bybit; |
| // clear byte |
| // lane in |
| // error bits |
| xor &= ~bymsk; |
| // clear the |
| // byte lane in |
| // the mask |
| datamask &= ~bymsk; |
| #if EXIT_WHEN_ALL_LANES_HAVE_ERRORS |
| // nothing |
| // left to do |
| if (datamask == 0) { |
| return errors; |
| } |
| #endif /* EXIT_WHEN_ALL_LANES_HAVE_ERRORS */ |
| } |
| // move mask into |
| // next byte lane |
| bymsk <<= 8; |
| // move bit into next |
| // byte position |
| bybit <<= 1; |
| } |
| } |
| CVMX_CACHE_WBIL2(p1, 0); |
| CVMX_CACHE_WBIL2(p2, 0); |
| } |
| } |
| } |
| |
| debug("N%d.LMC%d: dram_tuning_mem_xor: done TEST loop\n", |
| node, lmc); |
| } |
| |
| if (xor_data) { // send the bad bits back... |
| xor_data[0] = bad_bits[0]; |
| xor_data[1] = bad_bits[1]; // let it be zeroed |
| } |
| |
| // Restore original setting that could enable partial cacheline writes |
| l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL_REL); |
| l2c_ctl.cn78xx.dissblkdty = saved_dissblkdty; |
| l2c_wr(priv, CVMX_L2C_CTL_REL, l2c_ctl.u64); |
| |
| return errors; |
| } |
| |
| static void ddr4_mrw(struct ddr_priv *priv, int if_num, int rank, |
| int mr_wr_addr, int mr_wr_sel, int mr_wr_bg1) |
| { |
| union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl; |
| |
| lmc_mr_mpr_ctl.u64 = 0; |
| lmc_mr_mpr_ctl.cn78xx.mr_wr_addr = (mr_wr_addr == -1) ? 0 : mr_wr_addr; |
| lmc_mr_mpr_ctl.cn78xx.mr_wr_sel = mr_wr_sel; |
| lmc_mr_mpr_ctl.cn78xx.mr_wr_rank = rank; |
| lmc_mr_mpr_ctl.cn78xx.mr_wr_use_default_value = |
| (mr_wr_addr == -1) ? 1 : 0; |
| lmc_mr_mpr_ctl.cn78xx.mr_wr_bg1 = mr_wr_bg1; |
| lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64); |
| |
| /* Mode Register Write */ |
| oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8); |
| } |
| |
| #define INV_A0_17(x) ((x) ^ 0x22bf8) |
| |
| static void set_mpr_mode(struct ddr_priv *priv, int rank_mask, |
| int if_num, int dimm_count, int mpr, int bg1) |
| { |
| int rankx; |
| |
| debug("All Ranks: Set mpr mode = %x %c-side\n", |
| mpr, (bg1 == 0) ? 'A' : 'B'); |
| |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| if (bg1 == 0) { |
| /* MR3 A-side */ |
| ddr4_mrw(priv, if_num, rankx, mpr << 2, 3, bg1); |
| } else { |
| /* MR3 B-side */ |
| ddr4_mrw(priv, if_num, rankx, INV_A0_17(mpr << 2), ~3, |
| bg1); |
| } |
| } |
| } |
| |
| static void do_ddr4_mpr_read(struct ddr_priv *priv, int if_num, |
| int rank, int page, int location) |
| { |
| union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl; |
| |
| lmc_mr_mpr_ctl.u64 = lmc_rd(priv, CVMX_LMCX_MR_MPR_CTL(if_num)); |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = 0; |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page; /* Page */ |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank; |
| lmc_mr_mpr_ctl.cn70xx.mpr_loc = location; |
| lmc_mr_mpr_ctl.cn70xx.mpr_wr = 0; /* Read=0, Write=1 */ |
| lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64); |
| |
| /* MPR register access sequence */ |
| oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9); |
| |
| debug("LMC_MR_MPR_CTL : 0x%016llx\n", |
| lmc_mr_mpr_ctl.u64); |
| debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n", |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_addr); |
| debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n", |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_sel); |
| debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc : 0x%02x\n", |
| lmc_mr_mpr_ctl.cn70xx.mpr_loc); |
| debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr : 0x%02x\n", |
| lmc_mr_mpr_ctl.cn70xx.mpr_wr); |
| } |
| |
| static int set_rdimm_mode(struct ddr_priv *priv, int if_num, int enable) |
| { |
| union cvmx_lmcx_control lmc_control; |
| int save_rdimm_mode; |
| |
| lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| save_rdimm_mode = lmc_control.s.rdimm_ena; |
| lmc_control.s.rdimm_ena = enable; |
| debug("Setting RDIMM_ENA = %x\n", enable); |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), lmc_control.u64); |
| |
| return save_rdimm_mode; |
| } |
| |
| static void ddr4_mpr_read(struct ddr_priv *priv, int if_num, int rank, |
| int page, int location, u64 *mpr_data) |
| { |
| do_ddr4_mpr_read(priv, if_num, rank, page, location); |
| |
| mpr_data[0] = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num)); |
| } |
| |
| /* Display MPR values for Page */ |
| static void display_mpr_page(struct ddr_priv *priv, int rank_mask, |
| int if_num, int page) |
| { |
| int rankx, location; |
| u64 mpr_data[3]; |
| |
| for (rankx = 0; rankx < 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| debug("N0.LMC%d.R%d: MPR Page %d loc [0:3]: ", |
| if_num, rankx, page); |
| for (location = 0; location < 4; location++) { |
| ddr4_mpr_read(priv, if_num, rankx, page, location, |
| mpr_data); |
| debug("0x%02llx ", mpr_data[0] & 0xFF); |
| } |
| debug("\n"); |
| |
| } /* for (rankx = 0; rankx < 4; rankx++) */ |
| } |
| |
| static void ddr4_mpr_write(struct ddr_priv *priv, int if_num, int rank, |
| int page, int location, u8 mpr_data) |
| { |
| union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl; |
| |
| lmc_mr_mpr_ctl.u64 = 0; |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mpr_data; |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page; /* Page */ |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank; |
| lmc_mr_mpr_ctl.cn70xx.mpr_loc = location; |
| lmc_mr_mpr_ctl.cn70xx.mpr_wr = 1; /* Read=0, Write=1 */ |
| lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64); |
| |
| /* MPR register access sequence */ |
| oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9); |
| |
| debug("LMC_MR_MPR_CTL : 0x%016llx\n", |
| lmc_mr_mpr_ctl.u64); |
| debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n", |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_addr); |
| debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n", |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_sel); |
| debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc : 0x%02x\n", |
| lmc_mr_mpr_ctl.cn70xx.mpr_loc); |
| debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr : 0x%02x\n", |
| lmc_mr_mpr_ctl.cn70xx.mpr_wr); |
| } |
| |
| static void set_vref(struct ddr_priv *priv, int if_num, int rank, |
| int range, int value) |
| { |
| union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl; |
| union cvmx_lmcx_modereg_params3 lmc_modereg_params3; |
| int mr_wr_addr = 0; |
| |
| lmc_mr_mpr_ctl.u64 = 0; |
| lmc_modereg_params3.u64 = lmc_rd(priv, |
| CVMX_LMCX_MODEREG_PARAMS3(if_num)); |
| |
| /* A12:A10 tCCD_L */ |
| mr_wr_addr |= lmc_modereg_params3.s.tccd_l << 10; |
| mr_wr_addr |= 1 << 7; /* A7 1 = Enable(Training Mode) */ |
| mr_wr_addr |= range << 6; /* A6 vrefDQ Training Range */ |
| mr_wr_addr |= value << 0; /* A5:A0 vrefDQ Training Value */ |
| |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr; |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = 6; /* Write MR6 */ |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank; |
| lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64); |
| |
| /* 0x8 = Mode Register Write */ |
| oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8); |
| |
| /* |
| * It is vendor specific whether vref_value is captured with A7=1. |
| * A subsequent MRS might be necessary. |
| */ |
| oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8); |
| |
| mr_wr_addr &= ~(1 << 7); /* A7 0 = Disable(Training Mode) */ |
| lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr; |
| lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64); |
| } |
| |
| static void set_dram_output_inversion(struct ddr_priv *priv, int if_num, |
| int dimm_count, int rank_mask, |
| int inversion) |
| { |
| union cvmx_lmcx_ddr4_dimm_ctl lmc_ddr4_dimm_ctl; |
| union cvmx_lmcx_dimmx_params lmc_dimmx_params; |
| union cvmx_lmcx_dimm_ctl lmc_dimm_ctl; |
| int dimm_no; |
| |
| /* Don't touch extenced register control words */ |
| lmc_ddr4_dimm_ctl.u64 = 0; |
| lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), lmc_ddr4_dimm_ctl.u64); |
| |
| debug("All DIMMs: Register Control Word RC0 : %x\n", |
| (inversion & 1)); |
| |
| for (dimm_no = 0; dimm_no < dimm_count; ++dimm_no) { |
| lmc_dimmx_params.u64 = |
| lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num)); |
| lmc_dimmx_params.s.rc0 = |
| (lmc_dimmx_params.s.rc0 & ~1) | (inversion & 1); |
| |
| lmc_wr(priv, |
| CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num), |
| lmc_dimmx_params.u64); |
| } |
| |
| /* LMC0_DIMM_CTL */ |
| lmc_dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num)); |
| lmc_dimm_ctl.s.dimm0_wmask = 0x1; |
| lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0x0001 : 0x0000; |
| |
| debug("LMC DIMM_CTL : 0x%016llx\n", |
| lmc_dimm_ctl.u64); |
| lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), lmc_dimm_ctl.u64); |
| |
| oct3_ddr3_seq(priv, rank_mask, if_num, 0x7); /* Init RCW */ |
| } |
| |
| static void write_mpr_page0_pattern(struct ddr_priv *priv, int rank_mask, |
| int if_num, int dimm_count, int pattern, |
| int location_mask) |
| { |
| int rankx; |
| int location; |
| |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| for (location = 0; location < 4; ++location) { |
| if (!(location_mask & (1 << location))) |
| continue; |
| |
| ddr4_mpr_write(priv, if_num, rankx, |
| /* page */ 0, /* location */ location, |
| pattern); |
| } |
| } |
| } |
| |
| static void change_rdimm_mpr_pattern(struct ddr_priv *priv, int rank_mask, |
| int if_num, int dimm_count) |
| { |
| int save_ref_zqcs_int; |
| union cvmx_lmcx_config lmc_config; |
| |
| /* |
| * Okay, here is the latest sequence. This should work for all |
| * chips and passes (78,88,73,etc). This sequence should be run |
| * immediately after DRAM INIT. The basic idea is to write the |
| * same pattern into each of the 4 MPR locations in the DRAM, so |
| * that the same value is returned when doing MPR reads regardless |
| * of the inversion state. My advice is to put this into a |
| * function, change_rdimm_mpr_pattern or something like that, so |
| * that it can be called multiple times, as I think David wants a |
| * clock-like pattern for OFFSET training, but does not want a |
| * clock pattern for Bit-Deskew. You should then be able to call |
| * this at any point in the init sequence (after DRAM init) to |
| * change the pattern to a new value. |
| * Mike |
| * |
| * A correction: PHY doesn't need any pattern during offset |
| * training, but needs clock like pattern for internal vref and |
| * bit-dskew training. So for that reason, these steps below have |
| * to be conducted before those trainings to pre-condition |
| * the pattern. David |
| * |
| * Note: Step 3, 4, 8 and 9 have to be done through RDIMM |
| * sequence. If you issue MRW sequence to do RCW write (in o78 pass |
| * 1 at least), LMC will still do two commands because |
| * CONTROL[RDIMM_ENA] is still set high. We don't want it to have |
| * any unintentional mode register write so it's best to do what |
| * Mike is doing here. |
| * Andrew |
| */ |
| |
| /* 1) Disable refresh (REF_ZQCS_INT = 0) */ |
| |
| debug("1) Disable refresh (REF_ZQCS_INT = 0)\n"); |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int; |
| lmc_config.cn78xx.ref_zqcs_int = 0; |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64); |
| |
| /* |
| * 2) Put all devices in MPR mode (Run MRW sequence (sequence=8) |
| * with MODEREG_PARAMS0[MPRLOC]=0, |
| * MODEREG_PARAMS0[MPR]=1, MR_MPR_CTL[MR_WR_SEL]=3, and |
| * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1) |
| */ |
| |
| debug("2) Put all devices in MPR mode (Run MRW sequence (sequence=8)\n"); |
| |
| /* A-side */ |
| set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 0); |
| /* B-side */ |
| set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 1); |
| |
| /* |
| * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and set |
| * the value you would like directly into |
| * MR_MPR_CTL[MR_WR_ADDR] |
| */ |
| |
| /* |
| * 3) Disable RCD Parity (if previously enabled) - parity does not |
| * work if inversion disabled |
| */ |
| |
| debug("3) Disable RCD Parity\n"); |
| |
| /* |
| * 4) Disable Inversion in the RCD. |
| * a. I did (3&4) via the RDIMM sequence (seq_sel=7), but it |
| * may be easier to use the MRW sequence (seq_sel=8). Just set |
| * MR_MPR_CTL[MR_WR_SEL]=7, MR_MPR_CTL[MR_WR_ADDR][3:0]=data, |
| * MR_MPR_CTL[MR_WR_ADDR][7:4]=RCD reg |
| */ |
| |
| debug("4) Disable Inversion in the RCD.\n"); |
| |
| set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 1); |
| |
| /* |
| * 5) Disable CONTROL[RDIMM_ENA] so that MR sequence goes out |
| * non-inverted. |
| */ |
| |
| debug("5) Disable CONTROL[RDIMM_ENA]\n"); |
| |
| set_rdimm_mode(priv, if_num, 0); |
| |
| /* |
| * 6) Write all 4 MPR registers with the desired pattern (have to |
| * do this for all enabled ranks) |
| * a. MR_MPR_CTL.MPR_WR=1, MR_MPR_CTL.MPR_LOC=0..3, |
| * MR_MPR_CTL.MR_WR_SEL=0, MR_MPR_CTL.MR_WR_ADDR[7:0]=pattern |
| */ |
| |
| debug("6) Write all 4 MPR page 0 Training Patterns\n"); |
| |
| write_mpr_page0_pattern(priv, rank_mask, if_num, dimm_count, 0x55, 0x8); |
| |
| /* 7) Re-enable RDIMM_ENA */ |
| |
| debug("7) Re-enable RDIMM_ENA\n"); |
| |
| set_rdimm_mode(priv, if_num, 1); |
| |
| /* 8) Re-enable RDIMM inversion */ |
| |
| debug("8) Re-enable RDIMM inversion\n"); |
| |
| set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 0); |
| |
| /* 9) Re-enable RDIMM parity (if desired) */ |
| |
| debug("9) Re-enable RDIMM parity (if desired)\n"); |
| |
| /* |
| * 10)Take B-side devices out of MPR mode (Run MRW sequence |
| * (sequence=8) with MODEREG_PARAMS0[MPRLOC]=0, |
| * MODEREG_PARAMS0[MPR]=0, MR_MPR_CTL[MR_WR_SEL]=3, and |
| * MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1) |
| */ |
| |
| debug("10)Take B-side devices out of MPR mode\n"); |
| |
| set_mpr_mode(priv, rank_mask, if_num, dimm_count, |
| /* mpr */ 0, /* bg1 */ 1); |
| |
| /* |
| * a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and |
| * set the value you would like directly into MR_MPR_CTL[MR_WR_ADDR] |
| */ |
| |
| /* 11)Re-enable refresh (REF_ZQCS_INT=previous value) */ |
| |
| debug("11)Re-enable refresh (REF_ZQCS_INT=previous value)\n"); |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int; |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64); |
| } |
| |
| static int validate_hwl_seq(int *wl, int *seq) |
| { |
| // sequence index, step through the sequence array |
| int seqx; |
| int bitnum; |
| |
| seqx = 0; |
| |
| while (seq[seqx + 1] >= 0) { // stop on next seq entry == -1 |
| // but now, check current versus next |
| bitnum = (wl[seq[seqx]] << 2) | wl[seq[seqx + 1]]; |
| // magic validity number (see matrix above) |
| if (!((1 << bitnum) & 0xBDE7)) |
| return 1; |
| seqx++; |
| } |
| |
| return 0; |
| } |
| |
| static int validate_hw_wl_settings(int if_num, |
| union cvmx_lmcx_wlevel_rankx |
| *lmc_wlevel_rank, int is_rdimm, int ecc_ena) |
| { |
| int wl[9], byte, errors; |
| |
| // arrange the sequences so |
| // index 0 has byte 0, etc, ECC in middle |
| int useq[] = { 0, 1, 2, 3, 8, 4, 5, 6, 7, -1 }; |
| // index 0 is ECC, then go down |
| int rseq1[] = { 8, 3, 2, 1, 0, -1 }; |
| // index 0 has byte 4, then go up |
| int rseq2[] = { 4, 5, 6, 7, -1 }; |
| // index 0 has byte 0, etc, no ECC |
| int useqno[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1 }; |
| // index 0 is byte 3, then go down, no ECC |
| int rseq1no[] = { 3, 2, 1, 0, -1 }; |
| |
| // in the CSR, bytes 0-7 are always data, byte 8 is ECC |
| for (byte = 0; byte < (8 + ecc_ena); byte++) { |
| // preprocess :-) |
| wl[byte] = (get_wl_rank(lmc_wlevel_rank, byte) >> |
| 1) & 3; |
| } |
| |
| errors = 0; |
| if (is_rdimm) { // RDIMM order |
| errors = validate_hwl_seq(wl, (ecc_ena) ? rseq1 : rseq1no); |
| errors += validate_hwl_seq(wl, rseq2); |
| } else { // UDIMM order |
| errors = validate_hwl_seq(wl, (ecc_ena) ? useq : useqno); |
| } |
| |
| return errors; |
| } |
| |
| static unsigned int extr_wr(u64 u, int x) |
| { |
| return (unsigned int)(((u >> (x * 12 + 5)) & 0x3ULL) | |
| ((u >> (51 + x - 2)) & 0x4ULL)); |
| } |
| |
| static void insrt_wr(u64 *up, int x, int v) |
| { |
| u64 u = *up; |
| |
| u &= ~(((0x3ULL) << (x * 12 + 5)) | ((0x1ULL) << (51 + x))); |
| *up = (u | ((v & 0x3ULL) << (x * 12 + 5)) | |
| ((v & 0x4ULL) << (51 + x - 2))); |
| } |
| |
| /* Read out Deskew Settings for DDR */ |
| |
| struct deskew_bytes { |
| u16 bits[8]; |
| }; |
| |
| struct deskew_data { |
| struct deskew_bytes bytes[9]; |
| }; |
| |
| struct dac_data { |
| int bytes[9]; |
| }; |
| |
| // T88 pass 1, skip 4=DAC |
| static const u8 dsk_bit_seq_p1[8] = { 0, 1, 2, 3, 5, 6, 7, 8 }; |
| // T88 Pass 2, skip 4=DAC and 5=DBI |
| static const u8 dsk_bit_seq_p2[8] = { 0, 1, 2, 3, 6, 7, 8, 9 }; |
| |
| static void get_deskew_settings(struct ddr_priv *priv, int if_num, |
| struct deskew_data *dskdat) |
| { |
| union cvmx_lmcx_phy_ctl phy_ctl; |
| union cvmx_lmcx_config lmc_config; |
| int bit_index; |
| int byte_lane, byte_limit; |
| // NOTE: these are for pass 2.x |
| int is_o78p2 = !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X); |
| const u8 *bit_seq = (is_o78p2) ? dsk_bit_seq_p2 : dsk_bit_seq_p1; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena; |
| |
| memset(dskdat, 0, sizeof(*dskdat)); |
| |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| phy_ctl.s.dsk_dbg_clk_scaler = 3; |
| |
| for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) { |
| phy_ctl.s.dsk_dbg_byte_sel = byte_lane; // set byte lane |
| |
| for (bit_index = 0; bit_index < 8; ++bit_index) { |
| // set bit number and start read sequence |
| phy_ctl.s.dsk_dbg_bit_sel = bit_seq[bit_index]; |
| phy_ctl.s.dsk_dbg_rd_start = 1; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| // poll for read sequence to complete |
| do { |
| phy_ctl.u64 = |
| lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| } while (phy_ctl.s.dsk_dbg_rd_complete != 1); |
| |
| // record the data |
| dskdat->bytes[byte_lane].bits[bit_index] = |
| phy_ctl.s.dsk_dbg_rd_data & 0x3ff; |
| } |
| } |
| } |
| |
| static void display_deskew_settings(struct ddr_priv *priv, int if_num, |
| struct deskew_data *dskdat, |
| int print_enable) |
| { |
| int byte_lane; |
| int bit_num; |
| u16 flags, deskew; |
| union cvmx_lmcx_config lmc_config; |
| int byte_limit; |
| const char *fc = " ?-=+*#&"; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena; |
| |
| if (print_enable) { |
| debug("N0.LMC%d: Deskew Data: Bit => :", |
| if_num); |
| for (bit_num = 7; bit_num >= 0; --bit_num) |
| debug(" %3d ", bit_num); |
| debug("\n"); |
| } |
| |
| for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) { |
| if (print_enable) |
| debug("N0.LMC%d: Bit Deskew Byte %d %s :", |
| if_num, byte_lane, |
| (print_enable >= 3) ? "FINAL" : " "); |
| |
| for (bit_num = 7; bit_num >= 0; --bit_num) { |
| flags = dskdat->bytes[byte_lane].bits[bit_num] & 7; |
| deskew = dskdat->bytes[byte_lane].bits[bit_num] >> 3; |
| |
| if (print_enable) |
| debug(" %3d %c", deskew, fc[flags ^ 1]); |
| |
| } /* for (bit_num = 7; bit_num >= 0; --bit_num) */ |
| |
| if (print_enable) |
| debug("\n"); |
| } |
| } |
| |
| static void override_deskew_settings(struct ddr_priv *priv, int if_num, |
| struct deskew_data *dskdat) |
| { |
| union cvmx_lmcx_phy_ctl phy_ctl; |
| union cvmx_lmcx_config lmc_config; |
| |
| int bit, byte_lane, byte_limit; |
| u64 csr_data; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena; |
| |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| |
| phy_ctl.s.phy_reset = 0; |
| phy_ctl.s.dsk_dbg_num_bits_sel = 1; |
| phy_ctl.s.dsk_dbg_offset = 0; |
| phy_ctl.s.dsk_dbg_clk_scaler = 3; |
| |
| phy_ctl.s.dsk_dbg_wr_mode = 1; |
| phy_ctl.s.dsk_dbg_load_dis = 0; |
| phy_ctl.s.dsk_dbg_overwrt_ena = 0; |
| |
| phy_ctl.s.phy_dsk_reset = 0; |
| |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| |
| for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) { |
| csr_data = 0; |
| // FIXME: can we ignore DBI? |
| for (bit = 0; bit < 8; ++bit) { |
| // fetch input and adjust |
| u64 bits = (dskdat->bytes[byte_lane].bits[bit] >> 3) & |
| 0x7F; |
| |
| /* |
| * lmc_general_purpose0.data[6:0] // DQ0 |
| * lmc_general_purpose0.data[13:7] // DQ1 |
| * lmc_general_purpose0.data[20:14] // DQ2 |
| * lmc_general_purpose0.data[27:21] // DQ3 |
| * lmc_general_purpose0.data[34:28] // DQ4 |
| * lmc_general_purpose0.data[41:35] // DQ5 |
| * lmc_general_purpose0.data[48:42] // DQ6 |
| * lmc_general_purpose0.data[55:49] // DQ7 |
| * lmc_general_purpose0.data[62:56] // DBI |
| */ |
| csr_data |= (bits << (7 * bit)); |
| |
| } /* for (bit = 0; bit < 8; ++bit) */ |
| |
| // update GP0 with the bit data for this byte lane |
| lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num), csr_data); |
| lmc_rd(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num)); |
| |
| // start the deskew load sequence |
| phy_ctl.s.dsk_dbg_byte_sel = byte_lane; |
| phy_ctl.s.dsk_dbg_rd_start = 1; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| // poll for read sequence to complete |
| do { |
| udelay(100); |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| } while (phy_ctl.s.dsk_dbg_rd_complete != 1); |
| } |
| |
| // tell phy to use the new settings |
| phy_ctl.s.dsk_dbg_overwrt_ena = 1; |
| phy_ctl.s.dsk_dbg_rd_start = 0; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| phy_ctl.s.dsk_dbg_wr_mode = 0; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| } |
| |
| static void process_by_rank_dac(struct ddr_priv *priv, int if_num, |
| int rank_mask, struct dac_data *dacdat) |
| { |
| union cvmx_lmcx_config lmc_config; |
| int rankx, byte_lane; |
| int byte_limit; |
| int rank_count; |
| struct dac_data dacsum; |
| int lane_probs; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena; |
| |
| memset((void *)&dacsum, 0, sizeof(dacsum)); |
| rank_count = 0; |
| lane_probs = 0; |
| |
| for (rankx = 0; rankx < 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| rank_count++; |
| |
| display_dac_dbi_settings(if_num, /*dac */ 1, |
| lmc_config.s.ecc_ena, |
| &dacdat[rankx].bytes[0], |
| "By-Ranks VREF"); |
| // sum |
| for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) { |
| if (rank_count == 2) { |
| int ranks_diff = |
| abs((dacsum.bytes[byte_lane] - |
| dacdat[rankx].bytes[byte_lane])); |
| |
| // FIXME: is 19 a good number? |
| if (ranks_diff > 19) |
| lane_probs |= (1 << byte_lane); |
| } |
| dacsum.bytes[byte_lane] += |
| dacdat[rankx].bytes[byte_lane]; |
| } |
| } |
| |
| // average |
| for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) |
| dacsum.bytes[byte_lane] /= rank_count; // FIXME: nint? |
| |
| display_dac_dbi_settings(if_num, /*dac */ 1, lmc_config.s.ecc_ena, |
| &dacsum.bytes[0], "All-Rank VREF"); |
| |
| if (lane_probs) { |
| debug("N0.LMC%d: All-Rank VREF DAC Problem Bytelane(s): 0x%03x\n", |
| if_num, lane_probs); |
| } |
| |
| // finally, write the averaged DAC values |
| for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) { |
| load_dac_override(priv, if_num, dacsum.bytes[byte_lane], |
| byte_lane); |
| } |
| } |
| |
| static void process_by_rank_dsk(struct ddr_priv *priv, int if_num, |
| int rank_mask, struct deskew_data *dskdat) |
| { |
| union cvmx_lmcx_config lmc_config; |
| int rankx, lane, bit; |
| int byte_limit; |
| struct deskew_data dsksum, dskcnt; |
| u16 deskew; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena; |
| |
| memset((void *)&dsksum, 0, sizeof(dsksum)); |
| memset((void *)&dskcnt, 0, sizeof(dskcnt)); |
| |
| for (rankx = 0; rankx < 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| // sum ranks |
| for (lane = 0; lane < byte_limit; lane++) { |
| for (bit = 0; bit < 8; ++bit) { |
| deskew = dskdat[rankx].bytes[lane].bits[bit]; |
| // if flags indicate sat hi or lo, skip it |
| if (deskew & 6) |
| continue; |
| |
| // clear flags |
| dsksum.bytes[lane].bits[bit] += |
| deskew & ~7; |
| // count entries |
| dskcnt.bytes[lane].bits[bit] += 1; |
| } |
| } |
| } |
| |
| // average ranks |
| for (lane = 0; lane < byte_limit; lane++) { |
| for (bit = 0; bit < 8; ++bit) { |
| int div = dskcnt.bytes[lane].bits[bit]; |
| |
| if (div > 0) { |
| dsksum.bytes[lane].bits[bit] /= div; |
| // clear flags |
| dsksum.bytes[lane].bits[bit] &= ~7; |
| // set LOCK |
| dsksum.bytes[lane].bits[bit] |= 1; |
| } else { |
| // FIXME? use reset value? |
| dsksum.bytes[lane].bits[bit] = |
| (64 << 3) | 1; |
| } |
| } |
| } |
| |
| // TME for FINAL version |
| display_deskew_settings(priv, if_num, &dsksum, /*VBL_TME */ 3); |
| |
| // finally, write the averaged DESKEW values |
| override_deskew_settings(priv, if_num, &dsksum); |
| } |
| |
| struct deskew_counts { |
| int saturated; // number saturated |
| int unlocked; // number unlocked |
| int nibrng_errs; // nibble range errors |
| int nibunl_errs; // nibble unlocked errors |
| int bitval_errs; // bit value errors |
| }; |
| |
| #define MIN_BITVAL 17 |
| #define MAX_BITVAL 110 |
| |
| static void validate_deskew_training(struct ddr_priv *priv, int rank_mask, |
| int if_num, struct deskew_counts *counts, |
| int print_flags) |
| { |
| int byte_lane, bit_index, nib_num; |
| int nibrng_errs, nibunl_errs, bitval_errs; |
| union cvmx_lmcx_config lmc_config; |
| s16 nib_min[2], nib_max[2], nib_unl[2]; |
| int byte_limit; |
| int print_enable = print_flags & 1; |
| struct deskew_data dskdat; |
| s16 flags, deskew; |
| const char *fc = " ?-=+*#&"; |
| int bit_last; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena; |
| |
| memset(counts, 0, sizeof(struct deskew_counts)); |
| |
| get_deskew_settings(priv, if_num, &dskdat); |
| |
| if (print_enable) { |
| debug("N0.LMC%d: Deskew Settings: Bit => :", |
| if_num); |
| for (bit_index = 7; bit_index >= 0; --bit_index) |
| debug(" %3d ", bit_index); |
| debug("\n"); |
| } |
| |
| for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) { |
| if (print_enable) |
| debug("N0.LMC%d: Bit Deskew Byte %d %s :", |
| if_num, byte_lane, |
| (print_flags & 2) ? "FINAL" : " "); |
| |
| nib_min[0] = 127; |
| nib_min[1] = 127; |
| nib_max[0] = 0; |
| nib_max[1] = 0; |
| nib_unl[0] = 0; |
| nib_unl[1] = 0; |
| |
| if (lmc_config.s.mode32b == 1 && byte_lane == 4) { |
| bit_last = 3; |
| if (print_enable) |
| debug(" "); |
| } else { |
| bit_last = 7; |
| } |
| |
| for (bit_index = bit_last; bit_index >= 0; --bit_index) { |
| nib_num = (bit_index > 3) ? 1 : 0; |
| |
| flags = dskdat.bytes[byte_lane].bits[bit_index] & 7; |
| deskew = dskdat.bytes[byte_lane].bits[bit_index] >> 3; |
| |
| counts->saturated += !!(flags & 6); |
| |
| // Do range calc even when locked; it could happen |
| // that a bit is still unlocked after final retry, |
| // and we want to have an external retry if a RANGE |
| // error is present at exit... |
| nib_min[nib_num] = min(nib_min[nib_num], deskew); |
| nib_max[nib_num] = max(nib_max[nib_num], deskew); |
| |
| if (!(flags & 1)) { // only when not locked |
| counts->unlocked += 1; |
| nib_unl[nib_num] += 1; |
| } |
| |
| if (print_enable) |
| debug(" %3d %c", deskew, fc[flags ^ 1]); |
| } |
| |
| /* |
| * Now look for nibble errors |
| * |
| * For bit 55, it looks like a bit deskew problem. When the |
| * upper nibble of byte 6 needs to go to saturation, bit 7 |
| * of byte 6 locks prematurely at 64. For DIMMs with raw |
| * card A and B, can we reset the deskew training when we |
| * encounter this case? The reset criteria should be looking |
| * at one nibble at a time for raw card A and B; if the |
| * bit-deskew setting within a nibble is different by > 33, |
| * we'll issue a reset to the bit deskew training. |
| * |
| * LMC0 Bit Deskew Byte(6): 64 0 - 0 - 0 - 26 61 35 64 |
| */ |
| // upper nibble range, then lower nibble range |
| nibrng_errs = ((nib_max[1] - nib_min[1]) > 33) ? 1 : 0; |
| nibrng_errs |= ((nib_max[0] - nib_min[0]) > 33) ? 1 : 0; |
| |
| // check for nibble all unlocked |
| nibunl_errs = ((nib_unl[0] == 4) || (nib_unl[1] == 4)) ? 1 : 0; |
| |
| // check for bit value errors, ie < 17 or > 110 |
| // FIXME? assume max always > MIN_BITVAL and min < MAX_BITVAL |
| bitval_errs = ((nib_max[1] > MAX_BITVAL) || |
| (nib_max[0] > MAX_BITVAL)) ? 1 : 0; |
| bitval_errs |= ((nib_min[1] < MIN_BITVAL) || |
| (nib_min[0] < MIN_BITVAL)) ? 1 : 0; |
| |
| if ((nibrng_errs != 0 || nibunl_errs != 0 || |
| bitval_errs != 0) && print_enable) { |
| debug(" %c%c%c", |
| (nibrng_errs) ? 'R' : ' ', |
| (nibunl_errs) ? 'U' : ' ', |
| (bitval_errs) ? 'V' : ' '); |
| } |
| |
| if (print_enable) |
| debug("\n"); |
| |
| counts->nibrng_errs |= (nibrng_errs << byte_lane); |
| counts->nibunl_errs |= (nibunl_errs << byte_lane); |
| counts->bitval_errs |= (bitval_errs << byte_lane); |
| } |
| } |
| |
| static unsigned short load_dac_override(struct ddr_priv *priv, int if_num, |
| int dac_value, int byte) |
| { |
| union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3; |
| // single bytelanes incr by 1; A is for ALL |
| int bytex = (byte == 0x0A) ? byte : byte + 1; |
| |
| ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); |
| |
| SET_DDR_DLL_CTL3(byte_sel, bytex); |
| SET_DDR_DLL_CTL3(offset, dac_value >> 1); |
| |
| ddr_dll_ctl3.cn73xx.bit_select = 0x9; /* No-op */ |
| lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64); |
| |
| ddr_dll_ctl3.cn73xx.bit_select = 0xC; /* vref bypass setting load */ |
| lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64); |
| |
| ddr_dll_ctl3.cn73xx.bit_select = 0xD; /* vref bypass on. */ |
| lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64); |
| |
| ddr_dll_ctl3.cn73xx.bit_select = 0x9; /* No-op */ |
| lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64); |
| |
| lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); // flush writes |
| |
| return (unsigned short)GET_DDR_DLL_CTL3(offset); |
| } |
| |
| // arg dac_or_dbi is 1 for DAC, 0 for DBI |
| // returns 9 entries (bytelanes 0 through 8) in settings[] |
| // returns 0 if OK, -1 if a problem |
| static int read_dac_dbi_settings(struct ddr_priv *priv, int if_num, |
| int dac_or_dbi, int *settings) |
| { |
| union cvmx_lmcx_phy_ctl phy_ctl; |
| int byte_lane, bit_num; |
| int deskew; |
| int dac_value; |
| int new_deskew_layout = 0; |
| |
| new_deskew_layout = octeon_is_cpuid(OCTEON_CN73XX) || |
| octeon_is_cpuid(OCTEON_CNF75XX); |
| new_deskew_layout |= (octeon_is_cpuid(OCTEON_CN78XX) && |
| !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)); |
| |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| phy_ctl.s.dsk_dbg_clk_scaler = 3; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| bit_num = (dac_or_dbi) ? 4 : 5; |
| // DBI not available |
| if (bit_num == 5 && !new_deskew_layout) |
| return -1; |
| |
| // FIXME: always assume ECC is available |
| for (byte_lane = 8; byte_lane >= 0; --byte_lane) { |
| //set byte lane and bit to read |
| phy_ctl.s.dsk_dbg_bit_sel = bit_num; |
| phy_ctl.s.dsk_dbg_byte_sel = byte_lane; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| //start read sequence |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| phy_ctl.s.dsk_dbg_rd_start = 1; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| //poll for read sequence to complete |
| do { |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| } while (phy_ctl.s.dsk_dbg_rd_complete != 1); |
| |
| // keep the flag bits where they are for DBI |
| deskew = phy_ctl.s.dsk_dbg_rd_data; /* >> 3 */ |
| dac_value = phy_ctl.s.dsk_dbg_rd_data & 0xff; |
| |
| settings[byte_lane] = (dac_or_dbi) ? dac_value : deskew; |
| } |
| |
| return 0; |
| } |
| |
| // print out the DBI settings array |
| // arg dac_or_dbi is 1 for DAC, 0 for DBI |
| static void display_dac_dbi_settings(int lmc, int dac_or_dbi, |
| int ecc_ena, int *settings, char *title) |
| { |
| int byte; |
| int flags; |
| int deskew; |
| const char *fc = " ?-=+*#&"; |
| |
| debug("N0.LMC%d: %s %s Settings %d:0 :", |
| lmc, title, (dac_or_dbi) ? "DAC" : "DBI", 7 + ecc_ena); |
| // FIXME: what about 32-bit mode? |
| for (byte = (7 + ecc_ena); byte >= 0; --byte) { |
| if (dac_or_dbi) { // DAC |
| flags = 1; // say its locked to get blank |
| deskew = settings[byte] & 0xff; |
| } else { // DBI |
| flags = settings[byte] & 7; |
| deskew = (settings[byte] >> 3) & 0x7f; |
| } |
| debug(" %3d %c", deskew, fc[flags ^ 1]); |
| } |
| debug("\n"); |
| } |
| |
| // Find a HWL majority |
| static int find_wl_majority(struct wlevel_bitcnt *bc, int *mx, int *mc, |
| int *xc, int *cc) |
| { |
| int ix, ic; |
| |
| *mx = -1; |
| *mc = 0; |
| *xc = 0; |
| *cc = 0; |
| |
| for (ix = 0; ix < 4; ix++) { |
| ic = bc->bitcnt[ix]; |
| |
| // make a bitmask of the ones with a count |
| if (ic > 0) { |
| *mc |= (1 << ix); |
| *cc += 1; // count how many had non-zero counts |
| } |
| |
| // find the majority |
| if (ic > *xc) { // new max? |
| *xc = ic; // yes |
| *mx = ix; // set its index |
| } |
| } |
| |
| return (*mx << 1); |
| } |
| |
| // Evaluate the DAC settings array |
| static int evaluate_dac_settings(int if_64b, int ecc_ena, int *settings) |
| { |
| int byte, lane, dac, comp; |
| int last = (if_64b) ? 7 : 3; |
| |
| // FIXME: change the check...??? |
| // this looks only for sets of DAC values whose max/min differ by a lot |
| // let any EVEN go so long as it is within range... |
| for (byte = (last + ecc_ena); byte >= 0; --byte) { |
| dac = settings[byte] & 0xff; |
| |
| for (lane = (last + ecc_ena); lane >= 0; --lane) { |
| comp = settings[lane] & 0xff; |
| if (abs((dac - comp)) > 25) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void perform_offset_training(struct ddr_priv *priv, int rank_mask, |
| int if_num) |
| { |
| union cvmx_lmcx_phy_ctl lmc_phy_ctl; |
| u64 orig_phy_ctl; |
| const char *s; |
| |
| /* |
| * 4.8.6 LMC Offset Training |
| * |
| * LMC requires input-receiver offset training. |
| * |
| * 1. Write LMC(0)_PHY_CTL[DAC_ON] = 1 |
| */ |
| lmc_phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| orig_phy_ctl = lmc_phy_ctl.u64; |
| lmc_phy_ctl.s.dac_on = 1; |
| |
| // allow full CSR override |
| s = lookup_env_ull(priv, "ddr_phy_ctl"); |
| if (s) |
| lmc_phy_ctl.u64 = strtoull(s, NULL, 0); |
| |
| // do not print or write if CSR does not change... |
| if (lmc_phy_ctl.u64 != orig_phy_ctl) { |
| debug("PHY_CTL : 0x%016llx\n", |
| lmc_phy_ctl.u64); |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), lmc_phy_ctl.u64); |
| } |
| |
| /* |
| * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0B and |
| * LMC(0)_SEQ_CTL[INIT_START] = 1. |
| * |
| * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1. |
| */ |
| /* Start Offset training sequence */ |
| oct3_ddr3_seq(priv, rank_mask, if_num, 0x0B); |
| } |
| |
| static void perform_internal_vref_training(struct ddr_priv *priv, |
| int rank_mask, int if_num) |
| { |
| union cvmx_lmcx_ext_config ext_config; |
| union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3; |
| |
| // First, make sure all byte-lanes are out of VREF bypass mode |
| ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); |
| |
| ddr_dll_ctl3.cn78xx.byte_sel = 0x0A; /* all byte-lanes */ |
| ddr_dll_ctl3.cn78xx.bit_select = 0x09; /* No-op */ |
| lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64); |
| |
| ddr_dll_ctl3.cn78xx.bit_select = 0x0E; /* vref bypass off. */ |
| lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64); |
| |
| ddr_dll_ctl3.cn78xx.bit_select = 0x09; /* No-op */ |
| lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64); |
| |
| /* |
| * 4.8.7 LMC Internal vref Training |
| * |
| * LMC requires input-reference-voltage training. |
| * |
| * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 0. |
| */ |
| ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num)); |
| ext_config.s.vrefint_seq_deskew = 0; |
| |
| ddr_seq_print("Performing LMC sequence: vrefint_seq_deskew = %d\n", |
| ext_config.s.vrefint_seq_deskew); |
| |
| lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64); |
| |
| /* |
| * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0a and |
| * LMC(0)_SEQ_CTL[INIT_START] = 1. |
| * |
| * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1. |
| */ |
| /* Start LMC Internal vref Training */ |
| oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A); |
| } |
| |
| #define dbg_avg(format, ...) // debug(format, ##__VA_ARGS__) |
| |
| static int process_samples_average(s16 *bytes, int num_samples, |
| int lmc, int lane_no) |
| { |
| int i, sadj, sum = 0, ret, asum, trunc; |
| s16 smin = 32767, smax = -32768; |
| int nmin, nmax; |
| //int rng; |
| |
| dbg_avg("DBG_AVG%d.%d: ", lmc, lane_no); |
| |
| for (i = 0; i < num_samples; i++) { |
| sum += bytes[i]; |
| if (bytes[i] < smin) |
| smin = bytes[i]; |
| if (bytes[i] > smax) |
| smax = bytes[i]; |
| dbg_avg(" %3d", bytes[i]); |
| } |
| |
| nmin = 0; |
| nmax = 0; |
| for (i = 0; i < num_samples; i++) { |
| if (bytes[i] == smin) |
| nmin += 1; |
| if (bytes[i] == smax) |
| nmax += 1; |
| } |
| dbg_avg(" (min=%3d/%d, max=%3d/%d, range=%2d, samples=%2d)", |
| smin, nmin, smax, nmax, rng, num_samples); |
| |
| asum = sum - smin - smax; |
| |
| sadj = divide_nint(asum * 10, (num_samples - 2)); |
| |
| trunc = asum / (num_samples - 2); |
| |
| dbg_avg(" [%3d.%d, %3d]", sadj / 10, sadj % 10, trunc); |
| |
| sadj = divide_nint(sadj, 10); |
| if (trunc & 1) |
| ret = trunc; |
| else if (sadj & 1) |
| ret = sadj; |
| else |
| ret = trunc + 1; |
| |
| dbg_avg(" -> %3d\n", ret); |
| |
| return ret; |
| } |
| |
| #define DEFAULT_SAT_RETRY_LIMIT 11 // 1 + 10 retries |
| |
| #define default_lock_retry_limit 20 // 20 retries |
| #define deskew_validation_delay 10000 // 10 millisecs |
| |
| static int perform_deskew_training(struct ddr_priv *priv, int rank_mask, |
| int if_num, int spd_rawcard_aorb) |
| { |
| int unsaturated, locked; |
| int sat_retries, sat_retries_limit; |
| int lock_retries, lock_retries_total, lock_retries_limit; |
| int print_first; |
| int print_them_all; |
| struct deskew_counts dsk_counts; |
| union cvmx_lmcx_phy_ctl phy_ctl; |
| char *s; |
| int has_no_sat = octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) || |
| octeon_is_cpuid(OCTEON_CNF75XX); |
| int disable_bitval_retries = 1; // default to disabled |
| |
| debug("N0.LMC%d: Performing Deskew Training.\n", if_num); |
| |
| sat_retries = 0; |
| sat_retries_limit = (has_no_sat) ? 5 : DEFAULT_SAT_RETRY_LIMIT; |
| |
| lock_retries_total = 0; |
| unsaturated = 0; |
| print_first = 1; // print the first one |
| // set to true for printing all normal deskew attempts |
| print_them_all = 0; |
| |
| // provide override for bitval_errs causing internal VREF retries |
| s = env_get("ddr_disable_bitval_retries"); |
| if (s) |
| disable_bitval_retries = !!simple_strtoul(s, NULL, 0); |
| |
| lock_retries_limit = default_lock_retry_limit; |
| if ((octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) || |
| (octeon_is_cpuid(OCTEON_CN73XX)) || |
| (octeon_is_cpuid(OCTEON_CNF75XX))) |
| lock_retries_limit *= 2; // give new chips twice as many |
| |
| do { /* while (sat_retries < sat_retry_limit) */ |
| /* |
| * 4.8.8 LMC Deskew Training |
| * |
| * LMC requires input-read-data deskew training. |
| * |
| * 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 1. |
| */ |
| |
| union cvmx_lmcx_ext_config ext_config; |
| |
| ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num)); |
| ext_config.s.vrefint_seq_deskew = 1; |
| |
| ddr_seq_print |
| ("Performing LMC sequence: vrefint_seq_deskew = %d\n", |
| ext_config.s.vrefint_seq_deskew); |
| |
| lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64); |
| |
| /* |
| * 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0A and |
| * LMC(0)_SEQ_CTL[INIT_START] = 1. |
| * |
| * 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1. |
| */ |
| |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| phy_ctl.s.phy_dsk_reset = 1; /* RESET Deskew sequence */ |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| /* LMC Deskew Training */ |
| oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A); |
| |
| lock_retries = 0; |
| |
| perform_deskew_training: |
| |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| phy_ctl.s.phy_dsk_reset = 0; /* Normal Deskew sequence */ |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| /* LMC Deskew Training */ |
| oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A); |
| |
| // Moved this from validate_deskew_training |
| /* Allow deskew results to stabilize before evaluating them. */ |
| udelay(deskew_validation_delay); |
| |
| // Now go look at lock and saturation status... |
| validate_deskew_training(priv, rank_mask, if_num, &dsk_counts, |
| print_first); |
| // after printing the first and not doing them all, no more |
| if (print_first && !print_them_all) |
| print_first = 0; |
| |
| unsaturated = (dsk_counts.saturated == 0); |
| locked = (dsk_counts.unlocked == 0); |
| |
| // only do locking retries if unsaturated or rawcard A or B, |
| // otherwise full SAT retry |
| if (unsaturated || (spd_rawcard_aorb && !has_no_sat)) { |
| if (!locked) { // and not locked |
| lock_retries++; |
| lock_retries_total++; |
| if (lock_retries <= lock_retries_limit) { |
| goto perform_deskew_training; |
| } else { |
| debug("N0.LMC%d: LOCK RETRIES failed after %d retries\n", |
| if_num, lock_retries_limit); |
| } |
| } else { |
| // only print if we did try |
| if (lock_retries_total > 0) |
| debug("N0.LMC%d: LOCK RETRIES successful after %d retries\n", |
| if_num, lock_retries); |
| } |
| } /* if (unsaturated || spd_rawcard_aorb) */ |
| |
| ++sat_retries; |
| |
| /* |
| * At this point, check for a DDR4 RDIMM that will not |
| * benefit from SAT retries; if so, exit |
| */ |
| if (spd_rawcard_aorb && !has_no_sat) { |
| debug("N0.LMC%d: Deskew Training Loop: Exiting for RAWCARD == A or B.\n", |
| if_num); |
| break; // no sat or lock retries |
| } |
| |
| } while (!unsaturated && (sat_retries < sat_retries_limit)); |
| |
| debug("N0.LMC%d: Deskew Training %s. %d sat-retries, %d lock-retries\n", |
| if_num, (sat_retries >= DEFAULT_SAT_RETRY_LIMIT) ? |
| "Timed Out" : "Completed", sat_retries - 1, lock_retries_total); |
| |
| // FIXME? add saturation to reasons for fault return - give it a |
| // chance via Internal VREF |
| // FIXME? add OPTIONAL bit value to reasons for fault return - |
| // give it a chance via Internal VREF |
| if (dsk_counts.nibrng_errs != 0 || dsk_counts.nibunl_errs != 0 || |
| (dsk_counts.bitval_errs != 0 && !disable_bitval_retries) || |
| !unsaturated) { |
| debug("N0.LMC%d: Nibble or Saturation Error(s) found, returning FAULT\n", |
| if_num); |
| // FIXME: do we want this output always for errors? |
| validate_deskew_training(priv, rank_mask, if_num, |
| &dsk_counts, 1); |
| return -1; // we did retry locally, they did not help |
| } |
| |
| // NOTE: we (currently) always print one last training validation |
| // before starting Read Leveling... |
| |
| return 0; |
| } |
| |
| #define SCALING_FACTOR (1000) |
| |
| // NOTE: this gets called for 1-rank and 2-rank DIMMs in single-slot config |
| static int compute_vref_1slot_2rank(int rtt_wr, int rtt_park, int dqx_ctl, |
| int rank_count, int dram_connection) |
| { |
| u64 reff_s; |
| u64 rser_s = (dram_connection) ? 0 : 15; |
| u64 vdd = 1200; |
| u64 vref; |
| // 99 == HiZ |
| u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ? |
| 1 * 1024 * 1024 : rtt_wr); |
| u64 rtt_park_s = (((rtt_park == 0) || ((rank_count == 1) && |
| (rtt_wr != 0))) ? |
| 1 * 1024 * 1024 : rtt_park); |
| u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl); |
| int vref_value; |
| u64 rangepc = 6000; // range1 base |
| u64 vrefpc; |
| int vref_range = 0; |
| |
| reff_s = divide_nint((rtt_wr_s * rtt_park_s), (rtt_wr_s + rtt_park_s)); |
| |
| vref = (((rser_s + dqx_ctl_s) * SCALING_FACTOR) / |
| (rser_s + dqx_ctl_s + reff_s)) + SCALING_FACTOR; |
| |
| vref = (vref * vdd) / 2 / SCALING_FACTOR; |
| |
| vrefpc = (vref * 100 * 100) / vdd; |
| |
| if (vrefpc < rangepc) { // < range1 base, use range2 |
| vref_range = 1 << 6; // set bit A6 for range2 |
| rangepc = 4500; // range2 base is 45% |
| } |
| |
| vref_value = divide_nint(vrefpc - rangepc, 65); |
| if (vref_value < 0) |
| vref_value = vref_range; // set to base of range |
| else |
| vref_value |= vref_range; |
| |
| debug("rtt_wr: %d, rtt_park: %d, dqx_ctl: %d, rank_count: %d\n", |
| rtt_wr, rtt_park, dqx_ctl, rank_count); |
| debug("rtt_wr_s: %lld, rtt_park_s: %lld, dqx_ctl_s: %lld, vref_value: 0x%x, range: %d\n", |
| rtt_wr_s, rtt_park_s, dqx_ctl_s, vref_value ^ vref_range, |
| vref_range ? 2 : 1); |
| |
| return vref_value; |
| } |
| |
| // NOTE: this gets called for 1-rank and 2-rank DIMMs in two-slot configs |
| static int compute_vref_2slot_2rank(int rtt_wr, int rtt_park_00, |
| int rtt_park_01, |
| int dqx_ctl, int rtt_nom, |
| int dram_connection) |
| { |
| u64 rser = (dram_connection) ? 0 : 15; |
| u64 vdd = 1200; |
| u64 vl, vlp, vcm; |
| u64 rd0, rd1, rpullup; |
| // 99 == HiZ |
| u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ? |
| 1 * 1024 * 1024 : rtt_wr); |
| u64 rtt_park_00_s = (rtt_park_00 == 0 ? 1 * 1024 * 1024 : rtt_park_00); |
| u64 rtt_park_01_s = (rtt_park_01 == 0 ? 1 * 1024 * 1024 : rtt_park_01); |
| u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl); |
| u64 rtt_nom_s = (rtt_nom == 0 ? 1 * 1024 * 1024 : rtt_nom); |
| int vref_value; |
| u64 rangepc = 6000; // range1 base |
| u64 vrefpc; |
| int vref_range = 0; |
| |
| // rd0 = (RTT_NOM (parallel) RTT_WR) + = |
| // ((RTT_NOM * RTT_WR) / (RTT_NOM + RTT_WR)) + RSER |
| rd0 = divide_nint((rtt_nom_s * rtt_wr_s), |
| (rtt_nom_s + rtt_wr_s)) + rser; |
| |
| // rd1 = (RTT_PARK_00 (parallel) RTT_PARK_01) + RSER = |
| // ((RTT_PARK_00 * RTT_PARK_01) / (RTT_PARK_00 + RTT_PARK_01)) + RSER |
| rd1 = divide_nint((rtt_park_00_s * rtt_park_01_s), |
| (rtt_park_00_s + rtt_park_01_s)) + rser; |
| |
| // rpullup = rd0 (parallel) rd1 = (rd0 * rd1) / (rd0 + rd1) |
| rpullup = divide_nint((rd0 * rd1), (rd0 + rd1)); |
| |
| // vl = (DQX_CTL / (DQX_CTL + rpullup)) * 1.2 |
| vl = divide_nint((dqx_ctl_s * vdd), (dqx_ctl_s + rpullup)); |
| |
| // vlp = ((RSER / rd0) * (1.2 - vl)) + vl |
| vlp = divide_nint((rser * (vdd - vl)), rd0) + vl; |
| |
| // vcm = (vlp + 1.2) / 2 |
| vcm = divide_nint((vlp + vdd), 2); |
| |
| // vrefpc = (vcm / 1.2) * 100 |
| vrefpc = divide_nint((vcm * 100 * 100), vdd); |
| |
| if (vrefpc < rangepc) { // < range1 base, use range2 |
| vref_range = 1 << 6; // set bit A6 for range2 |
| rangepc = 4500; // range2 base is 45% |
| } |
| |
| vref_value = divide_nint(vrefpc - rangepc, 65); |
| if (vref_value < 0) |
| vref_value = vref_range; // set to base of range |
| else |
| vref_value |= vref_range; |
| |
| debug("rtt_wr:%d, rtt_park_00:%d, rtt_park_01:%d, dqx_ctl:%d, rtt_nom:%d, vref_value:%d (0x%x)\n", |
| rtt_wr, rtt_park_00, rtt_park_01, dqx_ctl, rtt_nom, vref_value, |
| vref_value); |
| |
| return vref_value; |
| } |
| |
| // NOTE: only call this for DIMMs with 1 or 2 ranks, not 4. |
| static int compute_vref_val(struct ddr_priv *priv, int if_num, int rankx, |
| int dimm_count, int rank_count, |
| struct impedence_values *imp_values, |
| int is_stacked_die, int dram_connection) |
| { |
| int computed_final_vref_value = 0; |
| int enable_adjust = ENABLE_COMPUTED_VREF_ADJUSTMENT; |
| const char *s; |
| int rtt_wr, dqx_ctl, rtt_nom, index; |
| union cvmx_lmcx_modereg_params1 lmc_modereg_params1; |
| union cvmx_lmcx_modereg_params2 lmc_modereg_params2; |
| union cvmx_lmcx_comp_ctl2 comp_ctl2; |
| int rtt_park; |
| int rtt_park_00; |
| int rtt_park_01; |
| |
| debug("N0.LMC%d.R%d: %s(...dram_connection = %d)\n", |
| if_num, rankx, __func__, dram_connection); |
| |
| // allow some overrides... |
| s = env_get("ddr_adjust_computed_vref"); |
| if (s) { |
| enable_adjust = !!simple_strtoul(s, NULL, 0); |
| if (!enable_adjust) { |
| debug("N0.LMC%d.R%d: DISABLE adjustment of computed VREF\n", |
| if_num, rankx); |
| } |
| } |
| |
| s = env_get("ddr_set_computed_vref"); |
| if (s) { |
| int new_vref = simple_strtoul(s, NULL, 0); |
| |
| debug("N0.LMC%d.R%d: OVERRIDE computed VREF to 0x%x (%d)\n", |
| if_num, rankx, new_vref, new_vref); |
| return new_vref; |
| } |
| |
| /* |
| * Calculate an alternative to the measured vref value |
| * but only for configurations we know how to... |
| */ |
| // We have code for 2-rank DIMMs in both 1-slot or 2-slot configs, |
| // and can use the 2-rank 1-slot code for 1-rank DIMMs in 1-slot |
| // configs, and can use the 2-rank 2-slot code for 1-rank DIMMs |
| // in 2-slot configs. |
| |
| lmc_modereg_params1.u64 = |
| lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num)); |
| lmc_modereg_params2.u64 = |
| lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num)); |
| comp_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| dqx_ctl = imp_values->dqx_strength[comp_ctl2.s.dqx_ctl]; |
| |
| // WR always comes from the current rank |
| index = (lmc_modereg_params1.u64 >> (rankx * 12 + 5)) & 0x03; |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) |
| index |= lmc_modereg_params1.u64 >> (51 + rankx - 2) & 0x04; |
| rtt_wr = imp_values->rtt_wr_ohms[index]; |
| |
| // separate calculations for 1 vs 2 DIMMs per LMC |
| if (dimm_count == 1) { |
| // PARK comes from this rank if 1-rank, otherwise other rank |
| index = |
| (lmc_modereg_params2.u64 >> |
| ((rankx ^ (rank_count - 1)) * 10 + 0)) & 0x07; |
| rtt_park = imp_values->rtt_nom_ohms[index]; |
| computed_final_vref_value = |
| compute_vref_1slot_2rank(rtt_wr, rtt_park, dqx_ctl, |
| rank_count, dram_connection); |
| } else { |
| // get both PARK values from the other DIMM |
| index = |
| (lmc_modereg_params2.u64 >> ((rankx ^ 0x02) * 10 + 0)) & |
| 0x07; |
| rtt_park_00 = imp_values->rtt_nom_ohms[index]; |
| index = |
| (lmc_modereg_params2.u64 >> ((rankx ^ 0x03) * 10 + 0)) & |
| 0x07; |
| rtt_park_01 = imp_values->rtt_nom_ohms[index]; |
| // NOM comes from this rank if 1-rank, otherwise other rank |
| index = |
| (lmc_modereg_params1.u64 >> |
| ((rankx ^ (rank_count - 1)) * 12 + 9)) & 0x07; |
| rtt_nom = imp_values->rtt_nom_ohms[index]; |
| computed_final_vref_value = |
| compute_vref_2slot_2rank(rtt_wr, rtt_park_00, rtt_park_01, |
| dqx_ctl, rtt_nom, dram_connection); |
| } |
| |
| if (enable_adjust) { |
| union cvmx_lmcx_config lmc_config; |
| union cvmx_lmcx_control lmc_control; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| |
| /* |
| * New computed vref = existing computed vref – X |
| * |
| * The value of X is depending on different conditions. |
| * Both #122 and #139 are 2Rx4 RDIMM, while #124 is stacked |
| * die 2Rx4, so I conclude the results into two conditions: |
| * |
| * 1. Stacked Die: 2Rx4 |
| * 1-slot: offset = 7. i, e New computed vref = existing |
| * computed vref – 7 |
| * 2-slot: offset = 6 |
| * |
| * 2. Regular: 2Rx4 |
| * 1-slot: offset = 3 |
| * 2-slot: offset = 2 |
| */ |
| // we know we never get called unless DDR4, so test just |
| // the other conditions |
| if (lmc_control.s.rdimm_ena == 1 && |
| rank_count == 2 && lmc_config.s.mode_x4dev) { |
| // it must first be RDIMM and 2-rank and x4 |
| int adj; |
| |
| // now do according to stacked die or not... |
| if (is_stacked_die) |
| adj = (dimm_count == 1) ? -7 : -6; |
| else |
| adj = (dimm_count == 1) ? -3 : -2; |
| |
| // we must have adjusted it, so print it out if |
| // verbosity is right |
| debug("N0.LMC%d.R%d: adjusting computed vref from %2d (0x%02x) to %2d (0x%02x)\n", |
| if_num, rankx, computed_final_vref_value, |
| computed_final_vref_value, |
| computed_final_vref_value + adj, |
| computed_final_vref_value + adj); |
| computed_final_vref_value += adj; |
| } |
| } |
| |
| return computed_final_vref_value; |
| } |
| |
| static void unpack_rlevel_settings(int if_bytemask, int ecc_ena, |
| struct rlevel_byte_data *rlevel_byte, |
| union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank) |
| { |
| if ((if_bytemask & 0xff) == 0xff) { |
| if (ecc_ena) { |
| rlevel_byte[8].delay = lmc_rlevel_rank.s.byte7; |
| rlevel_byte[7].delay = lmc_rlevel_rank.s.byte6; |
| rlevel_byte[6].delay = lmc_rlevel_rank.s.byte5; |
| rlevel_byte[5].delay = lmc_rlevel_rank.s.byte4; |
| /* ECC */ |
| rlevel_byte[4].delay = lmc_rlevel_rank.s.byte8; |
| } else { |
| rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7; |
| rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6; |
| rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5; |
| rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4; |
| } |
| } else { |
| rlevel_byte[8].delay = lmc_rlevel_rank.s.byte8; /* unused */ |
| rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7; /* unused */ |
| rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6; /* unused */ |
| rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5; /* unused */ |
| rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4; /* ECC */ |
| } |
| |
| rlevel_byte[3].delay = lmc_rlevel_rank.s.byte3; |
| rlevel_byte[2].delay = lmc_rlevel_rank.s.byte2; |
| rlevel_byte[1].delay = lmc_rlevel_rank.s.byte1; |
| rlevel_byte[0].delay = lmc_rlevel_rank.s.byte0; |
| } |
| |
| static void pack_rlevel_settings(int if_bytemask, int ecc_ena, |
| struct rlevel_byte_data *rlevel_byte, |
| union cvmx_lmcx_rlevel_rankx |
| *final_rlevel_rank) |
| { |
| union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank = *final_rlevel_rank; |
| |
| if ((if_bytemask & 0xff) == 0xff) { |
| if (ecc_ena) { |
| lmc_rlevel_rank.s.byte7 = rlevel_byte[8].delay; |
| lmc_rlevel_rank.s.byte6 = rlevel_byte[7].delay; |
| lmc_rlevel_rank.s.byte5 = rlevel_byte[6].delay; |
| lmc_rlevel_rank.s.byte4 = rlevel_byte[5].delay; |
| /* ECC */ |
| lmc_rlevel_rank.s.byte8 = rlevel_byte[4].delay; |
| } else { |
| lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay; |
| lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay; |
| lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay; |
| lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay; |
| } |
| } else { |
| lmc_rlevel_rank.s.byte8 = rlevel_byte[8].delay; |
| lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay; |
| lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay; |
| lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay; |
| lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay; |
| } |
| |
| lmc_rlevel_rank.s.byte3 = rlevel_byte[3].delay; |
| lmc_rlevel_rank.s.byte2 = rlevel_byte[2].delay; |
| lmc_rlevel_rank.s.byte1 = rlevel_byte[1].delay; |
| lmc_rlevel_rank.s.byte0 = rlevel_byte[0].delay; |
| |
| *final_rlevel_rank = lmc_rlevel_rank; |
| } |
| |
| /////////////////// These are the RLEVEL settings display routines |
| |
| // flags |
| #define WITH_NOTHING 0 |
| #define WITH_SCORE 1 |
| #define WITH_AVERAGE 2 |
| #define WITH_FINAL 4 |
| #define WITH_COMPUTE 8 |
| |
| static void do_display_rl(int if_num, |
| union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, |
| int rank, int flags, int score) |
| { |
| char score_buf[16]; |
| char *msg_buf; |
| char hex_buf[20]; |
| |
| if (flags & WITH_SCORE) { |
| snprintf(score_buf, sizeof(score_buf), "(%d)", score); |
| } else { |
| score_buf[0] = ' '; |
| score_buf[1] = 0; |
| } |
| |
| if (flags & WITH_AVERAGE) { |
| msg_buf = " DELAY AVERAGES "; |
| } else if (flags & WITH_FINAL) { |
| msg_buf = " FINAL SETTINGS "; |
| } else if (flags & WITH_COMPUTE) { |
| msg_buf = " COMPUTED DELAYS "; |
| } else { |
| snprintf(hex_buf, sizeof(hex_buf), "0x%016llX", |
| (unsigned long long)lmc_rlevel_rank.u64); |
| msg_buf = hex_buf; |
| } |
| |
| debug("N0.LMC%d.R%d: Rlevel Rank %#4x, %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d %s\n", |
| if_num, rank, lmc_rlevel_rank.s.status, msg_buf, |
| lmc_rlevel_rank.s.byte8, lmc_rlevel_rank.s.byte7, |
| lmc_rlevel_rank.s.byte6, lmc_rlevel_rank.s.byte5, |
| lmc_rlevel_rank.s.byte4, lmc_rlevel_rank.s.byte3, |
| lmc_rlevel_rank.s.byte2, lmc_rlevel_rank.s.byte1, |
| lmc_rlevel_rank.s.byte0, score_buf); |
| } |
| |
| static void display_rl(int if_num, |
| union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, int rank) |
| { |
| do_display_rl(if_num, lmc_rlevel_rank, rank, 0, 0); |
| } |
| |
| static void display_rl_with_score(int if_num, |
| union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, |
| int rank, int score) |
| { |
| do_display_rl(if_num, lmc_rlevel_rank, rank, 1, score); |
| } |
| |
| static void display_rl_with_final(int if_num, |
| union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, |
| int rank) |
| { |
| do_display_rl(if_num, lmc_rlevel_rank, rank, 4, 0); |
| } |
| |
| static void display_rl_with_computed(int if_num, |
| union cvmx_lmcx_rlevel_rankx |
| lmc_rlevel_rank, int rank, int score) |
| { |
| do_display_rl(if_num, lmc_rlevel_rank, rank, 9, score); |
| } |
| |
| // flag values |
| #define WITH_RODT_BLANK 0 |
| #define WITH_RODT_SKIPPING 1 |
| #define WITH_RODT_BESTROW 2 |
| #define WITH_RODT_BESTSCORE 3 |
| // control |
| #define SKIP_SKIPPING 1 |
| |
| static const char *with_rodt_canned_msgs[4] = { |
| " ", "SKIPPING ", "BEST ROW ", "BEST SCORE" |
| }; |
| |
| static void display_rl_with_rodt(int if_num, |
| union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, |
| int rank, int score, |
| int nom_ohms, int rodt_ohms, int flag) |
| { |
| const char *msg_buf; |
| char set_buf[20]; |
| |
| #if SKIP_SKIPPING |
| if (flag == WITH_RODT_SKIPPING) |
| return; |
| #endif |
| |
| msg_buf = with_rodt_canned_msgs[flag]; |
| if (nom_ohms < 0) { |
| snprintf(set_buf, sizeof(set_buf), " RODT %3d ", |
| rodt_ohms); |
| } else { |
| snprintf(set_buf, sizeof(set_buf), "NOM %3d RODT %3d", nom_ohms, |
| rodt_ohms); |
| } |
| |
| debug("N0.LMC%d.R%d: Rlevel %s %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d (%d)\n", |
| if_num, rank, set_buf, msg_buf, lmc_rlevel_rank.s.byte8, |
| lmc_rlevel_rank.s.byte7, lmc_rlevel_rank.s.byte6, |
| lmc_rlevel_rank.s.byte5, lmc_rlevel_rank.s.byte4, |
| lmc_rlevel_rank.s.byte3, lmc_rlevel_rank.s.byte2, |
| lmc_rlevel_rank.s.byte1, lmc_rlevel_rank.s.byte0, score); |
| } |
| |
| static void do_display_wl(int if_num, |
| union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank, |
| int rank, int flags) |
| { |
| char *msg_buf; |
| char hex_buf[20]; |
| |
| if (flags & WITH_FINAL) { |
| msg_buf = " FINAL SETTINGS "; |
| } else { |
| snprintf(hex_buf, sizeof(hex_buf), "0x%016llX", |
| (unsigned long long)lmc_wlevel_rank.u64); |
| msg_buf = hex_buf; |
| } |
| |
| debug("N0.LMC%d.R%d: Wlevel Rank %#4x, %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n", |
| if_num, rank, lmc_wlevel_rank.s.status, msg_buf, |
| lmc_wlevel_rank.s.byte8, lmc_wlevel_rank.s.byte7, |
| lmc_wlevel_rank.s.byte6, lmc_wlevel_rank.s.byte5, |
| lmc_wlevel_rank.s.byte4, lmc_wlevel_rank.s.byte3, |
| lmc_wlevel_rank.s.byte2, lmc_wlevel_rank.s.byte1, |
| lmc_wlevel_rank.s.byte0); |
| } |
| |
| static void display_wl(int if_num, |
| union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank, int rank) |
| { |
| do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_NOTHING); |
| } |
| |
| static void display_wl_with_final(int if_num, |
| union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank, |
| int rank) |
| { |
| do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_FINAL); |
| } |
| |
| // pretty-print bitmask adjuster |
| static u64 ppbm(u64 bm) |
| { |
| if (bm != 0ul) { |
| while ((bm & 0x0fful) == 0ul) |
| bm >>= 4; |
| } |
| |
| return bm; |
| } |
| |
| // xlate PACKED index to UNPACKED index to use with rlevel_byte |
| #define XPU(i, e) (((i) < 4) ? (i) : (((i) < 8) ? (i) + (e) : 4)) |
| // xlate UNPACKED index to PACKED index to use with rlevel_bitmask |
| #define XUP(i, e) (((i) < 4) ? (i) : (e) ? (((i) > 4) ? (i) - 1 : 8) : (i)) |
| |
| // flag values |
| #define WITH_WL_BITMASKS 0 |
| #define WITH_RL_BITMASKS 1 |
| #define WITH_RL_MASK_SCORES 2 |
| #define WITH_RL_SEQ_SCORES 3 |
| |
| static void do_display_bm(int if_num, int rank, void *bm, |
| int flags, int ecc) |
| { |
| if (flags == WITH_WL_BITMASKS) { |
| // wlevel_bitmask array in PACKED index order, so just |
| // print them |
| int *bitmasks = (int *)bm; |
| |
| debug("N0.LMC%d.R%d: Wlevel Debug Bitmasks : %05x %05x %05x %05x %05x %05x %05x %05x %05x\n", |
| if_num, rank, bitmasks[8], bitmasks[7], bitmasks[6], |
| bitmasks[5], bitmasks[4], bitmasks[3], bitmasks[2], |
| bitmasks[1], bitmasks[0] |
| ); |
| } else if (flags == WITH_RL_BITMASKS) { |
| // rlevel_bitmask array in PACKED index order, so just |
| // print them |
| struct rlevel_bitmask *rlevel_bitmask = |
| (struct rlevel_bitmask *)bm; |
| |
| debug("N0.LMC%d.R%d: Rlevel Debug Bitmasks 8:0 : %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx\n", |
| if_num, rank, ppbm(rlevel_bitmask[8].bm), |
| ppbm(rlevel_bitmask[7].bm), ppbm(rlevel_bitmask[6].bm), |
| ppbm(rlevel_bitmask[5].bm), ppbm(rlevel_bitmask[4].bm), |
| ppbm(rlevel_bitmask[3].bm), ppbm(rlevel_bitmask[2].bm), |
| ppbm(rlevel_bitmask[1].bm), ppbm(rlevel_bitmask[0].bm) |
| ); |
| } else if (flags == WITH_RL_MASK_SCORES) { |
| // rlevel_bitmask array in PACKED index order, so just |
| // print them |
| struct rlevel_bitmask *rlevel_bitmask = |
| (struct rlevel_bitmask *)bm; |
| |
| debug("N0.LMC%d.R%d: Rlevel Debug Bitmask Scores 8:0 : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n", |
| if_num, rank, rlevel_bitmask[8].errs, |
| rlevel_bitmask[7].errs, rlevel_bitmask[6].errs, |
| rlevel_bitmask[5].errs, rlevel_bitmask[4].errs, |
| rlevel_bitmask[3].errs, rlevel_bitmask[2].errs, |
| rlevel_bitmask[1].errs, rlevel_bitmask[0].errs); |
| } else if (flags == WITH_RL_SEQ_SCORES) { |
| // rlevel_byte array in UNPACKED index order, so xlate |
| // and print them |
| struct rlevel_byte_data *rlevel_byte = |
| (struct rlevel_byte_data *)bm; |
| |
| debug("N0.LMC%d.R%d: Rlevel Debug Non-seq Scores 8:0 : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n", |
| if_num, rank, rlevel_byte[XPU(8, ecc)].sqerrs, |
| rlevel_byte[XPU(7, ecc)].sqerrs, |
| rlevel_byte[XPU(6, ecc)].sqerrs, |
| rlevel_byte[XPU(5, ecc)].sqerrs, |
| rlevel_byte[XPU(4, ecc)].sqerrs, |
| rlevel_byte[XPU(3, ecc)].sqerrs, |
| rlevel_byte[XPU(2, ecc)].sqerrs, |
| rlevel_byte[XPU(1, ecc)].sqerrs, |
| rlevel_byte[XPU(0, ecc)].sqerrs); |
| } |
| } |
| |
| static void display_wl_bm(int if_num, int rank, int *bitmasks) |
| { |
| do_display_bm(if_num, rank, (void *)bitmasks, WITH_WL_BITMASKS, 0); |
| } |
| |
| static void display_rl_bm(int if_num, int rank, |
| struct rlevel_bitmask *bitmasks, int ecc_ena) |
| { |
| do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_BITMASKS, |
| ecc_ena); |
| } |
| |
| static void display_rl_bm_scores(int if_num, int rank, |
| struct rlevel_bitmask *bitmasks, int ecc_ena) |
| { |
| do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_MASK_SCORES, |
| ecc_ena); |
| } |
| |
| static void display_rl_seq_scores(int if_num, int rank, |
| struct rlevel_byte_data *bytes, int ecc_ena) |
| { |
| do_display_bm(if_num, rank, (void *)bytes, WITH_RL_SEQ_SCORES, ecc_ena); |
| } |
| |
| #define RODT_OHMS_COUNT 8 |
| #define RTT_NOM_OHMS_COUNT 8 |
| #define RTT_NOM_TABLE_COUNT 8 |
| #define RTT_WR_OHMS_COUNT 8 |
| #define DIC_OHMS_COUNT 3 |
| #define DRIVE_STRENGTH_COUNT 15 |
| |
| static unsigned char ddr4_rodt_ohms[RODT_OHMS_COUNT] = { |
| 0, 40, 60, 80, 120, 240, 34, 48 }; |
| static unsigned char ddr4_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = { |
| 0, 60, 120, 40, 240, 48, 80, 34 }; |
| static unsigned char ddr4_rtt_nom_table[RTT_NOM_TABLE_COUNT] = { |
| 0, 4, 2, 6, 1, 5, 3, 7 }; |
| // setting HiZ ohms to 99 for computed vref |
| static unsigned char ddr4_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = { |
| 0, 120, 240, 99, 80 }; |
| static unsigned char ddr4_dic_ohms[DIC_OHMS_COUNT] = { 34, 48 }; |
| static short ddr4_drive_strength[DRIVE_STRENGTH_COUNT] = { |
| 0, 0, 26, 30, 34, 40, 48, 68, 0, 0, 0, 0, 0, 0, 0 }; |
| static short ddr4_dqx_strength[DRIVE_STRENGTH_COUNT] = { |
| 0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 }; |
| struct impedence_values ddr4_impedence_val = { |
| .rodt_ohms = ddr4_rodt_ohms, |
| .rtt_nom_ohms = ddr4_rtt_nom_ohms, |
| .rtt_nom_table = ddr4_rtt_nom_table, |
| .rtt_wr_ohms = ddr4_rtt_wr_ohms, |
| .dic_ohms = ddr4_dic_ohms, |
| .drive_strength = ddr4_drive_strength, |
| .dqx_strength = ddr4_dqx_strength, |
| }; |
| |
| static unsigned char ddr3_rodt_ohms[RODT_OHMS_COUNT] = { |
| 0, 20, 30, 40, 60, 120, 0, 0 }; |
| static unsigned char ddr3_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = { |
| 0, 60, 120, 40, 20, 30, 0, 0 }; |
| static unsigned char ddr3_rtt_nom_table[RTT_NOM_TABLE_COUNT] = { |
| 0, 2, 1, 3, 5, 4, 0, 0 }; |
| static unsigned char ddr3_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = { 0, 60, 120 }; |
| static unsigned char ddr3_dic_ohms[DIC_OHMS_COUNT] = { 40, 34 }; |
| static short ddr3_drive_strength[DRIVE_STRENGTH_COUNT] = { |
| 0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 }; |
| static struct impedence_values ddr3_impedence_val = { |
| .rodt_ohms = ddr3_rodt_ohms, |
| .rtt_nom_ohms = ddr3_rtt_nom_ohms, |
| .rtt_nom_table = ddr3_rtt_nom_table, |
| .rtt_wr_ohms = ddr3_rtt_wr_ohms, |
| .dic_ohms = ddr3_dic_ohms, |
| .drive_strength = ddr3_drive_strength, |
| .dqx_strength = ddr3_drive_strength, |
| }; |
| |
| static u64 hertz_to_psecs(u64 hertz) |
| { |
| /* Clock in psecs */ |
| return divide_nint((u64)1000 * 1000 * 1000 * 1000, hertz); |
| } |
| |
| #define DIVIDEND_SCALE 1000 /* Scale to avoid rounding error. */ |
| |
| static u64 psecs_to_mts(u64 psecs) |
| { |
| return divide_nint(divide_nint((u64)(2 * 1000000 * DIVIDEND_SCALE), |
| psecs), DIVIDEND_SCALE); |
| } |
| |
| #define WITHIN(v, b, m) (((v) >= ((b) - (m))) && ((v) <= ((b) + (m)))) |
| |
| static unsigned long pretty_psecs_to_mts(u64 psecs) |
| { |
| u64 ret = 0; // default to error |
| |
| if (WITHIN(psecs, 2500, 1)) |
| ret = 800; |
| else if (WITHIN(psecs, 1875, 1)) |
| ret = 1066; |
| else if (WITHIN(psecs, 1500, 1)) |
| ret = 1333; |
| else if (WITHIN(psecs, 1250, 1)) |
| ret = 1600; |
| else if (WITHIN(psecs, 1071, 1)) |
| ret = 1866; |
| else if (WITHIN(psecs, 937, 1)) |
| ret = 2133; |
| else if (WITHIN(psecs, 833, 1)) |
| ret = 2400; |
| else if (WITHIN(psecs, 750, 1)) |
| ret = 2666; |
| return ret; |
| } |
| |
| static u64 mts_to_hertz(u64 mts) |
| { |
| return ((mts * 1000 * 1000) / 2); |
| } |
| |
| static int compute_rc3x(int64_t tclk_psecs) |
| { |
| long speed; |
| long tclk_psecs_min, tclk_psecs_max; |
| long data_rate_mhz, data_rate_mhz_min, data_rate_mhz_max; |
| int rc3x; |
| |
| #define ENCODING_BASE 1240 |
| |
| data_rate_mhz = psecs_to_mts(tclk_psecs); |
| |
| /* |
| * 2400 MT/s is a special case. Using integer arithmetic it rounds |
| * from 833 psecs to 2401 MT/s. Force it to 2400 to pick the |
| * proper setting from the table. |
| */ |
| if (tclk_psecs == 833) |
| data_rate_mhz = 2400; |
| |
| for (speed = ENCODING_BASE; speed < 3200; speed += 20) { |
| int error = 0; |
| |
| /* Clock in psecs */ |
| tclk_psecs_min = hertz_to_psecs(mts_to_hertz(speed + 00)); |
| /* Clock in psecs */ |
| tclk_psecs_max = hertz_to_psecs(mts_to_hertz(speed + 18)); |
| |
| data_rate_mhz_min = psecs_to_mts(tclk_psecs_min); |
| data_rate_mhz_max = psecs_to_mts(tclk_psecs_max); |
| |
| /* Force alingment to multiple to avound rounding errors. */ |
| data_rate_mhz_min = ((data_rate_mhz_min + 18) / 20) * 20; |
| data_rate_mhz_max = ((data_rate_mhz_max + 18) / 20) * 20; |
| |
| error += (speed + 00 != data_rate_mhz_min); |
| error += (speed + 20 != data_rate_mhz_max); |
| |
| rc3x = (speed - ENCODING_BASE) / 20; |
| |
| if (data_rate_mhz <= (speed + 20)) |
| break; |
| } |
| |
| return rc3x; |
| } |
| |
| /* |
| * static global variables needed, so that functions (loops) can be |
| * restructured from the main huge function. Its not elegant, but the |
| * only way to break the original functions like init_octeon3_ddr3_interface() |
| * into separate logical smaller functions with less indentation levels. |
| */ |
| static int if_num __section(".data"); |
| static u32 if_mask __section(".data"); |
| static int ddr_hertz __section(".data"); |
| |
| static struct ddr_conf *ddr_conf __section(".data"); |
| static const struct dimm_odt_config *odt_1rank_config __section(".data"); |
| static const struct dimm_odt_config *odt_2rank_config __section(".data"); |
| static const struct dimm_odt_config *odt_4rank_config __section(".data"); |
| static struct dimm_config *dimm_config_table __section(".data"); |
| static const struct dimm_odt_config *odt_config __section(".data"); |
| static const struct ddr3_custom_config *c_cfg __section(".data"); |
| |
| static int odt_idx __section(".data"); |
| |
| static ulong tclk_psecs __section(".data"); |
| static ulong eclk_psecs __section(".data"); |
| |
| static int row_bits __section(".data"); |
| static int col_bits __section(".data"); |
| static int num_banks __section(".data"); |
| static int num_ranks __section(".data"); |
| static int dram_width __section(".data"); |
| static int dimm_count __section(".data"); |
| /* Accumulate and report all the errors before giving up */ |
| static int fatal_error __section(".data"); |
| /* Flag that indicates safe DDR settings should be used */ |
| static int safe_ddr_flag __section(".data"); |
| /* Octeon II Default: 64bit interface width */ |
| static int if_64b __section(".data"); |
| static int if_bytemask __section(".data"); |
| static u32 mem_size_mbytes __section(".data"); |
| static unsigned int didx __section(".data"); |
| static int bank_bits __section(".data"); |
| static int bunk_enable __section(".data"); |
| static int rank_mask __section(".data"); |
| static int column_bits_start __section(".data"); |
| static int row_lsb __section(".data"); |
| static int pbank_lsb __section(".data"); |
| static int use_ecc __section(".data"); |
| static int mtb_psec __section(".data"); |
| static short ftb_dividend __section(".data"); |
| static short ftb_divisor __section(".data"); |
| static int taamin __section(".data"); |
| static int tckmin __section(".data"); |
| static int cl __section(".data"); |
| static int min_cas_latency __section(".data"); |
| static int max_cas_latency __section(".data"); |
| static int override_cas_latency __section(".data"); |
| static int ddr_rtt_nom_auto __section(".data"); |
| static int ddr_rodt_ctl_auto __section(".data"); |
| |
| static int spd_addr __section(".data"); |
| static int spd_org __section(".data"); |
| static int spd_banks __section(".data"); |
| static int spd_rdimm __section(".data"); |
| static int spd_dimm_type __section(".data"); |
| static int spd_ecc __section(".data"); |
| static u32 spd_cas_latency __section(".data"); |
| static int spd_mtb_dividend __section(".data"); |
| static int spd_mtb_divisor __section(".data"); |
| static int spd_tck_min __section(".data"); |
| static int spd_taa_min __section(".data"); |
| static int spd_twr __section(".data"); |
| static int spd_trcd __section(".data"); |
| static int spd_trrd __section(".data"); |
| static int spd_trp __section(".data"); |
| static int spd_tras __section(".data"); |
| static int spd_trc __section(".data"); |
| static int spd_trfc __section(".data"); |
| static int spd_twtr __section(".data"); |
| static int spd_trtp __section(".data"); |
| static int spd_tfaw __section(".data"); |
| static int spd_addr_mirror __section(".data"); |
| static int spd_package __section(".data"); |
| static int spd_rawcard __section(".data"); |
| static int spd_rawcard_aorb __section(".data"); |
| static int spd_rdimm_registers __section(".data"); |
| static int spd_thermal_sensor __section(".data"); |
| |
| static int is_stacked_die __section(".data"); |
| static int is_3ds_dimm __section(".data"); |
| // 3DS: logical ranks per package rank |
| static int lranks_per_prank __section(".data"); |
| // 3DS: logical ranks bits |
| static int lranks_bits __section(".data"); |
| // in Mbits; only used for 3DS |
| static int die_capacity __section(".data"); |
| |
| static enum ddr_type ddr_type __section(".data"); |
| |
| static int twr __section(".data"); |
| static int trcd __section(".data"); |
| static int trrd __section(".data"); |
| static int trp __section(".data"); |
| static int tras __section(".data"); |
| static int trc __section(".data"); |
| static int trfc __section(".data"); |
| static int twtr __section(".data"); |
| static int trtp __section(".data"); |
| static int tfaw __section(".data"); |
| |
| static int ddr4_tckavgmin __section(".data"); |
| static int ddr4_tckavgmax __section(".data"); |
| static int ddr4_trdcmin __section(".data"); |
| static int ddr4_trpmin __section(".data"); |
| static int ddr4_trasmin __section(".data"); |
| static int ddr4_trcmin __section(".data"); |
| static int ddr4_trfc1min __section(".data"); |
| static int ddr4_trfc2min __section(".data"); |
| static int ddr4_trfc4min __section(".data"); |
| static int ddr4_tfawmin __section(".data"); |
| static int ddr4_trrd_smin __section(".data"); |
| static int ddr4_trrd_lmin __section(".data"); |
| static int ddr4_tccd_lmin __section(".data"); |
| |
| static int wl_mask_err __section(".data"); |
| static int wl_loops __section(".data"); |
| static int default_rtt_nom[4] __section(".data"); |
| static int dyn_rtt_nom_mask __section(".data"); |
| static struct impedence_values *imp_val __section(".data"); |
| static char default_rodt_ctl __section(".data"); |
| // default to disabled (ie, try LMC restart, not chip reset) |
| static int ddr_disable_chip_reset __section(".data"); |
| static const char *dimm_type_name __section(".data"); |
| static int match_wl_rtt_nom __section(".data"); |
| |
| struct hwl_alt_by_rank { |
| u16 hwl_alt_mask; // mask of bytelanes with alternate |
| u16 hwl_alt_delay[9]; // bytelane alternate avail if mask=1 |
| }; |
| |
| static struct hwl_alt_by_rank hwl_alts[4] __section(".data"); |
| |
| #define DEFAULT_INTERNAL_VREF_TRAINING_LIMIT 3 // was: 5 |
| static int internal_retries __section(".data"); |
| |
| static int deskew_training_errors __section(".data"); |
| static struct deskew_counts deskew_training_results __section(".data"); |
| static int disable_deskew_training __section(".data"); |
| static int restart_if_dsk_incomplete __section(".data"); |
| static int dac_eval_retries __section(".data"); |
| static int dac_settings[9] __section(".data"); |
| static int num_samples __section(".data"); |
| static int sample __section(".data"); |
| static int lane __section(".data"); |
| static int last_lane __section(".data"); |
| static int total_dac_eval_retries __section(".data"); |
| static int dac_eval_exhausted __section(".data"); |
| |
| #define DEFAULT_DAC_SAMPLES 7 // originally was 5 |
| #define DAC_RETRIES_LIMIT 2 |
| |
| struct bytelane_sample { |
| s16 bytes[DEFAULT_DAC_SAMPLES]; |
| }; |
| |
| static struct bytelane_sample lanes[9] __section(".data"); |
| |
| static char disable_sequential_delay_check __section(".data"); |
| static int wl_print __section(".data"); |
| |
| static int enable_by_rank_init __section(".data"); |
| static int saved_rank_mask __section(".data"); |
| static int by_rank __section(".data"); |
| static struct deskew_data rank_dsk[4] __section(".data"); |
| static struct dac_data rank_dac[4] __section(".data"); |
| |
| // todo: perhaps remove node at some time completely? |
| static int node __section(".data"); |
| static int base_cl __section(".data"); |
| |
| /* Parameters from DDR3 Specifications */ |
| #define DDR3_TREFI 7800000 /* 7.8 us */ |
| #define DDR3_ZQCS 80000ull /* 80 ns */ |
| #define DDR3_ZQCS_INTERNAL 1280000000ull /* 128ms/100 */ |
| #define DDR3_TCKE 5000 /* 5 ns */ |
| #define DDR3_TMRD 4 /* 4 nCK */ |
| #define DDR3_TDLLK 512 /* 512 nCK */ |
| #define DDR3_TMPRR 1 /* 1 nCK */ |
| #define DDR3_TWLMRD 40 /* 40 nCK */ |
| #define DDR3_TWLDQSEN 25 /* 25 nCK */ |
| |
| /* Parameters from DDR4 Specifications */ |
| #define DDR4_TMRD 8 /* 8 nCK */ |
| #define DDR4_TDLLK 768 /* 768 nCK */ |
| |
| static void lmc_config(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_config cfg; |
| char *s; |
| |
| cfg.u64 = 0; |
| |
| cfg.cn78xx.ecc_ena = use_ecc; |
| cfg.cn78xx.row_lsb = encode_row_lsb_ddr3(row_lsb); |
| cfg.cn78xx.pbank_lsb = encode_pbank_lsb_ddr3(pbank_lsb); |
| |
| cfg.cn78xx.idlepower = 0; /* Disabled */ |
| |
| s = lookup_env(priv, "ddr_idlepower"); |
| if (s) |
| cfg.cn78xx.idlepower = simple_strtoul(s, NULL, 0); |
| |
| cfg.cn78xx.forcewrite = 0; /* Disabled */ |
| /* Include memory reference address in the ECC */ |
| cfg.cn78xx.ecc_adr = 1; |
| |
| s = lookup_env(priv, "ddr_ecc_adr"); |
| if (s) |
| cfg.cn78xx.ecc_adr = simple_strtoul(s, NULL, 0); |
| |
| cfg.cn78xx.reset = 0; |
| |
| /* |
| * Program LMC0_CONFIG[24:18], ref_zqcs_int(6:0) to |
| * RND-DN(tREFI/clkPeriod/512) Program LMC0_CONFIG[36:25], |
| * ref_zqcs_int(18:7) to |
| * RND-DN(ZQCS_Interval/clkPeriod/(512*128)). Note that this |
| * value should always be greater than 32, to account for |
| * resistor calibration delays. |
| */ |
| |
| cfg.cn78xx.ref_zqcs_int = ((DDR3_TREFI / tclk_psecs / 512) & 0x7f); |
| cfg.cn78xx.ref_zqcs_int |= |
| ((max(33ull, (DDR3_ZQCS_INTERNAL / (tclk_psecs / 100) / |
| (512 * 128))) & 0xfff) << 7); |
| |
| cfg.cn78xx.early_dqx = 1; /* Default to enabled */ |
| |
| s = lookup_env(priv, "ddr_early_dqx"); |
| if (!s) |
| s = lookup_env(priv, "ddr%d_early_dqx", if_num); |
| |
| if (s) |
| cfg.cn78xx.early_dqx = simple_strtoul(s, NULL, 0); |
| |
| cfg.cn78xx.sref_with_dll = 0; |
| |
| cfg.cn78xx.rank_ena = bunk_enable; |
| cfg.cn78xx.rankmask = rank_mask; /* Set later */ |
| cfg.cn78xx.mirrmask = (spd_addr_mirror << 1 | spd_addr_mirror << 3) & |
| rank_mask; |
| /* Set once and don't change it. */ |
| cfg.cn78xx.init_status = rank_mask; |
| cfg.cn78xx.early_unload_d0_r0 = 0; |
| cfg.cn78xx.early_unload_d0_r1 = 0; |
| cfg.cn78xx.early_unload_d1_r0 = 0; |
| cfg.cn78xx.early_unload_d1_r1 = 0; |
| cfg.cn78xx.scrz = 0; |
| if (octeon_is_cpuid(OCTEON_CN70XX)) |
| cfg.cn78xx.mode32b = 1; /* Read-only. Always 1. */ |
| cfg.cn78xx.mode_x4dev = (dram_width == 4) ? 1 : 0; |
| cfg.cn78xx.bg2_enable = ((ddr_type == DDR4_DRAM) && |
| (dram_width == 16)) ? 0 : 1; |
| |
| s = lookup_env_ull(priv, "ddr_config"); |
| if (s) |
| cfg.u64 = simple_strtoull(s, NULL, 0); |
| debug("LMC_CONFIG : 0x%016llx\n", |
| cfg.u64); |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64); |
| } |
| |
| static void lmc_control(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_control ctrl; |
| char *s; |
| |
| ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| ctrl.s.rdimm_ena = spd_rdimm; |
| ctrl.s.bwcnt = 0; /* Clear counter later */ |
| if (spd_rdimm) |
| ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_rdimm); |
| else |
| ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_udimm); |
| ctrl.s.pocas = 0; |
| ctrl.s.fprch2 = (safe_ddr_flag ? 2 : c_cfg->fprch2); |
| ctrl.s.throttle_rd = safe_ddr_flag ? 1 : 0; |
| ctrl.s.throttle_wr = safe_ddr_flag ? 1 : 0; |
| ctrl.s.inorder_rd = safe_ddr_flag ? 1 : 0; |
| ctrl.s.inorder_wr = safe_ddr_flag ? 1 : 0; |
| ctrl.s.elev_prio_dis = safe_ddr_flag ? 1 : 0; |
| /* discards writes to addresses that don't exist in the DRAM */ |
| ctrl.s.nxm_write_en = 0; |
| ctrl.s.max_write_batch = 8; |
| ctrl.s.xor_bank = 1; |
| ctrl.s.auto_dclkdis = 1; |
| ctrl.s.int_zqcs_dis = 0; |
| ctrl.s.ext_zqcs_dis = 0; |
| ctrl.s.bprch = 1; |
| ctrl.s.wodt_bprch = 1; |
| ctrl.s.rodt_bprch = 1; |
| |
| s = lookup_env(priv, "ddr_xor_bank"); |
| if (s) |
| ctrl.s.xor_bank = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_2t"); |
| if (s) |
| ctrl.s.ddr2t = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_fprch2"); |
| if (s) |
| ctrl.s.fprch2 = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_bprch"); |
| if (s) |
| ctrl.s.bprch = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_wodt_bprch"); |
| if (s) |
| ctrl.s.wodt_bprch = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rodt_bprch"); |
| if (s) |
| ctrl.s.rodt_bprch = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_int_zqcs_dis"); |
| if (s) |
| ctrl.s.int_zqcs_dis = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_ext_zqcs_dis"); |
| if (s) |
| ctrl.s.ext_zqcs_dis = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env_ull(priv, "ddr_control"); |
| if (s) |
| ctrl.u64 = simple_strtoull(s, NULL, 0); |
| |
| debug("LMC_CONTROL : 0x%016llx\n", |
| ctrl.u64); |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64); |
| } |
| |
| static void lmc_timing_params0(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_timing_params0 tp0; |
| unsigned int trp_value; |
| char *s; |
| |
| tp0.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS0(if_num)); |
| |
| trp_value = divide_roundup(trp, tclk_psecs) - 1; |
| debug("TIMING_PARAMS0[TRP]: NEW 0x%x, OLD 0x%x\n", trp_value, |
| trp_value + |
| (unsigned int)(divide_roundup(max(4ull * tclk_psecs, 7500ull), |
| tclk_psecs)) - 4); |
| s = lookup_env_ull(priv, "ddr_use_old_trp"); |
| if (s) { |
| if (!!simple_strtoull(s, NULL, 0)) { |
| trp_value += |
| divide_roundup(max(4ull * tclk_psecs, 7500ull), |
| tclk_psecs) - 4; |
| debug("TIMING_PARAMS0[trp]: USING OLD 0x%x\n", |
| trp_value); |
| } |
| } |
| |
| tp0.cn78xx.txpr = |
| divide_roundup(max(5ull * tclk_psecs, trfc + 10000ull), |
| 16 * tclk_psecs); |
| tp0.cn78xx.trp = trp_value & 0x1f; |
| tp0.cn78xx.tcksre = |
| divide_roundup(max(5ull * tclk_psecs, 10000ull), tclk_psecs) - 1; |
| |
| if (ddr_type == DDR4_DRAM) { |
| int tzqinit = 4; // Default to 4, for all DDR4 speed bins |
| |
| s = lookup_env(priv, "ddr_tzqinit"); |
| if (s) |
| tzqinit = simple_strtoul(s, NULL, 0); |
| |
| tp0.cn78xx.tzqinit = tzqinit; |
| /* Always 8. */ |
| tp0.cn78xx.tzqcs = divide_roundup(128 * tclk_psecs, |
| (16 * tclk_psecs)); |
| tp0.cn78xx.tcke = |
| divide_roundup(max(3 * tclk_psecs, (ulong)DDR3_TCKE), |
| tclk_psecs) - 1; |
| tp0.cn78xx.tmrd = |
| divide_roundup((DDR4_TMRD * tclk_psecs), tclk_psecs) - 1; |
| tp0.cn78xx.tmod = 25; /* 25 is the max allowed */ |
| tp0.cn78xx.tdllk = divide_roundup(DDR4_TDLLK, 256); |
| } else { |
| tp0.cn78xx.tzqinit = |
| divide_roundup(max(512ull * tclk_psecs, 640000ull), |
| (256 * tclk_psecs)); |
| tp0.cn78xx.tzqcs = |
| divide_roundup(max(64ull * tclk_psecs, DDR3_ZQCS), |
| (16 * tclk_psecs)); |
| tp0.cn78xx.tcke = divide_roundup(DDR3_TCKE, tclk_psecs) - 1; |
| tp0.cn78xx.tmrd = |
| divide_roundup((DDR3_TMRD * tclk_psecs), tclk_psecs) - 1; |
| tp0.cn78xx.tmod = |
| divide_roundup(max(12ull * tclk_psecs, 15000ull), |
| tclk_psecs) - 1; |
| tp0.cn78xx.tdllk = divide_roundup(DDR3_TDLLK, 256); |
| } |
| |
| s = lookup_env_ull(priv, "ddr_timing_params0"); |
| if (s) |
| tp0.u64 = simple_strtoull(s, NULL, 0); |
| debug("TIMING_PARAMS0 : 0x%016llx\n", |
| tp0.u64); |
| lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS0(if_num), tp0.u64); |
| } |
| |
| static void lmc_timing_params1(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_timing_params1 tp1; |
| unsigned int txp, temp_trcd, trfc_dlr; |
| char *s; |
| |
| tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num)); |
| |
| /* .cn70xx. */ |
| tp1.s.tmprr = divide_roundup(DDR3_TMPRR * tclk_psecs, tclk_psecs) - 1; |
| |
| tp1.cn78xx.tras = divide_roundup(tras, tclk_psecs) - 1; |
| |
| temp_trcd = divide_roundup(trcd, tclk_psecs); |
| if (temp_trcd > 15) { |
| debug("TIMING_PARAMS1[trcd]: need extension bit for 0x%x\n", |
| temp_trcd); |
| } |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trcd > 15) { |
| /* |
| * Let .trcd=0 serve as a flag that the field has |
| * overflowed. Must use Additive Latency mode as a |
| * workaround. |
| */ |
| temp_trcd = 0; |
| } |
| tp1.cn78xx.trcd = (temp_trcd >> 0) & 0xf; |
| tp1.cn78xx.trcd_ext = (temp_trcd >> 4) & 0x1; |
| |
| tp1.cn78xx.twtr = divide_roundup(twtr, tclk_psecs) - 1; |
| tp1.cn78xx.trfc = divide_roundup(trfc, 8 * tclk_psecs); |
| |
| if (ddr_type == DDR4_DRAM) { |
| /* Workaround bug 24006. Use Trrd_l. */ |
| tp1.cn78xx.trrd = |
| divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2; |
| } else { |
| tp1.cn78xx.trrd = divide_roundup(trrd, tclk_psecs) - 2; |
| } |
| |
| /* |
| * tXP = max( 3nCK, 7.5 ns) DDR3-800 tCLK = 2500 psec |
| * tXP = max( 3nCK, 7.5 ns) DDR3-1066 tCLK = 1875 psec |
| * tXP = max( 3nCK, 6.0 ns) DDR3-1333 tCLK = 1500 psec |
| * tXP = max( 3nCK, 6.0 ns) DDR3-1600 tCLK = 1250 psec |
| * tXP = max( 3nCK, 6.0 ns) DDR3-1866 tCLK = 1071 psec |
| * tXP = max( 3nCK, 6.0 ns) DDR3-2133 tCLK = 937 psec |
| */ |
| txp = (tclk_psecs < 1875) ? 6000 : 7500; |
| txp = divide_roundup(max((unsigned int)(3 * tclk_psecs), txp), |
| tclk_psecs) - 1; |
| if (txp > 7) { |
| debug("TIMING_PARAMS1[txp]: need extension bit for 0x%x\n", |
| txp); |
| } |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && txp > 7) |
| txp = 7; // max it out |
| tp1.cn78xx.txp = (txp >> 0) & 7; |
| tp1.cn78xx.txp_ext = (txp >> 3) & 1; |
| |
| tp1.cn78xx.twlmrd = divide_roundup(DDR3_TWLMRD * tclk_psecs, |
| 4 * tclk_psecs); |
| tp1.cn78xx.twldqsen = divide_roundup(DDR3_TWLDQSEN * tclk_psecs, |
| 4 * tclk_psecs); |
| tp1.cn78xx.tfaw = divide_roundup(tfaw, 4 * tclk_psecs); |
| tp1.cn78xx.txpdll = divide_roundup(max(10ull * tclk_psecs, 24000ull), |
| tclk_psecs) - 1; |
| |
| if (ddr_type == DDR4_DRAM && is_3ds_dimm) { |
| /* |
| * 4 Gb: tRFC_DLR = 90 ns |
| * 8 Gb: tRFC_DLR = 120 ns |
| * 16 Gb: tRFC_DLR = 190 ns FIXME? |
| */ |
| if (die_capacity == 0x1000) // 4 Gbit |
| trfc_dlr = 90; |
| else if (die_capacity == 0x2000) // 8 Gbit |
| trfc_dlr = 120; |
| else if (die_capacity == 0x4000) // 16 Gbit |
| trfc_dlr = 190; |
| else |
| trfc_dlr = 0; |
| |
| if (trfc_dlr == 0) { |
| debug("N%d.LMC%d: ERROR: tRFC_DLR: die_capacity %u Mbit is illegal\n", |
| node, if_num, die_capacity); |
| } else { |
| tp1.cn78xx.trfc_dlr = |
| divide_roundup(trfc_dlr * 1000UL, 8 * tclk_psecs); |
| debug("N%d.LMC%d: TIMING_PARAMS1[trfc_dlr] set to %u\n", |
| node, if_num, tp1.cn78xx.trfc_dlr); |
| } |
| } |
| |
| s = lookup_env_ull(priv, "ddr_timing_params1"); |
| if (s) |
| tp1.u64 = simple_strtoull(s, NULL, 0); |
| |
| debug("TIMING_PARAMS1 : 0x%016llx\n", |
| tp1.u64); |
| lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64); |
| } |
| |
| static void lmc_timing_params2(struct ddr_priv *priv) |
| { |
| if (ddr_type == DDR4_DRAM) { |
| union cvmx_lmcx_timing_params1 tp1; |
| union cvmx_lmcx_timing_params2 tp2; |
| int temp_trrd_l; |
| |
| tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num)); |
| tp2.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS2(if_num)); |
| debug("TIMING_PARAMS2 : 0x%016llx\n", |
| tp2.u64); |
| |
| temp_trrd_l = divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2; |
| if (temp_trrd_l > 7) |
| debug("TIMING_PARAMS2[trrd_l]: need extension bit for 0x%x\n", |
| temp_trrd_l); |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trrd_l > 7) |
| temp_trrd_l = 7; // max it out |
| tp2.cn78xx.trrd_l = (temp_trrd_l >> 0) & 7; |
| tp2.cn78xx.trrd_l_ext = (temp_trrd_l >> 3) & 1; |
| |
| // correct for 1600-2400 |
| tp2.s.twtr_l = divide_nint(max(4ull * tclk_psecs, 7500ull), |
| tclk_psecs) - 1; |
| tp2.s.t_rw_op_max = 7; |
| tp2.s.trtp = divide_roundup(max(4ull * tclk_psecs, 7500ull), |
| tclk_psecs) - 1; |
| |
| debug("TIMING_PARAMS2 : 0x%016llx\n", |
| tp2.u64); |
| lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS2(if_num), tp2.u64); |
| |
| /* |
| * Workaround Errata 25823 - LMC: Possible DDR4 tWTR_L not met |
| * for Write-to-Read operations to the same Bank Group |
| */ |
| if (tp1.cn78xx.twtr < (tp2.s.twtr_l - 4)) { |
| tp1.cn78xx.twtr = tp2.s.twtr_l - 4; |
| debug("ERRATA 25823: NEW: TWTR: %d, TWTR_L: %d\n", |
| tp1.cn78xx.twtr, tp2.s.twtr_l); |
| debug("TIMING_PARAMS1 : 0x%016llx\n", |
| tp1.u64); |
| lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64); |
| } |
| } |
| } |
| |
| static void lmc_modereg_params0(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_modereg_params0 mp0; |
| int param; |
| char *s; |
| |
| mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num)); |
| |
| if (ddr_type == DDR4_DRAM) { |
| mp0.s.cwl = 0; /* 1600 (1250ps) */ |
| if (tclk_psecs < 1250) |
| mp0.s.cwl = 1; /* 1866 (1072ps) */ |
| if (tclk_psecs < 1072) |
| mp0.s.cwl = 2; /* 2133 (938ps) */ |
| if (tclk_psecs < 938) |
| mp0.s.cwl = 3; /* 2400 (833ps) */ |
| if (tclk_psecs < 833) |
| mp0.s.cwl = 4; /* 2666 (750ps) */ |
| if (tclk_psecs < 750) |
| mp0.s.cwl = 5; /* 3200 (625ps) */ |
| } else { |
| /* |
| ** CSR CWL CAS write Latency |
| ** === === ================================= |
| ** 0 5 ( tCK(avg) >= 2.5 ns) |
| ** 1 6 (2.5 ns > tCK(avg) >= 1.875 ns) |
| ** 2 7 (1.875 ns > tCK(avg) >= 1.5 ns) |
| ** 3 8 (1.5 ns > tCK(avg) >= 1.25 ns) |
| ** 4 9 (1.25 ns > tCK(avg) >= 1.07 ns) |
| ** 5 10 (1.07 ns > tCK(avg) >= 0.935 ns) |
| ** 6 11 (0.935 ns > tCK(avg) >= 0.833 ns) |
| ** 7 12 (0.833 ns > tCK(avg) >= 0.75 ns) |
| */ |
| |
| mp0.s.cwl = 0; |
| if (tclk_psecs < 2500) |
| mp0.s.cwl = 1; |
| if (tclk_psecs < 1875) |
| mp0.s.cwl = 2; |
| if (tclk_psecs < 1500) |
| mp0.s.cwl = 3; |
| if (tclk_psecs < 1250) |
| mp0.s.cwl = 4; |
| if (tclk_psecs < 1070) |
| mp0.s.cwl = 5; |
| if (tclk_psecs < 935) |
| mp0.s.cwl = 6; |
| if (tclk_psecs < 833) |
| mp0.s.cwl = 7; |
| } |
| |
| s = lookup_env(priv, "ddr_cwl"); |
| if (s) |
| mp0.s.cwl = simple_strtoul(s, NULL, 0) - 5; |
| |
| if (ddr_type == DDR4_DRAM) { |
| debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]", |
| mp0.s.cwl + 9 |
| + ((mp0.s.cwl > 2) ? (mp0.s.cwl - 3) * 2 : 0), mp0.s.cwl); |
| } else { |
| debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]", |
| mp0.s.cwl + 5, mp0.s.cwl); |
| } |
| |
| mp0.s.mprloc = 0; |
| mp0.s.mpr = 0; |
| mp0.s.dll = (ddr_type == DDR4_DRAM); /* 0 for DDR3 and 1 for DDR4 */ |
| mp0.s.al = 0; |
| mp0.s.wlev = 0; /* Read Only */ |
| if (octeon_is_cpuid(OCTEON_CN70XX) || ddr_type == DDR4_DRAM) |
| mp0.s.tdqs = 0; |
| else |
| mp0.s.tdqs = 1; |
| mp0.s.qoff = 0; |
| |
| s = lookup_env(priv, "ddr_cl"); |
| if (s) { |
| cl = simple_strtoul(s, NULL, 0); |
| debug("CAS Latency : %6d\n", |
| cl); |
| } |
| |
| if (ddr_type == DDR4_DRAM) { |
| mp0.s.cl = 0x0; |
| if (cl > 9) |
| mp0.s.cl = 0x1; |
| if (cl > 10) |
| mp0.s.cl = 0x2; |
| if (cl > 11) |
| mp0.s.cl = 0x3; |
| if (cl > 12) |
| mp0.s.cl = 0x4; |
| if (cl > 13) |
| mp0.s.cl = 0x5; |
| if (cl > 14) |
| mp0.s.cl = 0x6; |
| if (cl > 15) |
| mp0.s.cl = 0x7; |
| if (cl > 16) |
| mp0.s.cl = 0x8; |
| if (cl > 18) |
| mp0.s.cl = 0x9; |
| if (cl > 20) |
| mp0.s.cl = 0xA; |
| if (cl > 24) |
| mp0.s.cl = 0xB; |
| } else { |
| mp0.s.cl = 0x2; |
| if (cl > 5) |
| mp0.s.cl = 0x4; |
| if (cl > 6) |
| mp0.s.cl = 0x6; |
| if (cl > 7) |
| mp0.s.cl = 0x8; |
| if (cl > 8) |
| mp0.s.cl = 0xA; |
| if (cl > 9) |
| mp0.s.cl = 0xC; |
| if (cl > 10) |
| mp0.s.cl = 0xE; |
| if (cl > 11) |
| mp0.s.cl = 0x1; |
| if (cl > 12) |
| mp0.s.cl = 0x3; |
| if (cl > 13) |
| mp0.s.cl = 0x5; |
| if (cl > 14) |
| mp0.s.cl = 0x7; |
| if (cl > 15) |
| mp0.s.cl = 0x9; |
| } |
| |
| mp0.s.rbt = 0; /* Read Only. */ |
| mp0.s.tm = 0; |
| mp0.s.dllr = 0; |
| |
| param = divide_roundup(twr, tclk_psecs); |
| |
| if (ddr_type == DDR4_DRAM) { /* DDR4 */ |
| mp0.s.wrp = 1; |
| if (param > 12) |
| mp0.s.wrp = 2; |
| if (param > 14) |
| mp0.s.wrp = 3; |
| if (param > 16) |
| mp0.s.wrp = 4; |
| if (param > 18) |
| mp0.s.wrp = 5; |
| if (param > 20) |
| mp0.s.wrp = 6; |
| if (param > 24) /* RESERVED in DDR4 spec */ |
| mp0.s.wrp = 7; |
| } else { /* DDR3 */ |
| mp0.s.wrp = 1; |
| if (param > 5) |
| mp0.s.wrp = 2; |
| if (param > 6) |
| mp0.s.wrp = 3; |
| if (param > 7) |
| mp0.s.wrp = 4; |
| if (param > 8) |
| mp0.s.wrp = 5; |
| if (param > 10) |
| mp0.s.wrp = 6; |
| if (param > 12) |
| mp0.s.wrp = 7; |
| } |
| |
| mp0.s.ppd = 0; |
| |
| s = lookup_env(priv, "ddr_wrp"); |
| if (s) |
| mp0.s.wrp = simple_strtoul(s, NULL, 0); |
| |
| debug("%-45s : %d, [0x%x]\n", |
| "Write recovery for auto precharge WRP, [CSR]", param, mp0.s.wrp); |
| |
| s = lookup_env_ull(priv, "ddr_modereg_params0"); |
| if (s) |
| mp0.u64 = simple_strtoull(s, NULL, 0); |
| |
| debug("MODEREG_PARAMS0 : 0x%016llx\n", |
| mp0.u64); |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64); |
| } |
| |
| static void lmc_modereg_params1(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_modereg_params1 mp1; |
| char *s; |
| int i; |
| |
| mp1.u64 = odt_config[odt_idx].modereg_params1.u64; |
| |
| /* |
| * Special request: mismatched DIMM support. Slot 0: 2-Rank, |
| * Slot 1: 1-Rank |
| */ |
| if (rank_mask == 0x7) { /* 2-Rank, 1-Rank */ |
| mp1.s.rtt_nom_00 = 0; |
| mp1.s.rtt_nom_01 = 3; /* rttnom_40ohm */ |
| mp1.s.rtt_nom_10 = 3; /* rttnom_40ohm */ |
| mp1.s.rtt_nom_11 = 0; |
| dyn_rtt_nom_mask = 0x6; |
| } |
| |
| s = lookup_env(priv, "ddr_rtt_nom_mask"); |
| if (s) |
| dyn_rtt_nom_mask = simple_strtoul(s, NULL, 0); |
| |
| /* |
| * Save the original rtt_nom settings before sweeping through |
| * settings. |
| */ |
| default_rtt_nom[0] = mp1.s.rtt_nom_00; |
| default_rtt_nom[1] = mp1.s.rtt_nom_01; |
| default_rtt_nom[2] = mp1.s.rtt_nom_10; |
| default_rtt_nom[3] = mp1.s.rtt_nom_11; |
| |
| ddr_rtt_nom_auto = c_cfg->ddr_rtt_nom_auto; |
| |
| for (i = 0; i < 4; ++i) { |
| u64 value; |
| |
| s = lookup_env(priv, "ddr_rtt_nom_%1d%1d", !!(i & 2), |
| !!(i & 1)); |
| if (!s) |
| s = lookup_env(priv, "ddr%d_rtt_nom_%1d%1d", if_num, |
| !!(i & 2), !!(i & 1)); |
| if (s) { |
| value = simple_strtoul(s, NULL, 0); |
| mp1.u64 &= ~((u64)0x7 << (i * 12 + 9)); |
| mp1.u64 |= ((value & 0x7) << (i * 12 + 9)); |
| default_rtt_nom[i] = value; |
| ddr_rtt_nom_auto = 0; |
| } |
| } |
| |
| s = lookup_env(priv, "ddr_rtt_nom"); |
| if (!s) |
| s = lookup_env(priv, "ddr%d_rtt_nom", if_num); |
| if (s) { |
| u64 value; |
| |
| value = simple_strtoul(s, NULL, 0); |
| |
| if (dyn_rtt_nom_mask & 1) { |
| default_rtt_nom[0] = value; |
| mp1.s.rtt_nom_00 = value; |
| } |
| if (dyn_rtt_nom_mask & 2) { |
| default_rtt_nom[1] = value; |
| mp1.s.rtt_nom_01 = value; |
| } |
| if (dyn_rtt_nom_mask & 4) { |
| default_rtt_nom[2] = value; |
| mp1.s.rtt_nom_10 = value; |
| } |
| if (dyn_rtt_nom_mask & 8) { |
| default_rtt_nom[3] = value; |
| mp1.s.rtt_nom_11 = value; |
| } |
| |
| ddr_rtt_nom_auto = 0; |
| } |
| |
| for (i = 0; i < 4; ++i) { |
| u64 value; |
| |
| s = lookup_env(priv, "ddr_rtt_wr_%1d%1d", !!(i & 2), !!(i & 1)); |
| if (!s) |
| s = lookup_env(priv, "ddr%d_rtt_wr_%1d%1d", if_num, |
| !!(i & 2), !!(i & 1)); |
| if (s) { |
| value = simple_strtoul(s, NULL, 0); |
| insrt_wr(&mp1.u64, i, value); |
| } |
| } |
| |
| // Make sure 78XX pass 1 has valid RTT_WR settings, because |
| // configuration files may be set-up for later chips, and |
| // 78XX pass 1 supports no RTT_WR extension bits |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) { |
| for (i = 0; i < 4; ++i) { |
| // if 80 or undefined |
| if (extr_wr(mp1.u64, i) > 3) { |
| // FIXME? always insert 120 |
| insrt_wr(&mp1.u64, i, 1); |
| debug("RTT_WR_%d%d set to 120 for CN78XX pass 1\n", |
| !!(i & 2), i & 1); |
| } |
| } |
| } |
| |
| s = lookup_env(priv, "ddr_dic"); |
| if (s) { |
| u64 value = simple_strtoul(s, NULL, 0); |
| |
| for (i = 0; i < 4; ++i) { |
| mp1.u64 &= ~((u64)0x3 << (i * 12 + 7)); |
| mp1.u64 |= ((value & 0x3) << (i * 12 + 7)); |
| } |
| } |
| |
| for (i = 0; i < 4; ++i) { |
| u64 value; |
| |
| s = lookup_env(priv, "ddr_dic_%1d%1d", !!(i & 2), !!(i & 1)); |
| if (s) { |
| value = simple_strtoul(s, NULL, 0); |
| mp1.u64 &= ~((u64)0x3 << (i * 12 + 7)); |
| mp1.u64 |= ((value & 0x3) << (i * 12 + 7)); |
| } |
| } |
| |
| s = lookup_env_ull(priv, "ddr_modereg_params1"); |
| if (s) |
| mp1.u64 = simple_strtoull(s, NULL, 0); |
| |
| debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00], |
| mp1.s.rtt_nom_11, |
| mp1.s.rtt_nom_10, mp1.s.rtt_nom_01, mp1.s.rtt_nom_00); |
| |
| debug("RTT_WR %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)], |
| imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)], |
| imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)], |
| imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)], |
| extr_wr(mp1.u64, 3), |
| extr_wr(mp1.u64, 2), extr_wr(mp1.u64, 1), extr_wr(mp1.u64, 0)); |
| |
| debug("DIC %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->dic_ohms[mp1.s.dic_11], |
| imp_val->dic_ohms[mp1.s.dic_10], |
| imp_val->dic_ohms[mp1.s.dic_01], |
| imp_val->dic_ohms[mp1.s.dic_00], |
| mp1.s.dic_11, mp1.s.dic_10, mp1.s.dic_01, mp1.s.dic_00); |
| |
| debug("MODEREG_PARAMS1 : 0x%016llx\n", |
| mp1.u64); |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num), mp1.u64); |
| } |
| |
| static void lmc_modereg_params2(struct ddr_priv *priv) |
| { |
| char *s; |
| int i; |
| |
| if (ddr_type == DDR4_DRAM) { |
| union cvmx_lmcx_modereg_params2 mp2; |
| |
| mp2.u64 = odt_config[odt_idx].modereg_params2.u64; |
| |
| s = lookup_env(priv, "ddr_rtt_park"); |
| if (s) { |
| u64 value = simple_strtoul(s, NULL, 0); |
| |
| for (i = 0; i < 4; ++i) { |
| mp2.u64 &= ~((u64)0x7 << (i * 10 + 0)); |
| mp2.u64 |= ((value & 0x7) << (i * 10 + 0)); |
| } |
| } |
| |
| for (i = 0; i < 4; ++i) { |
| u64 value; |
| |
| s = lookup_env(priv, "ddr_rtt_park_%1d%1d", !!(i & 2), |
| !!(i & 1)); |
| if (s) { |
| value = simple_strtoul(s, NULL, 0); |
| mp2.u64 &= ~((u64)0x7 << (i * 10 + 0)); |
| mp2.u64 |= ((value & 0x7) << (i * 10 + 0)); |
| } |
| } |
| |
| s = lookup_env_ull(priv, "ddr_modereg_params2"); |
| if (s) |
| mp2.u64 = simple_strtoull(s, NULL, 0); |
| |
| debug("RTT_PARK %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->rtt_nom_ohms[mp2.s.rtt_park_11], |
| imp_val->rtt_nom_ohms[mp2.s.rtt_park_10], |
| imp_val->rtt_nom_ohms[mp2.s.rtt_park_01], |
| imp_val->rtt_nom_ohms[mp2.s.rtt_park_00], |
| mp2.s.rtt_park_11, mp2.s.rtt_park_10, mp2.s.rtt_park_01, |
| mp2.s.rtt_park_00); |
| |
| debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_RANGE", |
| mp2.s.vref_range_11, |
| mp2.s.vref_range_10, |
| mp2.s.vref_range_01, mp2.s.vref_range_00); |
| |
| debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_VALUE", |
| mp2.s.vref_value_11, |
| mp2.s.vref_value_10, |
| mp2.s.vref_value_01, mp2.s.vref_value_00); |
| |
| debug("MODEREG_PARAMS2 : 0x%016llx\n", |
| mp2.u64); |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num), mp2.u64); |
| } |
| } |
| |
| static void lmc_modereg_params3(struct ddr_priv *priv) |
| { |
| char *s; |
| |
| if (ddr_type == DDR4_DRAM) { |
| union cvmx_lmcx_modereg_params3 mp3; |
| |
| mp3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num)); |
| /* Disable as workaround to Errata 20547 */ |
| mp3.s.rd_dbi = 0; |
| mp3.s.tccd_l = max(divide_roundup(ddr4_tccd_lmin, tclk_psecs), |
| 5ull) - 4; |
| |
| s = lookup_env(priv, "ddr_rd_preamble"); |
| if (s) |
| mp3.s.rd_preamble = !!simple_strtoul(s, NULL, 0); |
| |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) { |
| int delay = 0; |
| |
| if (lranks_per_prank == 4 && ddr_hertz >= 1000000000) |
| delay = 1; |
| |
| mp3.s.xrank_add_tccd_l = delay; |
| mp3.s.xrank_add_tccd_s = delay; |
| } |
| |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num), mp3.u64); |
| debug("MODEREG_PARAMS3 : 0x%016llx\n", |
| mp3.u64); |
| } |
| } |
| |
| static void lmc_nxm(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_nxm lmc_nxm; |
| int num_bits = row_lsb + row_bits + lranks_bits - 26; |
| char *s; |
| |
| lmc_nxm.u64 = lmc_rd(priv, CVMX_LMCX_NXM(if_num)); |
| |
| /* .cn78xx. */ |
| if (rank_mask & 0x1) |
| lmc_nxm.cn78xx.mem_msb_d0_r0 = num_bits; |
| if (rank_mask & 0x2) |
| lmc_nxm.cn78xx.mem_msb_d0_r1 = num_bits; |
| if (rank_mask & 0x4) |
| lmc_nxm.cn78xx.mem_msb_d1_r0 = num_bits; |
| if (rank_mask & 0x8) |
| lmc_nxm.cn78xx.mem_msb_d1_r1 = num_bits; |
| |
| /* Set the mask for non-existent ranks. */ |
| lmc_nxm.cn78xx.cs_mask = ~rank_mask & 0xff; |
| |
| s = lookup_env_ull(priv, "ddr_nxm"); |
| if (s) |
| lmc_nxm.u64 = simple_strtoull(s, NULL, 0); |
| |
| debug("LMC_NXM : 0x%016llx\n", |
| lmc_nxm.u64); |
| lmc_wr(priv, CVMX_LMCX_NXM(if_num), lmc_nxm.u64); |
| } |
| |
| static void lmc_wodt_mask(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_wodt_mask wodt_mask; |
| char *s; |
| |
| wodt_mask.u64 = odt_config[odt_idx].odt_mask; |
| |
| s = lookup_env_ull(priv, "ddr_wodt_mask"); |
| if (s) |
| wodt_mask.u64 = simple_strtoull(s, NULL, 0); |
| |
| debug("WODT_MASK : 0x%016llx\n", |
| wodt_mask.u64); |
| lmc_wr(priv, CVMX_LMCX_WODT_MASK(if_num), wodt_mask.u64); |
| } |
| |
| static void lmc_rodt_mask(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_rodt_mask rodt_mask; |
| int rankx; |
| char *s; |
| |
| rodt_mask.u64 = odt_config[odt_idx].rodt_ctl; |
| |
| s = lookup_env_ull(priv, "ddr_rodt_mask"); |
| if (s) |
| rodt_mask.u64 = simple_strtoull(s, NULL, 0); |
| |
| debug("%-45s : 0x%016llx\n", "RODT_MASK", rodt_mask.u64); |
| lmc_wr(priv, CVMX_LMCX_RODT_MASK(if_num), rodt_mask.u64); |
| |
| dyn_rtt_nom_mask = 0; |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| dyn_rtt_nom_mask |= ((rodt_mask.u64 >> (8 * rankx)) & 0xff); |
| } |
| if (num_ranks == 4) { |
| /* |
| * Normally ODT1 is wired to rank 1. For quad-ranked DIMMs |
| * ODT1 is wired to the third rank (rank 2). The mask, |
| * dyn_rtt_nom_mask, is used to indicate for which ranks |
| * to sweep RTT_NOM during read-leveling. Shift the bit |
| * from the ODT1 position over to the "ODT2" position so |
| * that the read-leveling analysis comes out right. |
| */ |
| int odt1_bit = dyn_rtt_nom_mask & 2; |
| |
| dyn_rtt_nom_mask &= ~2; |
| dyn_rtt_nom_mask |= odt1_bit << 1; |
| } |
| debug("%-45s : 0x%02x\n", "DYN_RTT_NOM_MASK", dyn_rtt_nom_mask); |
| } |
| |
| static void lmc_comp_ctl2(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_comp_ctl2 cc2; |
| char *s; |
| |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| |
| cc2.cn78xx.dqx_ctl = odt_config[odt_idx].odt_ena; |
| /* Default 4=34.3 ohm */ |
| cc2.cn78xx.ck_ctl = (c_cfg->ck_ctl == 0) ? 4 : c_cfg->ck_ctl; |
| /* Default 4=34.3 ohm */ |
| cc2.cn78xx.cmd_ctl = (c_cfg->cmd_ctl == 0) ? 4 : c_cfg->cmd_ctl; |
| /* Default 4=34.3 ohm */ |
| cc2.cn78xx.control_ctl = (c_cfg->ctl_ctl == 0) ? 4 : c_cfg->ctl_ctl; |
| |
| ddr_rodt_ctl_auto = c_cfg->ddr_rodt_ctl_auto; |
| s = lookup_env(priv, "ddr_rodt_ctl_auto"); |
| if (s) |
| ddr_rodt_ctl_auto = !!simple_strtoul(s, NULL, 0); |
| |
| default_rodt_ctl = odt_config[odt_idx].qs_dic; |
| s = lookup_env(priv, "ddr_rodt_ctl"); |
| if (!s) |
| s = lookup_env(priv, "ddr%d_rodt_ctl", if_num); |
| if (s) { |
| default_rodt_ctl = simple_strtoul(s, NULL, 0); |
| ddr_rodt_ctl_auto = 0; |
| } |
| |
| cc2.cn70xx.rodt_ctl = default_rodt_ctl; |
| |
| // if DDR4, force CK_CTL to 26 ohms if it is currently 34 ohms, |
| // and DCLK speed is 1 GHz or more... |
| if (ddr_type == DDR4_DRAM && cc2.s.ck_ctl == ddr4_driver_34_ohm && |
| ddr_hertz >= 1000000000) { |
| // lowest for DDR4 is 26 ohms |
| cc2.s.ck_ctl = ddr4_driver_26_ohm; |
| debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CK_CTL] to %d, %d ohms\n", |
| node, if_num, cc2.s.ck_ctl, |
| imp_val->drive_strength[cc2.s.ck_ctl]); |
| } |
| |
| // if DDR4, 2DPC, UDIMM, force CONTROL_CTL and CMD_CTL to 26 ohms, |
| // if DCLK speed is 1 GHz or more... |
| if (ddr_type == DDR4_DRAM && dimm_count == 2 && |
| (spd_dimm_type == 2 || spd_dimm_type == 6) && |
| ddr_hertz >= 1000000000) { |
| // lowest for DDR4 is 26 ohms |
| cc2.cn78xx.control_ctl = ddr4_driver_26_ohm; |
| // lowest for DDR4 is 26 ohms |
| cc2.cn78xx.cmd_ctl = ddr4_driver_26_ohm; |
| debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CONTROL_CTL,CMD_CTL] to %d, %d ohms\n", |
| node, if_num, ddr4_driver_26_ohm, |
| imp_val->drive_strength[ddr4_driver_26_ohm]); |
| } |
| |
| s = lookup_env(priv, "ddr_ck_ctl"); |
| if (s) |
| cc2.cn78xx.ck_ctl = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_cmd_ctl"); |
| if (s) |
| cc2.cn78xx.cmd_ctl = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_control_ctl"); |
| if (s) |
| cc2.cn70xx.control_ctl = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_dqx_ctl"); |
| if (s) |
| cc2.cn78xx.dqx_ctl = simple_strtoul(s, NULL, 0); |
| |
| debug("%-45s : %d, %d ohms\n", "DQX_CTL ", cc2.cn78xx.dqx_ctl, |
| imp_val->drive_strength[cc2.cn78xx.dqx_ctl]); |
| debug("%-45s : %d, %d ohms\n", "CK_CTL ", cc2.cn78xx.ck_ctl, |
| imp_val->drive_strength[cc2.cn78xx.ck_ctl]); |
| debug("%-45s : %d, %d ohms\n", "CMD_CTL ", cc2.cn78xx.cmd_ctl, |
| imp_val->drive_strength[cc2.cn78xx.cmd_ctl]); |
| debug("%-45s : %d, %d ohms\n", "CONTROL_CTL ", |
| cc2.cn78xx.control_ctl, |
| imp_val->drive_strength[cc2.cn78xx.control_ctl]); |
| debug("Read ODT_CTL : 0x%x (%d ohms)\n", |
| cc2.cn78xx.rodt_ctl, imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]); |
| |
| debug("%-45s : 0x%016llx\n", "COMP_CTL2", cc2.u64); |
| lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64); |
| } |
| |
| static void lmc_phy_ctl(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_phy_ctl phy_ctl; |
| |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| phy_ctl.s.ts_stagger = 0; |
| // FIXME: are there others TBD? |
| phy_ctl.s.dsk_dbg_overwrt_ena = 0; |
| |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) { |
| // C0 is TEN, C1 is A17 |
| phy_ctl.s.c0_sel = 2; |
| phy_ctl.s.c1_sel = 2; |
| debug("N%d.LMC%d: 3DS: setting PHY_CTL[cx_csel] = %d\n", |
| node, if_num, phy_ctl.s.c1_sel); |
| } |
| |
| debug("PHY_CTL : 0x%016llx\n", |
| phy_ctl.u64); |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| } |
| |
| static void lmc_ext_config(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_ext_config ext_cfg; |
| char *s; |
| |
| ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num)); |
| ext_cfg.s.vrefint_seq_deskew = 0; |
| ext_cfg.s.read_ena_bprch = 1; |
| ext_cfg.s.read_ena_fprch = 1; |
| ext_cfg.s.drive_ena_fprch = 1; |
| ext_cfg.s.drive_ena_bprch = 1; |
| // make sure this is OFF for all current chips |
| ext_cfg.s.invert_data = 0; |
| |
| s = lookup_env(priv, "ddr_read_fprch"); |
| if (s) |
| ext_cfg.s.read_ena_fprch = strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_read_bprch"); |
| if (s) |
| ext_cfg.s.read_ena_bprch = strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_drive_fprch"); |
| if (s) |
| ext_cfg.s.drive_ena_fprch = strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_drive_bprch"); |
| if (s) |
| ext_cfg.s.drive_ena_bprch = strtoul(s, NULL, 0); |
| |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) { |
| ext_cfg.s.dimm0_cid = lranks_bits; |
| ext_cfg.s.dimm1_cid = lranks_bits; |
| debug("N%d.LMC%d: 3DS: setting EXT_CONFIG[dimmx_cid] = %d\n", |
| node, if_num, ext_cfg.s.dimm0_cid); |
| } |
| |
| lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64); |
| debug("%-45s : 0x%016llx\n", "EXT_CONFIG", ext_cfg.u64); |
| } |
| |
| static void lmc_ext_config2(struct ddr_priv *priv) |
| { |
| char *s; |
| |
| // NOTE: all chips have this register, but not necessarily the |
| // fields we modify... |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && |
| !octeon_is_cpuid(OCTEON_CN73XX)) { |
| union cvmx_lmcx_ext_config2 ext_cfg2; |
| int value = 1; // default to 1 |
| |
| ext_cfg2.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG2(if_num)); |
| |
| s = lookup_env(priv, "ddr_ext2_delay_unload"); |
| if (s) |
| value = !!simple_strtoul(s, NULL, 0); |
| |
| ext_cfg2.s.delay_unload_r0 = value; |
| ext_cfg2.s.delay_unload_r1 = value; |
| ext_cfg2.s.delay_unload_r2 = value; |
| ext_cfg2.s.delay_unload_r3 = value; |
| |
| lmc_wr(priv, CVMX_LMCX_EXT_CONFIG2(if_num), ext_cfg2.u64); |
| debug("%-45s : 0x%016llx\n", "EXT_CONFIG2", ext_cfg2.u64); |
| } |
| } |
| |
| static void lmc_dimm01_params_loop(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_dimmx_params dimm_p; |
| int dimmx = didx; |
| char *s; |
| int rc; |
| int i; |
| |
| dimm_p.u64 = lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num)); |
| |
| if (ddr_type == DDR4_DRAM) { |
| union cvmx_lmcx_dimmx_ddr4_params0 ddr4_p0; |
| union cvmx_lmcx_dimmx_ddr4_params1 ddr4_p1; |
| union cvmx_lmcx_ddr4_dimm_ctl ddr4_ctl; |
| |
| dimm_p.s.rc0 = 0; |
| dimm_p.s.rc1 = 0; |
| dimm_p.s.rc2 = 0; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, |
| DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CTL); |
| dimm_p.s.rc3 = (rc >> 4) & 0xf; |
| dimm_p.s.rc4 = ((rc >> 0) & 0x3) << 2; |
| dimm_p.s.rc4 |= ((rc >> 2) & 0x3) << 0; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, |
| DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK); |
| dimm_p.s.rc5 = ((rc >> 0) & 0x3) << 2; |
| dimm_p.s.rc5 |= ((rc >> 2) & 0x3) << 0; |
| |
| dimm_p.s.rc6 = 0; |
| dimm_p.s.rc7 = 0; |
| dimm_p.s.rc8 = 0; |
| dimm_p.s.rc9 = 0; |
| |
| /* |
| * rc10 DDR4 RDIMM Operating Speed |
| * === =================================================== |
| * 0 tclk_psecs >= 1250 psec DDR4-1600 (1250 ps) |
| * 1 1250 psec > tclk_psecs >= 1071 psec DDR4-1866 (1071 ps) |
| * 2 1071 psec > tclk_psecs >= 938 psec DDR4-2133 ( 938 ps) |
| * 3 938 psec > tclk_psecs >= 833 psec DDR4-2400 ( 833 ps) |
| * 4 833 psec > tclk_psecs >= 750 psec DDR4-2666 ( 750 ps) |
| * 5 750 psec > tclk_psecs >= 625 psec DDR4-3200 ( 625 ps) |
| */ |
| dimm_p.s.rc10 = 0; |
| if (tclk_psecs < 1250) |
| dimm_p.s.rc10 = 1; |
| if (tclk_psecs < 1071) |
| dimm_p.s.rc10 = 2; |
| if (tclk_psecs < 938) |
| dimm_p.s.rc10 = 3; |
| if (tclk_psecs < 833) |
| dimm_p.s.rc10 = 4; |
| if (tclk_psecs < 750) |
| dimm_p.s.rc10 = 5; |
| |
| dimm_p.s.rc11 = 0; |
| dimm_p.s.rc12 = 0; |
| /* 0=LRDIMM, 1=RDIMM */ |
| dimm_p.s.rc13 = (spd_dimm_type == 4) ? 0 : 4; |
| dimm_p.s.rc13 |= (ddr_type == DDR4_DRAM) ? |
| (spd_addr_mirror << 3) : 0; |
| dimm_p.s.rc14 = 0; |
| dimm_p.s.rc15 = 0; /* 1 nCK latency adder */ |
| |
| ddr4_p0.u64 = 0; |
| |
| ddr4_p0.s.rc8x = 0; |
| ddr4_p0.s.rc7x = 0; |
| ddr4_p0.s.rc6x = 0; |
| ddr4_p0.s.rc5x = 0; |
| ddr4_p0.s.rc4x = 0; |
| |
| ddr4_p0.s.rc3x = compute_rc3x(tclk_psecs); |
| |
| ddr4_p0.s.rc2x = 0; |
| ddr4_p0.s.rc1x = 0; |
| |
| ddr4_p1.u64 = 0; |
| |
| ddr4_p1.s.rcbx = 0; |
| ddr4_p1.s.rcax = 0; |
| ddr4_p1.s.rc9x = 0; |
| |
| ddr4_ctl.u64 = 0; |
| ddr4_ctl.cn70xx.ddr4_dimm0_wmask = 0x004; |
| ddr4_ctl.cn70xx.ddr4_dimm1_wmask = |
| (dimm_count > 1) ? 0x004 : 0x0000; |
| |
| /* |
| * Handle any overrides from envvars here... |
| */ |
| s = lookup_env(priv, "ddr_ddr4_params0"); |
| if (s) |
| ddr4_p0.u64 = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_ddr4_params1"); |
| if (s) |
| ddr4_p1.u64 = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_ddr4_dimm_ctl"); |
| if (s) |
| ddr4_ctl.u64 = simple_strtoul(s, NULL, 0); |
| |
| for (i = 0; i < 11; ++i) { |
| u64 value; |
| |
| s = lookup_env(priv, "ddr_ddr4_rc%1xx", i + 1); |
| if (s) { |
| value = simple_strtoul(s, NULL, 0); |
| if (i < 8) { |
| ddr4_p0.u64 &= ~((u64)0xff << (i * 8)); |
| ddr4_p0.u64 |= (value << (i * 8)); |
| } else { |
| ddr4_p1.u64 &= |
| ~((u64)0xff << ((i - 8) * 8)); |
| ddr4_p1.u64 |= (value << ((i - 8) * 8)); |
| } |
| } |
| } |
| |
| /* |
| * write the final CSR values |
| */ |
| lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS0(dimmx, if_num), |
| ddr4_p0.u64); |
| |
| lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), ddr4_ctl.u64); |
| |
| lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS1(dimmx, if_num), |
| ddr4_p1.u64); |
| |
| debug("DIMM%d Register Control Words RCBx:RC1x : %x %x %x %x %x %x %x %x %x %x %x\n", |
| dimmx, ddr4_p1.s.rcbx, ddr4_p1.s.rcax, |
| ddr4_p1.s.rc9x, ddr4_p0.s.rc8x, |
| ddr4_p0.s.rc7x, ddr4_p0.s.rc6x, |
| ddr4_p0.s.rc5x, ddr4_p0.s.rc4x, |
| ddr4_p0.s.rc3x, ddr4_p0.s.rc2x, ddr4_p0.s.rc1x); |
| |
| } else { |
| rc = read_spd(&dimm_config_table[didx], 0, 69); |
| dimm_p.s.rc0 = (rc >> 0) & 0xf; |
| dimm_p.s.rc1 = (rc >> 4) & 0xf; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, 70); |
| dimm_p.s.rc2 = (rc >> 0) & 0xf; |
| dimm_p.s.rc3 = (rc >> 4) & 0xf; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, 71); |
| dimm_p.s.rc4 = (rc >> 0) & 0xf; |
| dimm_p.s.rc5 = (rc >> 4) & 0xf; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, 72); |
| dimm_p.s.rc6 = (rc >> 0) & 0xf; |
| dimm_p.s.rc7 = (rc >> 4) & 0xf; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, 73); |
| dimm_p.s.rc8 = (rc >> 0) & 0xf; |
| dimm_p.s.rc9 = (rc >> 4) & 0xf; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, 74); |
| dimm_p.s.rc10 = (rc >> 0) & 0xf; |
| dimm_p.s.rc11 = (rc >> 4) & 0xf; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, 75); |
| dimm_p.s.rc12 = (rc >> 0) & 0xf; |
| dimm_p.s.rc13 = (rc >> 4) & 0xf; |
| |
| rc = read_spd(&dimm_config_table[didx], 0, 76); |
| dimm_p.s.rc14 = (rc >> 0) & 0xf; |
| dimm_p.s.rc15 = (rc >> 4) & 0xf; |
| |
| s = ddr_getenv_debug(priv, "ddr_clk_drive"); |
| if (s) { |
| if (strcmp(s, "light") == 0) |
| dimm_p.s.rc5 = 0x0; /* Light Drive */ |
| if (strcmp(s, "moderate") == 0) |
| dimm_p.s.rc5 = 0x5; /* Moderate Drive */ |
| if (strcmp(s, "strong") == 0) |
| dimm_p.s.rc5 = 0xA; /* Strong Drive */ |
| printf("Parameter found in environment. ddr_clk_drive = %s\n", |
| s); |
| } |
| |
| s = ddr_getenv_debug(priv, "ddr_cmd_drive"); |
| if (s) { |
| if (strcmp(s, "light") == 0) |
| dimm_p.s.rc3 = 0x0; /* Light Drive */ |
| if (strcmp(s, "moderate") == 0) |
| dimm_p.s.rc3 = 0x5; /* Moderate Drive */ |
| if (strcmp(s, "strong") == 0) |
| dimm_p.s.rc3 = 0xA; /* Strong Drive */ |
| printf("Parameter found in environment. ddr_cmd_drive = %s\n", |
| s); |
| } |
| |
| s = ddr_getenv_debug(priv, "ddr_ctl_drive"); |
| if (s) { |
| if (strcmp(s, "light") == 0) |
| dimm_p.s.rc4 = 0x0; /* Light Drive */ |
| if (strcmp(s, "moderate") == 0) |
| dimm_p.s.rc4 = 0x5; /* Moderate Drive */ |
| printf("Parameter found in environment. ddr_ctl_drive = %s\n", |
| s); |
| } |
| |
| /* |
| * rc10 DDR3 RDIMM Operating Speed |
| * == ===================================================== |
| * 0 tclk_psecs >= 2500 psec DDR3/DDR3L-800 def |
| * 1 2500 psec > tclk_psecs >= 1875 psec DDR3/DDR3L-1066 |
| * 2 1875 psec > tclk_psecs >= 1500 psec DDR3/DDR3L-1333 |
| * 3 1500 psec > tclk_psecs >= 1250 psec DDR3/DDR3L-1600 |
| * 4 1250 psec > tclk_psecs >= 1071 psec DDR3-1866 |
| */ |
| dimm_p.s.rc10 = 0; |
| if (tclk_psecs < 2500) |
| dimm_p.s.rc10 = 1; |
| if (tclk_psecs < 1875) |
| dimm_p.s.rc10 = 2; |
| if (tclk_psecs < 1500) |
| dimm_p.s.rc10 = 3; |
| if (tclk_psecs < 1250) |
| dimm_p.s.rc10 = 4; |
| } |
| |
| s = lookup_env(priv, "ddr_dimmx_params", i); |
| if (s) |
| dimm_p.u64 = simple_strtoul(s, NULL, 0); |
| |
| for (i = 0; i < 16; ++i) { |
| u64 value; |
| |
| s = lookup_env(priv, "ddr_rc%d", i); |
| if (s) { |
| value = simple_strtoul(s, NULL, 0); |
| dimm_p.u64 &= ~((u64)0xf << (i * 4)); |
| dimm_p.u64 |= (value << (i * 4)); |
| } |
| } |
| |
| lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num), dimm_p.u64); |
| |
| debug("DIMM%d Register Control Words RC15:RC0 : %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n", |
| dimmx, dimm_p.s.rc15, dimm_p.s.rc14, dimm_p.s.rc13, |
| dimm_p.s.rc12, dimm_p.s.rc11, dimm_p.s.rc10, |
| dimm_p.s.rc9, dimm_p.s.rc8, dimm_p.s.rc7, |
| dimm_p.s.rc6, dimm_p.s.rc5, dimm_p.s.rc4, |
| dimm_p.s.rc3, dimm_p.s.rc2, dimm_p.s.rc1, dimm_p.s.rc0); |
| |
| // FIXME: recognize a DDR3 RDIMM with 4 ranks and 2 registers, |
| // and treat it specially |
| if (ddr_type == DDR3_DRAM && num_ranks == 4 && |
| spd_rdimm_registers == 2 && dimmx == 0) { |
| debug("DDR3: Copying DIMM0_PARAMS to DIMM1_PARAMS for pseudo-DIMM #1...\n"); |
| lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(1, if_num), dimm_p.u64); |
| } |
| } |
| |
| static void lmc_dimm01_params(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_dimm_ctl dimm_ctl; |
| char *s; |
| |
| if (spd_rdimm) { |
| for (didx = 0; didx < (unsigned int)dimm_count; ++didx) |
| lmc_dimm01_params_loop(priv); |
| |
| if (ddr_type == DDR4_DRAM) { |
| /* LMC0_DIMM_CTL */ |
| dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num)); |
| dimm_ctl.s.dimm0_wmask = 0xdf3f; |
| dimm_ctl.s.dimm1_wmask = |
| (dimm_count > 1) ? 0xdf3f : 0x0000; |
| dimm_ctl.s.tcws = 0x4e0; |
| dimm_ctl.s.parity = c_cfg->parity; |
| |
| s = lookup_env(priv, "ddr_dimm0_wmask"); |
| if (s) { |
| dimm_ctl.s.dimm0_wmask = |
| simple_strtoul(s, NULL, 0); |
| } |
| |
| s = lookup_env(priv, "ddr_dimm1_wmask"); |
| if (s) { |
| dimm_ctl.s.dimm1_wmask = |
| simple_strtoul(s, NULL, 0); |
| } |
| |
| s = lookup_env(priv, "ddr_dimm_ctl_parity"); |
| if (s) |
| dimm_ctl.s.parity = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_dimm_ctl_tcws"); |
| if (s) |
| dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0); |
| |
| debug("LMC DIMM_CTL : 0x%016llx\n", |
| dimm_ctl.u64); |
| lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64); |
| |
| /* Init RCW */ |
| oct3_ddr3_seq(priv, rank_mask, if_num, 0x7); |
| |
| /* Write RC0D last */ |
| dimm_ctl.s.dimm0_wmask = 0x2000; |
| dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? |
| 0x2000 : 0x0000; |
| debug("LMC DIMM_CTL : 0x%016llx\n", |
| dimm_ctl.u64); |
| lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64); |
| |
| /* |
| * Don't write any extended registers the second time |
| */ |
| lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), 0); |
| |
| /* Init RCW */ |
| oct3_ddr3_seq(priv, rank_mask, if_num, 0x7); |
| } else { |
| /* LMC0_DIMM_CTL */ |
| dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num)); |
| dimm_ctl.s.dimm0_wmask = 0xffff; |
| // FIXME: recognize a DDR3 RDIMM with 4 ranks and 2 |
| // registers, and treat it specially |
| if (num_ranks == 4 && spd_rdimm_registers == 2) { |
| debug("DDR3: Activating DIMM_CTL[dimm1_mask] bits...\n"); |
| dimm_ctl.s.dimm1_wmask = 0xffff; |
| } else { |
| dimm_ctl.s.dimm1_wmask = |
| (dimm_count > 1) ? 0xffff : 0x0000; |
| } |
| dimm_ctl.s.tcws = 0x4e0; |
| dimm_ctl.s.parity = c_cfg->parity; |
| |
| s = lookup_env(priv, "ddr_dimm0_wmask"); |
| if (s) { |
| dimm_ctl.s.dimm0_wmask = |
| simple_strtoul(s, NULL, 0); |
| } |
| |
| s = lookup_env(priv, "ddr_dimm1_wmask"); |
| if (s) { |
| dimm_ctl.s.dimm1_wmask = |
| simple_strtoul(s, NULL, 0); |
| } |
| |
| s = lookup_env(priv, "ddr_dimm_ctl_parity"); |
| if (s) |
| dimm_ctl.s.parity = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_dimm_ctl_tcws"); |
| if (s) |
| dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0); |
| |
| debug("LMC DIMM_CTL : 0x%016llx\n", |
| dimm_ctl.u64); |
| lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64); |
| |
| /* Init RCW */ |
| oct3_ddr3_seq(priv, rank_mask, if_num, 0x7); |
| } |
| |
| } else { |
| /* Disable register control writes for unbuffered */ |
| union cvmx_lmcx_dimm_ctl dimm_ctl; |
| |
| dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num)); |
| dimm_ctl.s.dimm0_wmask = 0; |
| dimm_ctl.s.dimm1_wmask = 0; |
| lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64); |
| } |
| } |
| |
| static int lmc_rank_init(struct ddr_priv *priv) |
| { |
| char *s; |
| |
| if (enable_by_rank_init) { |
| by_rank = 3; |
| saved_rank_mask = rank_mask; |
| } |
| |
| start_by_rank_init: |
| |
| if (enable_by_rank_init) { |
| rank_mask = (1 << by_rank); |
| if (!(rank_mask & saved_rank_mask)) |
| goto end_by_rank_init; |
| if (by_rank == 0) |
| rank_mask = saved_rank_mask; |
| |
| debug("\n>>>>> BY_RANK: starting rank %d with mask 0x%02x\n\n", |
| by_rank, rank_mask); |
| } |
| |
| /* |
| * Comments (steps 3 through 5) continue in oct3_ddr3_seq() |
| */ |
| union cvmx_lmcx_modereg_params0 mp0; |
| |
| if (ddr_memory_preserved(priv)) { |
| /* |
| * Contents are being preserved. Take DRAM out of self-refresh |
| * first. Then init steps can procede normally |
| */ |
| /* self-refresh exit */ |
| oct3_ddr3_seq(priv, rank_mask, if_num, 3); |
| } |
| |
| mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num)); |
| mp0.s.dllr = 1; /* Set during first init sequence */ |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64); |
| |
| ddr_init_seq(priv, rank_mask, if_num); |
| |
| mp0.s.dllr = 0; /* Clear for normal operation */ |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64); |
| |
| if (spd_rdimm && ddr_type == DDR4_DRAM && |
| octeon_is_cpuid(OCTEON_CN7XXX)) { |
| debug("Running init sequence 1\n"); |
| change_rdimm_mpr_pattern(priv, rank_mask, if_num, dimm_count); |
| } |
| |
| memset(lanes, 0, sizeof(lanes)); |
| for (lane = 0; lane < last_lane; lane++) { |
| // init all lanes to reset value |
| dac_settings[lane] = 127; |
| } |
| |
| // FIXME: disable internal VREF if deskew is disabled? |
| if (disable_deskew_training) { |
| debug("N%d.LMC%d: internal VREF Training disabled, leaving them in RESET.\n", |
| node, if_num); |
| num_samples = 0; |
| } else if (ddr_type == DDR4_DRAM && |
| !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) { |
| num_samples = DEFAULT_DAC_SAMPLES; |
| } else { |
| // if DDR3 or no ability to write DAC values |
| num_samples = 1; |
| } |
| |
| perform_internal_vref_training: |
| |
| total_dac_eval_retries = 0; |
| dac_eval_exhausted = 0; |
| |
| for (sample = 0; sample < num_samples; sample++) { |
| dac_eval_retries = 0; |
| |
| // make offset and internal vref training repeatable |
| do { |
| /* |
| * 6.9.8 LMC Offset Training |
| * LMC requires input-receiver offset training. |
| */ |
| perform_offset_training(priv, rank_mask, if_num); |
| |
| /* |
| * 6.9.9 LMC Internal vref Training |
| * LMC requires input-reference-voltage training. |
| */ |
| perform_internal_vref_training(priv, rank_mask, if_num); |
| |
| // read and maybe display the DAC values for a sample |
| read_dac_dbi_settings(priv, if_num, /*DAC*/ 1, |
| dac_settings); |
| if (num_samples == 1 || ddr_verbose(priv)) { |
| display_dac_dbi_settings(if_num, /*DAC*/ 1, |
| use_ecc, dac_settings, |
| "Internal VREF"); |
| } |
| |
| // for DDR4, evaluate the DAC settings and retry |
| // if any issues |
| if (ddr_type == DDR4_DRAM) { |
| if (evaluate_dac_settings |
| (if_64b, use_ecc, dac_settings)) { |
| dac_eval_retries += 1; |
| if (dac_eval_retries > |
| DAC_RETRIES_LIMIT) { |
| debug("N%d.LMC%d: DDR4 internal VREF DAC settings: retries exhausted; continuing...\n", |
| node, if_num); |
| dac_eval_exhausted += 1; |
| } else { |
| debug("N%d.LMC%d: DDR4 internal VREF DAC settings inconsistent; retrying....\n", |
| node, if_num); |
| total_dac_eval_retries += 1; |
| // try another sample |
| continue; |
| } |
| } |
| |
| // taking multiple samples, otherwise do nothing |
| if (num_samples > 1) { |
| // good sample or exhausted retries, |
| // record it |
| for (lane = 0; lane < last_lane; |
| lane++) { |
| lanes[lane].bytes[sample] = |
| dac_settings[lane]; |
| } |
| } |
| } |
| // done if DDR3, or good sample, or exhausted retries |
| break; |
| } while (1); |
| } |
| |
| if (ddr_type == DDR4_DRAM && dac_eval_exhausted > 0) { |
| debug("N%d.LMC%d: DDR internal VREF DAC settings: total retries %d, exhausted %d\n", |
| node, if_num, total_dac_eval_retries, dac_eval_exhausted); |
| } |
| |
| if (num_samples > 1) { |
| debug("N%d.LMC%d: DDR4 internal VREF DAC settings: processing multiple samples...\n", |
| node, if_num); |
| |
| for (lane = 0; lane < last_lane; lane++) { |
| dac_settings[lane] = |
| process_samples_average(&lanes[lane].bytes[0], |
| num_samples, if_num, lane); |
| } |
| display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc, |
| dac_settings, "Averaged VREF"); |
| |
| // finally, write the final DAC values |
| for (lane = 0; lane < last_lane; lane++) { |
| load_dac_override(priv, if_num, dac_settings[lane], |
| lane); |
| } |
| } |
| |
| // allow override of any byte-lane internal VREF |
| int overrode_vref_dac = 0; |
| |
| for (lane = 0; lane < last_lane; lane++) { |
| s = lookup_env(priv, "ddr%d_vref_dac_byte%d", if_num, lane); |
| if (s) { |
| dac_settings[lane] = simple_strtoul(s, NULL, 0); |
| overrode_vref_dac = 1; |
| // finally, write the new DAC value |
| load_dac_override(priv, if_num, dac_settings[lane], |
| lane); |
| } |
| } |
| if (overrode_vref_dac) { |
| display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc, |
| dac_settings, "Override VREF"); |
| } |
| |
| // as a second step, after internal VREF training, before starting |
| // deskew training: |
| // for DDR3 and OCTEON3 not O78 pass 1.x, override the DAC setting |
| // to 127 |
| if (ddr_type == DDR3_DRAM && !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && |
| !disable_deskew_training) { |
| load_dac_override(priv, if_num, 127, /* all */ 0x0A); |
| debug("N%d.LMC%d: Overriding DDR3 internal VREF DAC settings to 127.\n", |
| node, if_num); |
| } |
| |
| /* |
| * 4.8.8 LMC Deskew Training |
| * |
| * LMC requires input-read-data deskew training. |
| */ |
| if (!disable_deskew_training) { |
| deskew_training_errors = |
| perform_deskew_training(priv, rank_mask, if_num, |
| spd_rawcard_aorb); |
| |
| // All the Deskew lock and saturation retries (may) have |
| // been done, but we ended up with nibble errors; so, |
| // as a last ditch effort, try the Internal vref |
| // Training again... |
| if (deskew_training_errors) { |
| if (internal_retries < |
| DEFAULT_INTERNAL_VREF_TRAINING_LIMIT) { |
| internal_retries++; |
| debug("N%d.LMC%d: Deskew training results still unsettled - retrying internal vref training (%d)\n", |
| node, if_num, internal_retries); |
| goto perform_internal_vref_training; |
| } else { |
| if (restart_if_dsk_incomplete) { |
| debug("N%d.LMC%d: INFO: Deskew training incomplete - %d retries exhausted, Restarting LMC init...\n", |
| node, if_num, internal_retries); |
| return -EAGAIN; |
| } |
| debug("N%d.LMC%d: Deskew training incomplete - %d retries exhausted, but continuing...\n", |
| node, if_num, internal_retries); |
| } |
| } /* if (deskew_training_errors) */ |
| |
| // FIXME: treat this as the final DSK print from now on, |
| // and print if VBL_NORM or above also, save the results |
| // of the original training in case we want them later |
| validate_deskew_training(priv, rank_mask, if_num, |
| &deskew_training_results, 1); |
| } else { /* if (! disable_deskew_training) */ |
| debug("N%d.LMC%d: Deskew Training disabled, printing settings before HWL.\n", |
| node, if_num); |
| validate_deskew_training(priv, rank_mask, if_num, |
| &deskew_training_results, 1); |
| } /* if (! disable_deskew_training) */ |
| |
| if (enable_by_rank_init) { |
| read_dac_dbi_settings(priv, if_num, /*dac */ 1, |
| &rank_dac[by_rank].bytes[0]); |
| get_deskew_settings(priv, if_num, &rank_dsk[by_rank]); |
| debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank); |
| } |
| |
| end_by_rank_init: |
| |
| if (enable_by_rank_init) { |
| //debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank); |
| |
| by_rank--; |
| if (by_rank >= 0) |
| goto start_by_rank_init; |
| |
| rank_mask = saved_rank_mask; |
| ddr_init_seq(priv, rank_mask, if_num); |
| |
| process_by_rank_dac(priv, if_num, rank_mask, rank_dac); |
| process_by_rank_dsk(priv, if_num, rank_mask, rank_dsk); |
| |
| // FIXME: set this to prevent later checking!!! |
| disable_deskew_training = 1; |
| |
| debug("\n>>>>> BY_RANK: FINISHED!!\n\n"); |
| } |
| |
| return 0; |
| } |
| |
| static void lmc_config_2(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_config lmc_config; |
| int save_ref_zqcs_int; |
| u64 temp_delay_usecs; |
| |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| |
| /* |
| * Temporarily select the minimum ZQCS interval and wait |
| * long enough for a few ZQCS calibrations to occur. This |
| * should ensure that the calibration circuitry is |
| * stabilized before read/write leveling occurs. |
| */ |
| if (octeon_is_cpuid(OCTEON_CN7XXX)) { |
| save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int; |
| /* set smallest interval */ |
| lmc_config.cn78xx.ref_zqcs_int = 1 | (32 << 7); |
| } else { |
| save_ref_zqcs_int = lmc_config.cn63xx.ref_zqcs_int; |
| /* set smallest interval */ |
| lmc_config.cn63xx.ref_zqcs_int = 1 | (32 << 7); |
| } |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64); |
| lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| |
| /* |
| * Compute an appropriate delay based on the current ZQCS |
| * interval. The delay should be long enough for the |
| * current ZQCS delay counter to expire plus ten of the |
| * minimum intarvals to ensure that some calibrations |
| * occur. |
| */ |
| temp_delay_usecs = (((u64)save_ref_zqcs_int >> 7) * tclk_psecs * |
| 100 * 512 * 128) / (10000 * 10000) + 10 * |
| ((u64)32 * tclk_psecs * 100 * 512 * 128) / (10000 * 10000); |
| |
| debug("Waiting %lld usecs for ZQCS calibrations to start\n", |
| temp_delay_usecs); |
| udelay(temp_delay_usecs); |
| |
| if (octeon_is_cpuid(OCTEON_CN7XXX)) { |
| /* Restore computed interval */ |
| lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int; |
| } else { |
| /* Restore computed interval */ |
| lmc_config.cn63xx.ref_zqcs_int = save_ref_zqcs_int; |
| } |
| |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64); |
| lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| } |
| |
| static union cvmx_lmcx_wlevel_ctl wl_ctl __section(".data"); |
| static union cvmx_lmcx_wlevel_rankx wl_rank __section(".data"); |
| static union cvmx_lmcx_modereg_params1 mp1 __section(".data"); |
| |
| static int wl_mask[9] __section(".data"); |
| static int byte_idx __section(".data"); |
| static int ecc_ena __section(".data"); |
| static int wl_roundup __section(".data"); |
| static int save_mode32b __section(".data"); |
| static int disable_hwl_validity __section(".data"); |
| static int default_wl_rtt_nom __section(".data"); |
| static int wl_pbm_pump __section(".data"); |
| |
| static void lmc_write_leveling_loop(struct ddr_priv *priv, int rankx) |
| { |
| int wloop = 0; |
| // retries per sample for HW-related issues with bitmasks or values |
| int wloop_retries = 0; |
| int wloop_retries_total = 0; |
| int wloop_retries_exhausted = 0; |
| #define WLOOP_RETRIES_DEFAULT 5 |
| int wl_val_err; |
| int wl_mask_err_rank = 0; |
| int wl_val_err_rank = 0; |
| // array to collect counts of byte-lane values |
| // assume low-order 3 bits and even, so really only 2-bit values |
| struct wlevel_bitcnt wl_bytes[9], wl_bytes_extra[9]; |
| int extra_bumps, extra_mask; |
| int rank_nom = 0; |
| |
| if (!(rank_mask & (1 << rankx))) |
| return; |
| |
| if (match_wl_rtt_nom) { |
| if (rankx == 0) |
| rank_nom = mp1.s.rtt_nom_00; |
| if (rankx == 1) |
| rank_nom = mp1.s.rtt_nom_01; |
| if (rankx == 2) |
| rank_nom = mp1.s.rtt_nom_10; |
| if (rankx == 3) |
| rank_nom = mp1.s.rtt_nom_11; |
| |
| debug("N%d.LMC%d.R%d: Setting WLEVEL_CTL[rtt_nom] to %d (%d)\n", |
| node, if_num, rankx, rank_nom, |
| imp_val->rtt_nom_ohms[rank_nom]); |
| } |
| |
| memset(wl_bytes, 0, sizeof(wl_bytes)); |
| memset(wl_bytes_extra, 0, sizeof(wl_bytes_extra)); |
| |
| // restructure the looping so we can keep trying until we get the |
| // samples we want |
| while (wloop < wl_loops) { |
| wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num)); |
| |
| wl_ctl.cn78xx.rtt_nom = |
| (default_wl_rtt_nom > 0) ? (default_wl_rtt_nom - 1) : 7; |
| |
| if (match_wl_rtt_nom) { |
| wl_ctl.cn78xx.rtt_nom = |
| (rank_nom > 0) ? (rank_nom - 1) : 7; |
| } |
| |
| /* Clear write-level delays */ |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), 0); |
| |
| wl_mask_err = 0; /* Reset error counters */ |
| wl_val_err = 0; |
| |
| for (byte_idx = 0; byte_idx < 9; ++byte_idx) |
| wl_mask[byte_idx] = 0; /* Reset bitmasks */ |
| |
| // do all the byte-lanes at the same time |
| wl_ctl.cn78xx.lanemask = 0x1ff; |
| |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64); |
| |
| /* |
| * Read and write values back in order to update the |
| * status field. This insures that we read the updated |
| * values after write-leveling has completed. |
| */ |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), |
| lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num))); |
| |
| /* write-leveling */ |
| oct3_ddr3_seq(priv, 1 << rankx, if_num, 6); |
| |
| do { |
| wl_rank.u64 = lmc_rd(priv, |
| CVMX_LMCX_WLEVEL_RANKX(rankx, |
| if_num)); |
| } while (wl_rank.cn78xx.status != 3); |
| |
| wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, |
| if_num)); |
| |
| for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) { |
| wl_mask[byte_idx] = lmc_ddr3_wl_dbg_read(priv, |
| if_num, |
| byte_idx); |
| if (wl_mask[byte_idx] == 0) |
| ++wl_mask_err; |
| } |
| |
| // check validity only if no bitmask errors |
| if (wl_mask_err == 0) { |
| if ((spd_dimm_type == 1 || spd_dimm_type == 2) && |
| dram_width != 16 && if_64b && |
| !disable_hwl_validity) { |
| // bypass if [mini|SO]-[RU]DIMM or x16 or |
| // 32-bit |
| wl_val_err = |
| validate_hw_wl_settings(if_num, |
| &wl_rank, |
| spd_rdimm, ecc_ena); |
| wl_val_err_rank += (wl_val_err != 0); |
| } |
| } else { |
| wl_mask_err_rank++; |
| } |
| |
| // before we print, if we had bitmask or validity errors, |
| // do a retry... |
| if (wl_mask_err != 0 || wl_val_err != 0) { |
| if (wloop_retries < WLOOP_RETRIES_DEFAULT) { |
| wloop_retries++; |
| wloop_retries_total++; |
| // this printout is per-retry: only when VBL |
| // is high enough (DEV?) |
| // FIXME: do we want to show the bad bitmaps |
| // or delays here also? |
| debug("N%d.LMC%d.R%d: H/W Write-Leveling had %s errors - retrying...\n", |
| node, if_num, rankx, |
| (wl_mask_err) ? "Bitmask" : "Validity"); |
| // this takes us back to the top without |
| // counting a sample |
| return; |
| } |
| |
| // retries exhausted, do not print at normal VBL |
| debug("N%d.LMC%d.R%d: H/W Write-Leveling issues: %s errors\n", |
| node, if_num, rankx, |
| (wl_mask_err) ? "Bitmask" : "Validity"); |
| wloop_retries_exhausted++; |
| } |
| // no errors or exhausted retries, use this sample |
| wloop_retries = 0; //reset for next sample |
| |
| // when only 1 sample or forced, print the bitmasks then |
| // current HW WL |
| if (wl_loops == 1 || wl_print) { |
| if (wl_print > 1) |
| display_wl_bm(if_num, rankx, wl_mask); |
| display_wl(if_num, wl_rank, rankx); |
| } |
| |
| if (wl_roundup) { /* Round up odd bitmask delays */ |
| for (byte_idx = 0; byte_idx < (8 + ecc_ena); |
| ++byte_idx) { |
| if (!(if_bytemask & (1 << byte_idx))) |
| return; |
| upd_wl_rank(&wl_rank, byte_idx, |
| roundup_ddr3_wlevel_bitmask |
| (wl_mask[byte_idx])); |
| } |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), |
| wl_rank.u64); |
| display_wl(if_num, wl_rank, rankx); |
| } |
| |
| // OK, we have a decent sample, no bitmask or validity errors |
| extra_bumps = 0; |
| extra_mask = 0; |
| for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) { |
| int ix; |
| |
| if (!(if_bytemask & (1 << byte_idx))) |
| return; |
| |
| // increment count of byte-lane value |
| // only 4 values |
| ix = (get_wl_rank(&wl_rank, byte_idx) >> 1) & 3; |
| wl_bytes[byte_idx].bitcnt[ix]++; |
| wl_bytes_extra[byte_idx].bitcnt[ix]++; |
| // if perfect... |
| if (__builtin_popcount(wl_mask[byte_idx]) == 4) { |
| wl_bytes_extra[byte_idx].bitcnt[ix] += |
| wl_pbm_pump; |
| extra_bumps++; |
| extra_mask |= 1 << byte_idx; |
| } |
| } |
| |
| if (extra_bumps) { |
| if (wl_print > 1) { |
| debug("N%d.LMC%d.R%d: HWL sample had %d bumps (0x%02x).\n", |
| node, if_num, rankx, extra_bumps, |
| extra_mask); |
| } |
| } |
| |
| // if we get here, we have taken a decent sample |
| wloop++; |
| |
| } /* while (wloop < wl_loops) */ |
| |
| // if we did sample more than once, try to pick a majority vote |
| if (wl_loops > 1) { |
| // look for the majority in each byte-lane |
| for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) { |
| int mx, mc, xc, cc; |
| int ix, alts; |
| int maj, xmaj, xmx, xmc, xxc, xcc; |
| |
| if (!(if_bytemask & (1 << byte_idx))) |
| return; |
| maj = find_wl_majority(&wl_bytes[byte_idx], &mx, |
| &mc, &xc, &cc); |
| xmaj = find_wl_majority(&wl_bytes_extra[byte_idx], |
| &xmx, &xmc, &xxc, &xcc); |
| if (maj != xmaj) { |
| if (wl_print) { |
| debug("N%d.LMC%d.R%d: Byte %d: HWL maj %d(%d), USING xmaj %d(%d)\n", |
| node, if_num, rankx, |
| byte_idx, maj, xc, xmaj, xxc); |
| } |
| mx = xmx; |
| mc = xmc; |
| xc = xxc; |
| cc = xcc; |
| } |
| |
| // see if there was an alternate |
| // take out the majority choice |
| alts = (mc & ~(1 << mx)); |
| if (alts != 0) { |
| for (ix = 0; ix < 4; ix++) { |
| // FIXME: could be done multiple times? |
| // bad if so |
| if (alts & (1 << ix)) { |
| // set the mask |
| hwl_alts[rankx].hwl_alt_mask |= |
| (1 << byte_idx); |
| // record the value |
| hwl_alts[rankx].hwl_alt_delay[byte_idx] = |
| ix << 1; |
| if (wl_print > 1) { |
| debug("N%d.LMC%d.R%d: SWL_TRY_HWL_ALT: Byte %d maj %d (%d) alt %d (%d).\n", |
| node, |
| if_num, |
| rankx, |
| byte_idx, |
| mx << 1, |
| xc, |
| ix << 1, |
| wl_bytes |
| [byte_idx].bitcnt |
| [ix]); |
| } |
| } |
| } |
| } |
| |
| if (cc > 2) { // unlikely, but... |
| // assume: counts for 3 indices are all 1 |
| // possiblities are: 0/2/4, 2/4/6, 0/4/6, 0/2/6 |
| // and the desired?: 2 , 4 , 6, 0 |
| // we choose the middle, assuming one of the |
| // outliers is bad |
| // NOTE: this is an ugly hack at the moment; |
| // there must be a better way |
| switch (mc) { |
| case 0x7: |
| mx = 1; |
| break; // was 0/2/4, choose 2 |
| case 0xb: |
| mx = 0; |
| break; // was 0/2/6, choose 0 |
| case 0xd: |
| mx = 3; |
| break; // was 0/4/6, choose 6 |
| case 0xe: |
| mx = 2; |
| break; // was 2/4/6, choose 4 |
| default: |
| case 0xf: |
| mx = 1; |
| break; // was 0/2/4/6, choose 2? |
| } |
| printf("N%d.LMC%d.R%d: HW WL MAJORITY: bad byte-lane %d (0x%x), using %d.\n", |
| node, if_num, rankx, byte_idx, mc, |
| mx << 1); |
| } |
| upd_wl_rank(&wl_rank, byte_idx, mx << 1); |
| } |
| |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), |
| wl_rank.u64); |
| display_wl_with_final(if_num, wl_rank, rankx); |
| |
| // FIXME: does this help make the output a little easier |
| // to focus? |
| if (wl_print > 0) |
| debug("-----------\n"); |
| |
| } /* if (wl_loops > 1) */ |
| |
| // maybe print an error summary for the rank |
| if (wl_mask_err_rank != 0 || wl_val_err_rank != 0) { |
| debug("N%d.LMC%d.R%d: H/W Write-Leveling errors - %d bitmask, %d validity, %d retries, %d exhausted\n", |
| node, if_num, rankx, wl_mask_err_rank, |
| wl_val_err_rank, wloop_retries_total, |
| wloop_retries_exhausted); |
| } |
| } |
| |
| static void lmc_write_leveling(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_config cfg; |
| int rankx; |
| char *s; |
| |
| /* |
| * 4.8.9 LMC Write Leveling |
| * |
| * LMC supports an automatic write leveling like that described in the |
| * JEDEC DDR3 specifications separately per byte-lane. |
| * |
| * All of DDR PLL, LMC CK, LMC DRESET, and early LMC initializations |
| * must be completed prior to starting this LMC write-leveling sequence. |
| * |
| * There are many possible procedures that will write-level all the |
| * attached DDR3 DRAM parts. One possibility is for software to simply |
| * write the desired values into LMC(0)_WLEVEL_RANK(0..3). This section |
| * describes one possible sequence that uses LMC's autowrite-leveling |
| * capabilities. |
| * |
| * 1. If the DQS/DQ delays on the board may be more than the ADD/CMD |
| * delays, then ensure that LMC(0)_CONFIG[EARLY_DQX] is set at this |
| * point. |
| * |
| * Do the remaining steps 2-7 separately for each rank i with attached |
| * DRAM. |
| * |
| * 2. Write LMC(0)_WLEVEL_RANKi = 0. |
| * |
| * 3. For x8 parts: |
| * |
| * Without changing any other fields in LMC(0)_WLEVEL_CTL, write |
| * LMC(0)_WLEVEL_CTL[LANEMASK] to select all byte lanes with attached |
| * DRAM. |
| * |
| * For x16 parts: |
| * |
| * Without changing any other fields in LMC(0)_WLEVEL_CTL, write |
| * LMC(0)_WLEVEL_CTL[LANEMASK] to select all even byte lanes with |
| * attached DRAM. |
| * |
| * 4. Without changing any other fields in LMC(0)_CONFIG, |
| * |
| * o write LMC(0)_SEQ_CTL[SEQ_SEL] to select write-leveling |
| * |
| * o write LMC(0)_CONFIG[RANKMASK] = (1 << i) |
| * |
| * o write LMC(0)_SEQ_CTL[INIT_START] = 1 |
| * |
| * LMC will initiate write-leveling at this point. Assuming |
| * LMC(0)_WLEVEL_CTL [SSET] = 0, LMC first enables write-leveling on |
| * the selected DRAM rank via a DDR3 MR1 write, then sequences |
| * through |
| * and accumulates write-leveling results for eight different delay |
| * settings twice, starting at a delay of zero in this case since |
| * LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] = 0, increasing by 1/8 CK each |
| * setting, covering a total distance of one CK, then disables the |
| * write-leveling via another DDR3 MR1 write. |
| * |
| * After the sequence through 16 delay settings is complete: |
| * |
| * o LMC sets LMC(0)_WLEVEL_RANKi[STATUS] = 3 |
| * |
| * o LMC sets LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] (for all ranks selected |
| * by LMC(0)_WLEVEL_CTL[LANEMASK]) to indicate the first write |
| * leveling result of 1 that followed result of 0 during the |
| * sequence, except that the LMC always writes |
| * LMC(0)_WLEVEL_RANKi[BYTE*<0>]=0. |
| * |
| * o Software can read the eight write-leveling results from the |
| * first pass through the delay settings by reading |
| * LMC(0)_WLEVEL_DBG[BITMASK] (after writing |
| * LMC(0)_WLEVEL_DBG[BYTE]). (LMC does not retain the writeleveling |
| * results from the second pass through the eight delay |
| * settings. They should often be identical to the |
| * LMC(0)_WLEVEL_DBG[BITMASK] results, though.) |
| * |
| * 5. Wait until LMC(0)_WLEVEL_RANKi[STATUS] != 2. |
| * |
| * LMC will have updated LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] for all byte |
| * lanes selected by LMC(0)_WLEVEL_CTL[LANEMASK] at this point. |
| * LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] will still be the value that |
| * software wrote in substep 2 above, which is 0. |
| * |
| * 6. For x16 parts: |
| * |
| * Without changing any other fields in LMC(0)_WLEVEL_CTL, write |
| * LMC(0)_WLEVEL_CTL[LANEMASK] to select all odd byte lanes with |
| * attached DRAM. |
| * |
| * Repeat substeps 4 and 5 with this new LMC(0)_WLEVEL_CTL[LANEMASK] |
| * setting. Skip to substep 7 if this has already been done. |
| * |
| * For x8 parts: |
| * |
| * Skip this substep. Go to substep 7. |
| * |
| * 7. Calculate LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings for all byte |
| * lanes on all ranks with attached DRAM. |
| * |
| * At this point, all byte lanes on rank i with attached DRAM should |
| * have been write-leveled, and LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] has |
| * the result for each byte lane. |
| * |
| * But note that the DDR3 write-leveling sequence will only determine |
| * the delay modulo the CK cycle time, and cannot determine how many |
| * additional CK cycles of delay are present. Software must calculate |
| * the number of CK cycles, or equivalently, the |
| * LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings. |
| * |
| * This BYTE*<4:3> calculation is system/board specific. |
| * |
| * Many techniques can be used to calculate write-leveling BYTE*<4:3> |
| * values, including: |
| * |
| * o Known values for some byte lanes. |
| * |
| * o Relative values for some byte lanes relative to others. |
| * |
| * For example, suppose lane X is likely to require a larger |
| * write-leveling delay than lane Y. A BYTEX<2:0> value that is much |
| * smaller than the BYTEY<2:0> value may then indicate that the |
| * required lane X delay wrapped into the next CK, so BYTEX<4:3> |
| * should be set to BYTEY<4:3>+1. |
| * |
| * When ECC DRAM is not present (i.e. when DRAM is not attached to |
| * the DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the |
| * DDR_DQS_<4>_* and DDR_DQ<35:32> chip signals), write |
| * LMC(0)_WLEVEL_RANK*[BYTE8] = LMC(0)_WLEVEL_RANK*[BYTE0], |
| * using the final calculated BYTE0 value. |
| * Write LMC(0)_WLEVEL_RANK*[BYTE4] = LMC(0)_WLEVEL_RANK*[BYTE0], |
| * using the final calculated BYTE0 value. |
| * |
| * 8. Initialize LMC(0)_WLEVEL_RANK* values for all unused ranks. |
| * |
| * Let rank i be a rank with attached DRAM. |
| * |
| * For all ranks j that do not have attached DRAM, set |
| * LMC(0)_WLEVEL_RANKj = LMC(0)_WLEVEL_RANKi. |
| */ |
| |
| rankx = 0; |
| wl_roundup = 0; |
| disable_hwl_validity = 0; |
| |
| // wl_pbm_pump: weight for write-leveling PBMs... |
| // 0 causes original behavior |
| // 1 allows a minority of 2 pbms to outscore a majority of 3 non-pbms |
| // 4 would allow a minority of 1 pbm to outscore a majority of 4 |
| // non-pbms |
| wl_pbm_pump = 4; // FIXME: is 4 too much? |
| |
| if (wl_loops) { |
| debug("N%d.LMC%d: Performing Hardware Write-Leveling\n", node, |
| if_num); |
| } else { |
| /* Force software write-leveling to run */ |
| wl_mask_err = 1; |
| debug("N%d.LMC%d: Forcing software Write-Leveling\n", node, |
| if_num); |
| } |
| |
| default_wl_rtt_nom = (ddr_type == DDR3_DRAM) ? |
| rttnom_20ohm : ddr4_rttnom_40ohm; |
| |
| cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| ecc_ena = cfg.s.ecc_ena; |
| save_mode32b = cfg.cn78xx.mode32b; |
| cfg.cn78xx.mode32b = (!if_64b); |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64); |
| debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b); |
| |
| s = lookup_env(priv, "ddr_wlevel_roundup"); |
| if (s) |
| wl_roundup = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_wlevel_printall"); |
| if (s) |
| wl_print = strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_wlevel_pbm_bump"); |
| if (s) |
| wl_pbm_pump = strtoul(s, NULL, 0); |
| |
| // default to disable when RL sequential delay check is disabled |
| disable_hwl_validity = disable_sequential_delay_check; |
| s = lookup_env(priv, "ddr_disable_hwl_validity"); |
| if (s) |
| disable_hwl_validity = !!strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_wl_rtt_nom"); |
| if (s) |
| default_wl_rtt_nom = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_match_wl_rtt_nom"); |
| if (s) |
| match_wl_rtt_nom = !!simple_strtoul(s, NULL, 0); |
| |
| if (match_wl_rtt_nom) |
| mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num)); |
| |
| // For DDR3, we do not touch WLEVEL_CTL fields OR_DIS or BITMASK |
| // For DDR4, we touch WLEVEL_CTL fields OR_DIS or BITMASK here |
| if (ddr_type == DDR4_DRAM) { |
| int default_or_dis = 1; |
| int default_bitmask = 0xff; |
| |
| // when x4, use only the lower nibble |
| if (dram_width == 4) { |
| default_bitmask = 0x0f; |
| if (wl_print) { |
| debug("N%d.LMC%d: WLEVEL_CTL: default bitmask is 0x%02x for DDR4 x4\n", |
| node, if_num, default_bitmask); |
| } |
| } |
| |
| wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num)); |
| wl_ctl.s.or_dis = default_or_dis; |
| wl_ctl.s.bitmask = default_bitmask; |
| |
| // allow overrides |
| s = lookup_env(priv, "ddr_wlevel_ctl_or_dis"); |
| if (s) |
| wl_ctl.s.or_dis = !!strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_wlevel_ctl_bitmask"); |
| if (s) |
| wl_ctl.s.bitmask = simple_strtoul(s, NULL, 0); |
| |
| // print only if not defaults |
| if (wl_ctl.s.or_dis != default_or_dis || |
| wl_ctl.s.bitmask != default_bitmask) { |
| debug("N%d.LMC%d: WLEVEL_CTL: or_dis=%d, bitmask=0x%02x\n", |
| node, if_num, wl_ctl.s.or_dis, wl_ctl.s.bitmask); |
| } |
| |
| // always write |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64); |
| } |
| |
| // Start the hardware write-leveling loop per rank |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) |
| lmc_write_leveling_loop(priv, rankx); |
| |
| cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| cfg.cn78xx.mode32b = save_mode32b; |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64); |
| debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b); |
| |
| // At the end of HW Write Leveling, check on some DESKEW things... |
| if (!disable_deskew_training) { |
| struct deskew_counts dsk_counts; |
| int retry_count = 0; |
| |
| debug("N%d.LMC%d: Check Deskew Settings before Read-Leveling.\n", |
| node, if_num); |
| |
| do { |
| validate_deskew_training(priv, rank_mask, if_num, |
| &dsk_counts, 1); |
| |
| // only RAWCARD A or B will not benefit from |
| // retraining if there's only saturation |
| // or any rawcard if there is a nibble error |
| if ((!spd_rawcard_aorb && dsk_counts.saturated > 0) || |
| (dsk_counts.nibrng_errs != 0 || |
| dsk_counts.nibunl_errs != 0)) { |
| retry_count++; |
| debug("N%d.LMC%d: Deskew Status indicates saturation or nibble errors - retry %d Training.\n", |
| node, if_num, retry_count); |
| perform_deskew_training(priv, rank_mask, if_num, |
| spd_rawcard_aorb); |
| } else { |
| break; |
| } |
| } while (retry_count < 5); |
| } |
| } |
| |
| static void lmc_workaround(struct ddr_priv *priv) |
| { |
| /* Workaround Trcd overflow by using Additive latency. */ |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) { |
| union cvmx_lmcx_modereg_params0 mp0; |
| union cvmx_lmcx_timing_params1 tp1; |
| union cvmx_lmcx_control ctrl; |
| int rankx; |
| |
| tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num)); |
| mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num)); |
| ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| |
| if (tp1.cn78xx.trcd == 0) { |
| debug("Workaround Trcd overflow by using Additive latency.\n"); |
| /* Hard code this to 12 and enable additive latency */ |
| tp1.cn78xx.trcd = 12; |
| mp0.s.al = 2; /* CL-2 */ |
| ctrl.s.pocas = 1; |
| |
| debug("MODEREG_PARAMS0 : 0x%016llx\n", |
| mp0.u64); |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), |
| mp0.u64); |
| debug("TIMING_PARAMS1 : 0x%016llx\n", |
| tp1.u64); |
| lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64); |
| |
| debug("LMC_CONTROL : 0x%016llx\n", |
| ctrl.u64); |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64); |
| |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| /* MR1 */ |
| ddr4_mrw(priv, if_num, rankx, -1, 1, 0); |
| } |
| } |
| } |
| |
| // this is here just for output, to allow check of the Deskew |
| // settings one last time... |
| if (!disable_deskew_training) { |
| struct deskew_counts dsk_counts; |
| |
| debug("N%d.LMC%d: Check Deskew Settings before software Write-Leveling.\n", |
| node, if_num); |
| validate_deskew_training(priv, rank_mask, if_num, &dsk_counts, |
| 3); |
| } |
| |
| /* |
| * Workaround Errata 26304 (T88@2.0, O75@1.x, O78@2.x) |
| * |
| * When the CSRs LMCX_DLL_CTL3[WR_DESKEW_ENA] = 1 AND |
| * LMCX_PHY_CTL2[DQS[0..8]_DSK_ADJ] > 4, set |
| * LMCX_EXT_CONFIG[DRIVE_ENA_BPRCH] = 1. |
| */ |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) || |
| octeon_is_cpuid(OCTEON_CNF75XX_PASS1_X)) { |
| union cvmx_lmcx_dll_ctl3 dll_ctl3; |
| union cvmx_lmcx_phy_ctl2 phy_ctl2; |
| union cvmx_lmcx_ext_config ext_cfg; |
| int increased_dsk_adj = 0; |
| int byte; |
| |
| phy_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL2(if_num)); |
| ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num)); |
| dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); |
| |
| for (byte = 0; byte < 8; ++byte) { |
| if (!(if_bytemask & (1 << byte))) |
| continue; |
| increased_dsk_adj |= |
| (((phy_ctl2.u64 >> (byte * 3)) & 0x7) > 4); |
| } |
| |
| if (dll_ctl3.s.wr_deskew_ena == 1 && increased_dsk_adj) { |
| ext_cfg.s.drive_ena_bprch = 1; |
| lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64); |
| debug("LMC%d: Forcing DRIVE_ENA_BPRCH for Workaround Errata 26304.\n", |
| if_num); |
| } |
| } |
| } |
| |
| // Software Write-Leveling block |
| |
| #define VREF_RANGE1_LIMIT 0x33 // range1 is valid for 0x00 - 0x32 |
| #define VREF_RANGE2_LIMIT 0x18 // range2 is valid for 0x00 - 0x17 |
| // full window is valid for 0x00 to 0x4A |
| // let 0x00 - 0x17 be range2, 0x18 - 0x4a be range 1 |
| #define VREF_LIMIT (VREF_RANGE1_LIMIT + VREF_RANGE2_LIMIT) |
| #define VREF_FINAL (VREF_LIMIT - 1) |
| |
| enum sw_wl_status { |
| WL_ESTIMATED = 0, /* HW/SW wleveling failed. Reslt estimated */ |
| WL_HARDWARE = 1, /* H/W wleveling succeeded */ |
| WL_SOFTWARE = 2, /* S/W wleveling passed 2 contiguous setting */ |
| WL_SOFTWARE1 = 3, /* S/W wleveling passed 1 marginal setting */ |
| }; |
| |
| static u64 rank_addr __section(".data"); |
| static int vref_val __section(".data"); |
| static int final_vref_val __section(".data"); |
| static int final_vref_range __section(".data"); |
| static int start_vref_val __section(".data"); |
| static int computed_final_vref_val __section(".data"); |
| static char best_vref_val_count __section(".data"); |
| static char vref_val_count __section(".data"); |
| static char best_vref_val_start __section(".data"); |
| static char vref_val_start __section(".data"); |
| static int bytes_failed __section(".data"); |
| static enum sw_wl_status byte_test_status[9] __section(".data"); |
| static enum sw_wl_status sw_wl_rank_status __section(".data"); |
| static int sw_wl_failed __section(".data"); |
| static int sw_wl_hw __section(".data"); |
| static int measured_vref_flag __section(".data"); |
| |
| static void ddr4_vref_loop(struct ddr_priv *priv, int rankx) |
| { |
| char *s; |
| |
| if (vref_val < VREF_FINAL) { |
| int vrange, vvalue; |
| |
| if (vref_val < VREF_RANGE2_LIMIT) { |
| vrange = 1; |
| vvalue = vref_val; |
| } else { |
| vrange = 0; |
| vvalue = vref_val - VREF_RANGE2_LIMIT; |
| } |
| |
| set_vref(priv, if_num, rankx, vrange, vvalue); |
| } else { /* if (vref_val < VREF_FINAL) */ |
| /* Print the final vref value first. */ |
| |
| /* Always print the computed first if its valid */ |
| if (computed_final_vref_val >= 0) { |
| debug("N%d.LMC%d.R%d: vref Computed Summary : %2d (0x%02x)\n", |
| node, if_num, rankx, |
| computed_final_vref_val, computed_final_vref_val); |
| } |
| |
| if (!measured_vref_flag) { // setup to use the computed |
| best_vref_val_count = 1; |
| final_vref_val = computed_final_vref_val; |
| } else { // setup to use the measured |
| if (best_vref_val_count > 0) { |
| best_vref_val_count = |
| max(best_vref_val_count, (char)2); |
| final_vref_val = best_vref_val_start + |
| divide_nint(best_vref_val_count - 1, 2); |
| |
| if (final_vref_val < VREF_RANGE2_LIMIT) { |
| final_vref_range = 1; |
| } else { |
| final_vref_range = 0; |
| final_vref_val -= VREF_RANGE2_LIMIT; |
| } |
| |
| int vvlo = best_vref_val_start; |
| int vrlo; |
| int vvhi = best_vref_val_start + |
| best_vref_val_count - 1; |
| int vrhi; |
| |
| if (vvlo < VREF_RANGE2_LIMIT) { |
| vrlo = 2; |
| } else { |
| vrlo = 1; |
| vvlo -= VREF_RANGE2_LIMIT; |
| } |
| |
| if (vvhi < VREF_RANGE2_LIMIT) { |
| vrhi = 2; |
| } else { |
| vrhi = 1; |
| vvhi -= VREF_RANGE2_LIMIT; |
| } |
| debug("N%d.LMC%d.R%d: vref Training Summary : 0x%02x/%1d <----- 0x%02x/%1d -----> 0x%02x/%1d, range: %2d\n", |
| node, if_num, rankx, vvlo, vrlo, |
| final_vref_val, |
| final_vref_range + 1, vvhi, vrhi, |
| best_vref_val_count - 1); |
| |
| } else { |
| /* |
| * If nothing passed use the default vref |
| * value for this rank |
| */ |
| union cvmx_lmcx_modereg_params2 mp2; |
| |
| mp2.u64 = |
| lmc_rd(priv, |
| CVMX_LMCX_MODEREG_PARAMS2(if_num)); |
| final_vref_val = (mp2.u64 >> |
| (rankx * 10 + 3)) & 0x3f; |
| final_vref_range = (mp2.u64 >> |
| (rankx * 10 + 9)) & 0x01; |
| |
| debug("N%d.LMC%d.R%d: vref Using Default : %2d <----- %2d (0x%02x) -----> %2d, range%1d\n", |
| node, if_num, rankx, final_vref_val, |
| final_vref_val, final_vref_val, |
| final_vref_val, final_vref_range + 1); |
| } |
| } |
| |
| // allow override |
| s = lookup_env(priv, "ddr%d_vref_val_%1d%1d", |
| if_num, !!(rankx & 2), !!(rankx & 1)); |
| if (s) |
| final_vref_val = strtoul(s, NULL, 0); |
| |
| set_vref(priv, if_num, rankx, final_vref_range, final_vref_val); |
| } |
| } |
| |
| #define WL_MIN_NO_ERRORS_COUNT 3 // FIXME? three passes without errors |
| |
| static int errors __section(".data"); |
| static int byte_delay[9] __section(".data"); |
| static u64 bytemask __section(".data"); |
| static int bytes_todo __section(".data"); |
| static int no_errors_count __section(".data"); |
| static u64 bad_bits[2] __section(".data"); |
| static u64 sum_dram_dclk __section(".data"); |
| static u64 sum_dram_ops __section(".data"); |
| static u64 start_dram_dclk __section(".data"); |
| static u64 stop_dram_dclk __section(".data"); |
| static u64 start_dram_ops __section(".data"); |
| static u64 stop_dram_ops __section(".data"); |
| |
| static void lmc_sw_write_leveling_loop(struct ddr_priv *priv, int rankx) |
| { |
| int delay; |
| int b; |
| |
| // write the current set of WL delays |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), wl_rank.u64); |
| wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num)); |
| |
| // do the test |
| if (sw_wl_hw) { |
| errors = run_best_hw_patterns(priv, if_num, rank_addr, |
| DBTRAIN_TEST, bad_bits); |
| errors &= bytes_todo; // keep only the ones we are still doing |
| } else { |
| start_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num)); |
| start_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num)); |
| errors = test_dram_byte64(priv, if_num, rank_addr, bytemask, |
| bad_bits); |
| |
| stop_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num)); |
| stop_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num)); |
| sum_dram_dclk += stop_dram_dclk - start_dram_dclk; |
| sum_dram_ops += stop_dram_ops - start_dram_ops; |
| } |
| |
| debug("WL pass1: test_dram_byte returned 0x%x\n", errors); |
| |
| // remember, errors will not be returned for byte-lanes that have |
| // maxxed out... |
| if (errors == 0) { |
| no_errors_count++; // bump |
| // bypass check/update completely |
| if (no_errors_count > 1) |
| return; // to end of do-while |
| } else { |
| no_errors_count = 0; // reset |
| } |
| |
| // check errors by byte |
| for (b = 0; b < 9; ++b) { |
| if (!(bytes_todo & (1 << b))) |
| continue; |
| |
| delay = byte_delay[b]; |
| // yes, an error in this byte lane |
| if (errors & (1 << b)) { |
| debug(" byte %d delay %2d Errors\n", b, delay); |
| // since this byte had an error, we move to the next |
| // delay value, unless done with it |
| delay += 8; // incr by 8 to do delay high-order bits |
| if (delay < 32) { |
| upd_wl_rank(&wl_rank, b, delay); |
| debug(" byte %d delay %2d New\n", |
| b, delay); |
| byte_delay[b] = delay; |
| } else { |
| // reached max delay, maybe really done with |
| // this byte |
| // consider an alt only for computed VREF and |
| if (!measured_vref_flag && |
| (hwl_alts[rankx].hwl_alt_mask & (1 << b))) { |
| // if an alt exists... |
| // just orig low-3 bits |
| int bad_delay = delay & 0x6; |
| |
| // yes, use it |
| delay = hwl_alts[rankx].hwl_alt_delay[b]; |
| // clear that flag |
| hwl_alts[rankx].hwl_alt_mask &= |
| ~(1 << b); |
| upd_wl_rank(&wl_rank, b, delay); |
| byte_delay[b] = delay; |
| debug(" byte %d delay %2d ALTERNATE\n", |
| b, delay); |
| debug("N%d.LMC%d.R%d: SWL: Byte %d: %d FAIL, trying ALTERNATE %d\n", |
| node, if_num, |
| rankx, b, bad_delay, delay); |
| |
| } else { |
| unsigned int bits_bad; |
| |
| if (b < 8) { |
| // test no longer, remove from |
| // byte mask |
| bytemask &= |
| ~(0xffULL << (8 * b)); |
| bits_bad = (unsigned int) |
| ((bad_bits[0] >> |
| (8 * b)) & 0xffUL); |
| } else { |
| bits_bad = (unsigned int) |
| (bad_bits[1] & 0xffUL); |
| } |
| |
| // remove from bytes to do |
| bytes_todo &= ~(1 << b); |
| // make sure this is set for this case |
| byte_test_status[b] = WL_ESTIMATED; |
| debug(" byte %d delay %2d Exhausted\n", |
| b, delay); |
| if (!measured_vref_flag) { |
| // this is too noisy when doing |
| // measured VREF |
| debug("N%d.LMC%d.R%d: SWL: Byte %d (0x%02x): delay %d EXHAUSTED\n", |
| node, if_num, rankx, |
| b, bits_bad, delay); |
| } |
| } |
| } |
| } else { |
| // no error, stay with current delay, but keep testing |
| // it... |
| debug(" byte %d delay %2d Passed\n", b, delay); |
| byte_test_status[b] = WL_HARDWARE; // change status |
| } |
| } /* for (b = 0; b < 9; ++b) */ |
| } |
| |
| static void sw_write_lvl_use_ecc(struct ddr_priv *priv, int rankx) |
| { |
| int save_byte8 = wl_rank.s.byte8; |
| |
| byte_test_status[8] = WL_HARDWARE; /* H/W delay value */ |
| |
| if (save_byte8 != wl_rank.s.byte3 && |
| save_byte8 != wl_rank.s.byte4) { |
| int test_byte8 = save_byte8; |
| int test_byte8_error; |
| int byte8_error = 0x1f; |
| int adder; |
| int avg_bytes = divide_nint(wl_rank.s.byte3 + wl_rank.s.byte4, |
| 2); |
| |
| for (adder = 0; adder <= 32; adder += 8) { |
| test_byte8_error = abs((adder + save_byte8) - |
| avg_bytes); |
| if (test_byte8_error < byte8_error) { |
| byte8_error = test_byte8_error; |
| test_byte8 = save_byte8 + adder; |
| } |
| } |
| |
| // only do the check if we are not using measured VREF |
| if (!measured_vref_flag) { |
| /* Use only even settings, rounding down... */ |
| test_byte8 &= ~1; |
| |
| // do validity check on the calculated ECC delay value |
| // this depends on the DIMM type |
| if (spd_rdimm) { // RDIMM |
| // but not mini-RDIMM |
| if (spd_dimm_type != 5) { |
| // it can be > byte4, but should never |
| // be > byte3 |
| if (test_byte8 > wl_rank.s.byte3) { |
| /* say it is still estimated */ |
| byte_test_status[8] = |
| WL_ESTIMATED; |
| } |
| } |
| } else { // UDIMM |
| if (test_byte8 < wl_rank.s.byte3 || |
| test_byte8 > wl_rank.s.byte4) { |
| // should never be outside the |
| // byte 3-4 range |
| /* say it is still estimated */ |
| byte_test_status[8] = WL_ESTIMATED; |
| } |
| } |
| /* |
| * Report whenever the calculation appears bad. |
| * This happens if some of the original values were off, |
| * or unexpected geometry from DIMM type, or custom |
| * circuitry (NIC225E, I am looking at you!). |
| * We will trust the calculated value, and depend on |
| * later testing to catch any instances when that |
| * value is truly bad. |
| */ |
| // ESTIMATED means there may be an issue |
| if (byte_test_status[8] == WL_ESTIMATED) { |
| debug("N%d.LMC%d.R%d: SWL: (%cDIMM): calculated ECC delay unexpected (%d/%d/%d)\n", |
| node, if_num, rankx, |
| (spd_rdimm ? 'R' : 'U'), wl_rank.s.byte4, |
| test_byte8, wl_rank.s.byte3); |
| byte_test_status[8] = WL_HARDWARE; |
| } |
| } |
| /* Use only even settings */ |
| wl_rank.s.byte8 = test_byte8 & ~1; |
| } |
| |
| if (wl_rank.s.byte8 != save_byte8) { |
| /* Change the status if s/w adjusted the delay */ |
| byte_test_status[8] = WL_SOFTWARE; /* Estimated delay */ |
| } |
| } |
| |
| static __maybe_unused void parallel_wl_block_delay(struct ddr_priv *priv, |
| int rankx) |
| { |
| int errors; |
| int byte_delay[8]; |
| int byte_passed[8]; |
| u64 bytemask; |
| u64 bitmask; |
| int wl_offset; |
| int bytes_todo; |
| int sw_wl_offset = 1; |
| int delay; |
| int b; |
| |
| for (b = 0; b < 8; ++b) |
| byte_passed[b] = 0; |
| |
| bytes_todo = if_bytemask; |
| |
| for (wl_offset = sw_wl_offset; wl_offset >= 0; --wl_offset) { |
| debug("Starting wl_offset for-loop: %d\n", wl_offset); |
| |
| bytemask = 0; |
| |
| for (b = 0; b < 8; ++b) { |
| byte_delay[b] = 0; |
| // this does not contain fully passed bytes |
| if (!(bytes_todo & (1 << b))) |
| continue; |
| |
| // reset across passes if not fully passed |
| byte_passed[b] = 0; |
| upd_wl_rank(&wl_rank, b, 0); // all delays start at 0 |
| bitmask = ((!if_64b) && (b == 4)) ? 0x0f : 0xff; |
| // set the bytes bits in the bytemask |
| bytemask |= bitmask << (8 * b); |
| } /* for (b = 0; b < 8; ++b) */ |
| |
| // start a pass if there is any byte lane to test |
| while (bytemask != 0) { |
| debug("Starting bytemask while-loop: 0x%llx\n", |
| bytemask); |
| |
| // write this set of WL delays |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), |
| wl_rank.u64); |
| wl_rank.u64 = lmc_rd(priv, |
| CVMX_LMCX_WLEVEL_RANKX(rankx, |
| if_num)); |
| |
| // do the test |
| if (sw_wl_hw) { |
| errors = run_best_hw_patterns(priv, if_num, |
| rank_addr, |
| DBTRAIN_TEST, |
| NULL) & 0xff; |
| } else { |
| errors = test_dram_byte64(priv, if_num, |
| rank_addr, bytemask, |
| NULL); |
| } |
| |
| debug("test_dram_byte returned 0x%x\n", errors); |
| |
| // check errors by byte |
| for (b = 0; b < 8; ++b) { |
| if (!(bytes_todo & (1 << b))) |
| continue; |
| |
| delay = byte_delay[b]; |
| if (errors & (1 << b)) { // yes, an error |
| debug(" byte %d delay %2d Errors\n", |
| b, delay); |
| byte_passed[b] = 0; |
| } else { // no error |
| byte_passed[b] += 1; |
| // Look for consecutive working settings |
| if (byte_passed[b] == (1 + wl_offset)) { |
| debug(" byte %d delay %2d FULLY Passed\n", |
| b, delay); |
| if (wl_offset == 1) { |
| byte_test_status[b] = |
| WL_SOFTWARE; |
| } else if (wl_offset == 0) { |
| byte_test_status[b] = |
| WL_SOFTWARE1; |
| } |
| |
| // test no longer, remove |
| // from byte mask this pass |
| bytemask &= ~(0xffULL << |
| (8 * b)); |
| // remove completely from |
| // concern |
| bytes_todo &= ~(1 << b); |
| // on to the next byte, bypass |
| // delay updating!! |
| continue; |
| } else { |
| debug(" byte %d delay %2d Passed\n", |
| b, delay); |
| } |
| } |
| |
| // error or no, here we move to the next delay |
| // value for this byte, unless done all delays |
| // only a byte that has "fully passed" will |
| // bypass around this, |
| delay += 2; |
| if (delay < 32) { |
| upd_wl_rank(&wl_rank, b, delay); |
| debug(" byte %d delay %2d New\n", |
| b, delay); |
| byte_delay[b] = delay; |
| } else { |
| // reached max delay, done with this |
| // byte |
| debug(" byte %d delay %2d Exhausted\n", |
| b, delay); |
| // test no longer, remove from byte |
| // mask this pass |
| bytemask &= ~(0xffULL << (8 * b)); |
| } |
| } /* for (b = 0; b < 8; ++b) */ |
| debug("End of for-loop: bytemask 0x%llx\n", bytemask); |
| } /* while (bytemask != 0) */ |
| } |
| |
| for (b = 0; b < 8; ++b) { |
| // any bytes left in bytes_todo did not pass |
| if (bytes_todo & (1 << b)) { |
| union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank; |
| |
| /* |
| * Last resort. Use Rlevel settings to estimate |
| * Wlevel if software write-leveling fails |
| */ |
| debug("Using RLEVEL as WLEVEL estimate for byte %d\n", |
| b); |
| lmc_rlevel_rank.u64 = |
| lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| rlevel_to_wlevel(&lmc_rlevel_rank, &wl_rank, b); |
| } |
| } /* for (b = 0; b < 8; ++b) */ |
| } |
| |
| static int lmc_sw_write_leveling(struct ddr_priv *priv) |
| { |
| /* Try to determine/optimize write-level delays experimentally. */ |
| union cvmx_lmcx_wlevel_rankx wl_rank_hw_res; |
| union cvmx_lmcx_config cfg; |
| int rankx; |
| int byte; |
| char *s; |
| int i; |
| |
| int active_rank; |
| int sw_wl_enable = 1; /* FIX... Should be customizable. */ |
| int interfaces; |
| |
| static const char * const wl_status_strings[] = { |
| "(e)", |
| " ", |
| " ", |
| "(1)" |
| }; |
| |
| // FIXME: make HW-assist the default now? |
| int sw_wl_hw_default = SW_WLEVEL_HW_DEFAULT; |
| int dram_connection = c_cfg->dram_connection; |
| |
| s = lookup_env(priv, "ddr_sw_wlevel_hw"); |
| if (s) |
| sw_wl_hw_default = !!strtoul(s, NULL, 0); |
| if (!if_64b) // must use SW algo if 32-bit mode |
| sw_wl_hw_default = 0; |
| |
| // can never use hw-assist |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) |
| sw_wl_hw_default = 0; |
| |
| s = lookup_env(priv, "ddr_software_wlevel"); |
| if (s) |
| sw_wl_enable = strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr%d_dram_connection", if_num); |
| if (s) |
| dram_connection = !!strtoul(s, NULL, 0); |
| |
| cvmx_rng_enable(); |
| |
| /* |
| * Get the measured_vref setting from the config, check for an |
| * override... |
| */ |
| /* NOTE: measured_vref=1 (ON) means force use of MEASURED vref... */ |
| // NOTE: measured VREF can only be done for DDR4 |
| if (ddr_type == DDR4_DRAM) { |
| measured_vref_flag = c_cfg->measured_vref; |
| s = lookup_env(priv, "ddr_measured_vref"); |
| if (s) |
| measured_vref_flag = !!strtoul(s, NULL, 0); |
| } else { |
| measured_vref_flag = 0; // OFF for DDR3 |
| } |
| |
| /* |
| * Ensure disabled ECC for DRAM tests using the SW algo, else leave |
| * it untouched |
| */ |
| if (!sw_wl_hw_default) { |
| cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| cfg.cn78xx.ecc_ena = 0; |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64); |
| } |
| |
| /* |
| * We need to track absolute rank number, as well as how many |
| * active ranks we have. Two single rank DIMMs show up as |
| * ranks 0 and 2, but only 2 ranks are active. |
| */ |
| active_rank = 0; |
| |
| interfaces = __builtin_popcount(if_mask); |
| |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| final_vref_range = 0; |
| start_vref_val = 0; |
| computed_final_vref_val = -1; |
| sw_wl_rank_status = WL_HARDWARE; |
| sw_wl_failed = 0; |
| sw_wl_hw = sw_wl_hw_default; |
| |
| if (!sw_wl_enable) |
| break; |
| |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| debug("N%d.LMC%d.R%d: Performing Software Write-Leveling %s\n", |
| node, if_num, rankx, |
| (sw_wl_hw) ? "with H/W assist" : |
| "with S/W algorithm"); |
| |
| if (ddr_type == DDR4_DRAM && num_ranks != 4) { |
| // always compute when we can... |
| computed_final_vref_val = |
| compute_vref_val(priv, if_num, rankx, dimm_count, |
| num_ranks, imp_val, |
| is_stacked_die, dram_connection); |
| |
| // but only use it if allowed |
| if (!measured_vref_flag) { |
| // skip all the measured vref processing, |
| // just the final setting |
| start_vref_val = VREF_FINAL; |
| } |
| } |
| |
| /* Save off the h/w wl results */ |
| wl_rank_hw_res.u64 = lmc_rd(priv, |
| CVMX_LMCX_WLEVEL_RANKX(rankx, |
| if_num)); |
| |
| vref_val_count = 0; |
| vref_val_start = 0; |
| best_vref_val_count = 0; |
| best_vref_val_start = 0; |
| |
| /* Loop one extra time using the Final vref value. */ |
| for (vref_val = start_vref_val; vref_val < VREF_LIMIT; |
| ++vref_val) { |
| if (ddr_type == DDR4_DRAM) |
| ddr4_vref_loop(priv, rankx); |
| |
| /* Restore the saved value */ |
| wl_rank.u64 = wl_rank_hw_res.u64; |
| |
| for (byte = 0; byte < 9; ++byte) |
| byte_test_status[byte] = WL_ESTIMATED; |
| |
| if (wl_mask_err == 0) { |
| /* |
| * Determine address of DRAM to test for |
| * pass 1 of software write leveling. |
| */ |
| rank_addr = active_rank * |
| (1ull << (pbank_lsb - bunk_enable + |
| (interfaces / 2))); |
| |
| /* |
| * Adjust address for boot bus hole in memory |
| * map. |
| */ |
| if (rank_addr > 0x10000000) |
| rank_addr += 0x10000000; |
| |
| debug("N%d.LMC%d.R%d: Active Rank %d Address: 0x%llx\n", |
| node, if_num, rankx, active_rank, |
| rank_addr); |
| |
| // start parallel write-leveling block for |
| // delay high-order bits |
| errors = 0; |
| no_errors_count = 0; |
| sum_dram_dclk = 0; |
| sum_dram_ops = 0; |
| |
| if (if_64b) { |
| bytes_todo = (sw_wl_hw) ? |
| if_bytemask : 0xFF; |
| bytemask = ~0ULL; |
| } else { |
| // 32-bit, must be using SW algo, |
| // only data bytes |
| bytes_todo = 0x0f; |
| bytemask = 0x00000000ffffffffULL; |
| } |
| |
| for (byte = 0; byte < 9; ++byte) { |
| if (!(bytes_todo & (1 << byte))) { |
| byte_delay[byte] = 0; |
| } else { |
| byte_delay[byte] = |
| get_wl_rank(&wl_rank, byte); |
| } |
| } /* for (byte = 0; byte < 9; ++byte) */ |
| |
| do { |
| lmc_sw_write_leveling_loop(priv, rankx); |
| } while (no_errors_count < |
| WL_MIN_NO_ERRORS_COUNT); |
| |
| if (!sw_wl_hw) { |
| u64 percent_x10; |
| |
| if (sum_dram_dclk == 0) |
| sum_dram_dclk = 1; |
| percent_x10 = sum_dram_ops * 1000 / |
| sum_dram_dclk; |
| debug("N%d.LMC%d.R%d: ops %llu, cycles %llu, used %llu.%llu%%\n", |
| node, if_num, rankx, sum_dram_ops, |
| sum_dram_dclk, percent_x10 / 10, |
| percent_x10 % 10); |
| } |
| if (errors) { |
| debug("End WLEV_64 while loop: vref_val %d(0x%x), errors 0x%02x\n", |
| vref_val, vref_val, errors); |
| } |
| // end parallel write-leveling block for |
| // delay high-order bits |
| |
| // if we used HW-assist, we did the ECC byte |
| // when approp. |
| if (sw_wl_hw) { |
| if (wl_print) { |
| debug("N%d.LMC%d.R%d: HW-assisted SWL - ECC estimate not needed.\n", |
| node, if_num, rankx); |
| } |
| goto no_ecc_estimate; |
| } |
| |
| if ((if_bytemask & 0xff) == 0xff) { |
| if (use_ecc) { |
| sw_write_lvl_use_ecc(priv, |
| rankx); |
| } else { |
| /* H/W delay value */ |
| byte_test_status[8] = |
| WL_HARDWARE; |
| /* ECC is not used */ |
| wl_rank.s.byte8 = |
| wl_rank.s.byte0; |
| } |
| } else { |
| if (use_ecc) { |
| /* Estimate the ECC byte dly */ |
| // add hi-order to b4 |
| wl_rank.s.byte4 |= |
| (wl_rank.s.byte3 & |
| 0x38); |
| if ((wl_rank.s.byte4 & 0x06) < |
| (wl_rank.s.byte3 & 0x06)) { |
| // must be next clock |
| wl_rank.s.byte4 += 8; |
| } |
| } else { |
| /* ECC is not used */ |
| wl_rank.s.byte4 = |
| wl_rank.s.byte0; |
| } |
| |
| /* |
| * Change the status if s/w adjusted |
| * the delay |
| */ |
| /* Estimated delay */ |
| byte_test_status[4] = WL_SOFTWARE; |
| } /* if ((if_bytemask & 0xff) == 0xff) */ |
| } /* if (wl_mask_err == 0) */ |
| |
| no_ecc_estimate: |
| |
| bytes_failed = 0; |
| for (byte = 0; byte < 9; ++byte) { |
| /* Don't accumulate errors for untested bytes */ |
| if (!(if_bytemask & (1 << byte))) |
| continue; |
| bytes_failed += |
| (byte_test_status[byte] == WL_ESTIMATED); |
| } |
| |
| /* vref training loop is only used for DDR4 */ |
| if (ddr_type != DDR4_DRAM) |
| break; |
| |
| if (bytes_failed == 0) { |
| if (vref_val_count == 0) |
| vref_val_start = vref_val; |
| |
| ++vref_val_count; |
| if (vref_val_count > best_vref_val_count) { |
| best_vref_val_count = vref_val_count; |
| best_vref_val_start = vref_val_start; |
| debug("N%d.LMC%d.R%d: vref Training (%2d) : 0x%02x <----- ???? -----> 0x%02x\n", |
| node, if_num, rankx, vref_val, |
| best_vref_val_start, |
| best_vref_val_start + |
| best_vref_val_count - 1); |
| } |
| } else { |
| vref_val_count = 0; |
| debug("N%d.LMC%d.R%d: vref Training (%2d) : failed\n", |
| node, if_num, rankx, vref_val); |
| } |
| } |
| |
| /* |
| * Determine address of DRAM to test for software write |
| * leveling. |
| */ |
| rank_addr = active_rank * (1ull << (pbank_lsb - bunk_enable + |
| (interfaces / 2))); |
| /* Adjust address for boot bus hole in memory map. */ |
| if (rank_addr > 0x10000000) |
| rank_addr += 0x10000000; |
| |
| debug("Rank Address: 0x%llx\n", rank_addr); |
| |
| if (bytes_failed) { |
| // FIXME? the big hammer, did not even try SW WL pass2, |
| // assume only chip reset will help |
| debug("N%d.LMC%d.R%d: S/W write-leveling pass 1 failed\n", |
| node, if_num, rankx); |
| sw_wl_failed = 1; |
| } else { /* if (bytes_failed) */ |
| // SW WL pass 1 was OK, write the settings |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), |
| wl_rank.u64); |
| wl_rank.u64 = lmc_rd(priv, |
| CVMX_LMCX_WLEVEL_RANKX(rankx, |
| if_num)); |
| |
| // do validity check on the delay values by running |
| // the test 1 more time... |
| // FIXME: we really need to check the ECC byte setting |
| // here as well, so we need to enable ECC for this test! |
| // if there are any errors, claim SW WL failure |
| u64 datamask = (if_64b) ? 0xffffffffffffffffULL : |
| 0x00000000ffffffffULL; |
| int errors; |
| |
| // do the test |
| if (sw_wl_hw) { |
| errors = run_best_hw_patterns(priv, if_num, |
| rank_addr, |
| DBTRAIN_TEST, |
| NULL) & 0xff; |
| } else { |
| errors = test_dram_byte64(priv, if_num, |
| rank_addr, datamask, |
| NULL); |
| } |
| |
| if (errors) { |
| debug("N%d.LMC%d.R%d: Wlevel Rank Final Test errors 0x%03x\n", |
| node, if_num, rankx, errors); |
| sw_wl_failed = 1; |
| } |
| } /* if (bytes_failed) */ |
| |
| // FIXME? dump the WL settings, so we get more of a clue |
| // as to what happened where |
| debug("N%d.LMC%d.R%d: Wlevel Rank %#4x, 0x%016llX : %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %s\n", |
| node, if_num, rankx, wl_rank.s.status, wl_rank.u64, |
| wl_rank.s.byte8, wl_status_strings[byte_test_status[8]], |
| wl_rank.s.byte7, wl_status_strings[byte_test_status[7]], |
| wl_rank.s.byte6, wl_status_strings[byte_test_status[6]], |
| wl_rank.s.byte5, wl_status_strings[byte_test_status[5]], |
| wl_rank.s.byte4, wl_status_strings[byte_test_status[4]], |
| wl_rank.s.byte3, wl_status_strings[byte_test_status[3]], |
| wl_rank.s.byte2, wl_status_strings[byte_test_status[2]], |
| wl_rank.s.byte1, wl_status_strings[byte_test_status[1]], |
| wl_rank.s.byte0, wl_status_strings[byte_test_status[0]], |
| (sw_wl_rank_status == WL_HARDWARE) ? "" : "(s)"); |
| |
| // finally, check for fatal conditions: either chip reset |
| // right here, or return error flag |
| if ((ddr_type == DDR4_DRAM && best_vref_val_count == 0) || |
| sw_wl_failed) { |
| if (!ddr_disable_chip_reset) { // do chip RESET |
| printf("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Resetting node...\n", |
| node, if_num, rankx); |
| mdelay(500); |
| do_reset(NULL, 0, 0, NULL); |
| } else { |
| // return error flag so LMC init can be retried. |
| debug("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Restarting LMC init...\n", |
| node, if_num, rankx); |
| return -EAGAIN; // 0 indicates restart possible. |
| } |
| } |
| active_rank++; |
| } |
| |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| int parameter_set = 0; |
| u64 value; |
| |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, |
| if_num)); |
| |
| for (i = 0; i < 9; ++i) { |
| s = lookup_env(priv, "ddr%d_wlevel_rank%d_byte%d", |
| if_num, rankx, i); |
| if (s) { |
| parameter_set |= 1; |
| value = strtoul(s, NULL, 0); |
| |
| upd_wl_rank(&wl_rank, i, value); |
| } |
| } |
| |
| s = lookup_env_ull(priv, "ddr%d_wlevel_rank%d", if_num, rankx); |
| if (s) { |
| parameter_set |= 1; |
| value = strtoull(s, NULL, 0); |
| wl_rank.u64 = value; |
| } |
| |
| if (parameter_set) { |
| lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), |
| wl_rank.u64); |
| wl_rank.u64 = |
| lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num)); |
| display_wl(if_num, wl_rank, rankx); |
| } |
| // if there are unused entries to be filled |
| if ((rank_mask & 0x0F) != 0x0F) { |
| if (rankx < 3) { |
| debug("N%d.LMC%d.R%d: checking for WLEVEL_RANK unused entries.\n", |
| node, if_num, rankx); |
| |
| // if rank 0, write ranks 1 and 2 here if empty |
| if (rankx == 0) { |
| // check that rank 1 is empty |
| if (!(rank_mask & (1 << 1))) { |
| debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n", |
| node, if_num, rankx, 1); |
| lmc_wr(priv, |
| CVMX_LMCX_WLEVEL_RANKX(1, |
| if_num), |
| wl_rank.u64); |
| } |
| |
| // check that rank 2 is empty |
| if (!(rank_mask & (1 << 2))) { |
| debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n", |
| node, if_num, rankx, 2); |
| lmc_wr(priv, |
| CVMX_LMCX_WLEVEL_RANKX(2, |
| if_num), |
| wl_rank.u64); |
| } |
| } |
| |
| // if rank 0, 1 or 2, write rank 3 here if empty |
| // check that rank 3 is empty |
| if (!(rank_mask & (1 << 3))) { |
| debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n", |
| node, if_num, rankx, 3); |
| lmc_wr(priv, |
| CVMX_LMCX_WLEVEL_RANKX(3, |
| if_num), |
| wl_rank.u64); |
| } |
| } |
| } |
| } |
| |
| /* Enable 32-bit mode if required. */ |
| cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| cfg.cn78xx.mode32b = (!if_64b); |
| debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b); |
| |
| /* Restore the ECC configuration */ |
| if (!sw_wl_hw_default) |
| cfg.cn78xx.ecc_ena = use_ecc; |
| |
| lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64); |
| |
| return 0; |
| } |
| |
| static void lmc_dll(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3; |
| int setting[9]; |
| int i; |
| |
| ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); |
| |
| for (i = 0; i < 9; ++i) { |
| SET_DDR_DLL_CTL3(dll90_byte_sel, ENCODE_DLL90_BYTE_SEL(i)); |
| lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64); |
| lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); |
| ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); |
| setting[i] = GET_DDR_DLL_CTL3(dll90_setting); |
| debug("%d. LMC%d_DLL_CTL3[%d] = %016llx %d\n", i, if_num, |
| GET_DDR_DLL_CTL3(dll90_byte_sel), ddr_dll_ctl3.u64, |
| setting[i]); |
| } |
| |
| debug("N%d.LMC%d: %-36s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n", |
| node, if_num, "DLL90 Setting 8:0", |
| setting[8], setting[7], setting[6], setting[5], setting[4], |
| setting[3], setting[2], setting[1], setting[0]); |
| |
| process_custom_dll_offsets(priv, if_num, "ddr_dll_write_offset", |
| c_cfg->dll_write_offset, |
| "ddr%d_dll_write_offset_byte%d", 1); |
| process_custom_dll_offsets(priv, if_num, "ddr_dll_read_offset", |
| c_cfg->dll_read_offset, |
| "ddr%d_dll_read_offset_byte%d", 2); |
| } |
| |
| #define SLOT_CTL_INCR(csr, chip, field, incr) \ |
| csr.chip.field = (csr.chip.field < (64 - incr)) ? \ |
| (csr.chip.field + incr) : 63 |
| |
| #define INCR(csr, chip, field, incr) \ |
| csr.chip.field = (csr.chip.field < (64 - incr)) ? \ |
| (csr.chip.field + incr) : 63 |
| |
| static void lmc_workaround_2(struct ddr_priv *priv) |
| { |
| /* Workaround Errata 21063 */ |
| if (octeon_is_cpuid(OCTEON_CN78XX) || |
| octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) { |
| union cvmx_lmcx_slot_ctl0 slot_ctl0; |
| union cvmx_lmcx_slot_ctl1 slot_ctl1; |
| union cvmx_lmcx_slot_ctl2 slot_ctl2; |
| union cvmx_lmcx_ext_config ext_cfg; |
| |
| slot_ctl0.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL0(if_num)); |
| slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num)); |
| slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num)); |
| |
| ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num)); |
| |
| /* When ext_cfg.s.read_ena_bprch is set add 1 */ |
| if (ext_cfg.s.read_ena_bprch) { |
| SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_init, 1); |
| SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_l_init, 1); |
| SLOT_CTL_INCR(slot_ctl1, cn78xx, r2w_xrank_init, 1); |
| SLOT_CTL_INCR(slot_ctl2, cn78xx, r2w_xdimm_init, 1); |
| } |
| |
| /* Always add 2 */ |
| SLOT_CTL_INCR(slot_ctl1, cn78xx, w2r_xrank_init, 2); |
| SLOT_CTL_INCR(slot_ctl2, cn78xx, w2r_xdimm_init, 2); |
| |
| lmc_wr(priv, CVMX_LMCX_SLOT_CTL0(if_num), slot_ctl0.u64); |
| lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64); |
| lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64); |
| } |
| |
| /* Workaround Errata 21216 */ |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) || |
| octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) { |
| union cvmx_lmcx_slot_ctl1 slot_ctl1; |
| union cvmx_lmcx_slot_ctl2 slot_ctl2; |
| |
| slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num)); |
| slot_ctl1.cn78xx.w2w_xrank_init = |
| max(10, (int)slot_ctl1.cn78xx.w2w_xrank_init); |
| lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64); |
| |
| slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num)); |
| slot_ctl2.cn78xx.w2w_xdimm_init = |
| max(10, (int)slot_ctl2.cn78xx.w2w_xdimm_init); |
| lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64); |
| } |
| } |
| |
| static void lmc_final(struct ddr_priv *priv) |
| { |
| /* |
| * 4.8.11 Final LMC Initialization |
| * |
| * Early LMC initialization, LMC write-leveling, and LMC read-leveling |
| * must be completed prior to starting this final LMC initialization. |
| * |
| * LMC hardware updates the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, |
| * LMC(0)_SLOT_CTL2 CSRs with minimum values based on the selected |
| * readleveling and write-leveling settings. Software should not write |
| * the final LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and LMC(0)_SLOT_CTL2 |
| * values until after the final read-leveling and write-leveling |
| * settings are written. |
| * |
| * Software must ensure the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and |
| * LMC(0)_SLOT_CTL2 CSR values are appropriate for this step. These CSRs |
| * select the minimum gaps between read operations and write operations |
| * of various types. |
| * |
| * Software must not reduce the values in these CSR fields below the |
| * values previously selected by the LMC hardware (during write-leveling |
| * and read-leveling steps above). |
| * |
| * All sections in this chapter may be used to derive proper settings |
| * for these registers. |
| * |
| * For minimal read latency, L2C_CTL[EF_ENA,EF_CNT] should be programmed |
| * properly. This should be done prior to the first read. |
| */ |
| |
| /* Clear any residual ECC errors */ |
| int num_tads = 1; |
| int tad; |
| int num_mcis = 1; |
| int mci; |
| |
| if (octeon_is_cpuid(OCTEON_CN78XX)) { |
| num_tads = 8; |
| num_mcis = 4; |
| } else if (octeon_is_cpuid(OCTEON_CN70XX)) { |
| num_tads = 1; |
| num_mcis = 1; |
| } else if (octeon_is_cpuid(OCTEON_CN73XX) || |
| octeon_is_cpuid(OCTEON_CNF75XX)) { |
| num_tads = 4; |
| num_mcis = 3; |
| } |
| |
| lmc_wr(priv, CVMX_LMCX_INT(if_num), -1ULL); |
| lmc_rd(priv, CVMX_LMCX_INT(if_num)); |
| |
| for (tad = 0; tad < num_tads; tad++) { |
| l2c_wr(priv, CVMX_L2C_TADX_INT_REL(tad), |
| l2c_rd(priv, CVMX_L2C_TADX_INT_REL(tad))); |
| debug("%-45s : (%d) 0x%08llx\n", "CVMX_L2C_TAD_INT", tad, |
| l2c_rd(priv, CVMX_L2C_TADX_INT_REL(tad))); |
| } |
| |
| for (mci = 0; mci < num_mcis; mci++) { |
| l2c_wr(priv, CVMX_L2C_MCIX_INT_REL(mci), |
| l2c_rd(priv, CVMX_L2C_MCIX_INT_REL(mci))); |
| debug("%-45s : (%d) 0x%08llx\n", "L2C_MCI_INT", mci, |
| l2c_rd(priv, CVMX_L2C_MCIX_INT_REL(mci))); |
| } |
| |
| debug("%-45s : 0x%08llx\n", "LMC_INT", |
| lmc_rd(priv, CVMX_LMCX_INT(if_num))); |
| } |
| |
| static void lmc_scrambling(struct ddr_priv *priv) |
| { |
| // Make sure scrambling is disabled during init... |
| union cvmx_lmcx_control ctrl; |
| union cvmx_lmcx_scramble_cfg0 lmc_scramble_cfg0; |
| union cvmx_lmcx_scramble_cfg1 lmc_scramble_cfg1; |
| union cvmx_lmcx_scramble_cfg2 lmc_scramble_cfg2; |
| union cvmx_lmcx_ns_ctl lmc_ns_ctl; |
| int use_scramble = 0; // default OFF |
| char *s; |
| |
| ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| lmc_scramble_cfg0.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num)); |
| lmc_scramble_cfg1.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num)); |
| lmc_scramble_cfg2.u64 = 0; // quiet compiler |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) { |
| lmc_scramble_cfg2.u64 = |
| lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num)); |
| } |
| lmc_ns_ctl.u64 = lmc_rd(priv, CVMX_LMCX_NS_CTL(if_num)); |
| |
| s = lookup_env_ull(priv, "ddr_use_scramble"); |
| if (s) |
| use_scramble = simple_strtoull(s, NULL, 0); |
| |
| /* Generate random values if scrambling is needed */ |
| if (use_scramble) { |
| lmc_scramble_cfg0.u64 = cvmx_rng_get_random64(); |
| lmc_scramble_cfg1.u64 = cvmx_rng_get_random64(); |
| lmc_scramble_cfg2.u64 = cvmx_rng_get_random64(); |
| lmc_ns_ctl.s.ns_scramble_dis = 0; |
| lmc_ns_ctl.s.adr_offset = 0; |
| ctrl.s.scramble_ena = 1; |
| } |
| |
| s = lookup_env_ull(priv, "ddr_scramble_cfg0"); |
| if (s) { |
| lmc_scramble_cfg0.u64 = simple_strtoull(s, NULL, 0); |
| ctrl.s.scramble_ena = 1; |
| } |
| debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG0", |
| lmc_scramble_cfg0.u64); |
| |
| lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), lmc_scramble_cfg0.u64); |
| |
| s = lookup_env_ull(priv, "ddr_scramble_cfg1"); |
| if (s) { |
| lmc_scramble_cfg1.u64 = simple_strtoull(s, NULL, 0); |
| ctrl.s.scramble_ena = 1; |
| } |
| debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG1", |
| lmc_scramble_cfg1.u64); |
| lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), lmc_scramble_cfg1.u64); |
| |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) { |
| s = lookup_env_ull(priv, "ddr_scramble_cfg2"); |
| if (s) { |
| lmc_scramble_cfg2.u64 = simple_strtoull(s, NULL, 0); |
| ctrl.s.scramble_ena = 1; |
| } |
| debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG2", |
| lmc_scramble_cfg1.u64); |
| lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num), |
| lmc_scramble_cfg2.u64); |
| } |
| |
| s = lookup_env_ull(priv, "ddr_ns_ctl"); |
| if (s) |
| lmc_ns_ctl.u64 = simple_strtoull(s, NULL, 0); |
| debug("%-45s : 0x%016llx\n", "LMC_NS_CTL", lmc_ns_ctl.u64); |
| lmc_wr(priv, CVMX_LMCX_NS_CTL(if_num), lmc_ns_ctl.u64); |
| |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64); |
| } |
| |
| struct rl_score { |
| u64 setting; |
| int score; |
| }; |
| |
| static union cvmx_lmcx_rlevel_rankx rl_rank __section(".data"); |
| static union cvmx_lmcx_rlevel_ctl rl_ctl __section(".data"); |
| static unsigned char rodt_ctl __section(".data"); |
| |
| static int rl_rodt_err __section(".data"); |
| static unsigned char rtt_nom __section(".data"); |
| static unsigned char rtt_idx __section(".data"); |
| static char min_rtt_nom_idx __section(".data"); |
| static char max_rtt_nom_idx __section(".data"); |
| static char min_rodt_ctl __section(".data"); |
| static char max_rodt_ctl __section(".data"); |
| static int rl_dbg_loops __section(".data"); |
| static unsigned char save_ddr2t __section(".data"); |
| static int rl_samples __section(".data"); |
| static char rl_compute __section(".data"); |
| static char saved_ddr__ptune __section(".data"); |
| static char saved_ddr__ntune __section(".data"); |
| static char rl_comp_offs __section(".data"); |
| static char saved_int_zqcs_dis __section(".data"); |
| static int max_adj_rl_del_inc __section(".data"); |
| static int print_nom_ohms __section(".data"); |
| static int rl_print __section(".data"); |
| |
| #ifdef ENABLE_HARDCODED_RLEVEL |
| static char part_number[21] __section(".data"); |
| #endif /* ENABLE_HARDCODED_RLEVEL */ |
| |
| struct perfect_counts { |
| u16 count[9][32]; // 8+ECC by 64 values |
| u32 mask[9]; // 8+ECC, bitmask of perfect delays |
| }; |
| |
| static struct perfect_counts rank_perf[4] __section(".data"); |
| static struct perfect_counts rodt_perfect_counts __section(".data"); |
| static int pbm_lowsum_limit __section(".data"); |
| // FIXME: PBM skip for RODT 240 and 34 |
| static u32 pbm_rodt_skip __section(".data"); |
| |
| // control rank majority processing |
| static int disable_rank_majority __section(".data"); |
| |
| // default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE |
| // for DDR3 |
| static int enable_rldelay_bump __section(".data"); |
| static int rldelay_bump_incr __section(".data"); |
| static int disable_rlv_bump_this_byte __section(".data"); |
| static u64 value_mask __section(".data"); |
| |
| static struct rlevel_byte_data rl_byte[9] __section(".data"); |
| static int sample_loops __section(".data"); |
| static int max_samples __section(".data"); |
| static int rl_rank_errors __section(".data"); |
| static int rl_mask_err __section(".data"); |
| static int rl_nonseq_err __section(".data"); |
| static struct rlevel_bitmask rl_mask[9] __section(".data"); |
| static int rl_best_rank_score __section(".data"); |
| |
| static int rodt_row_skip_mask __section(".data"); |
| |
| static void rodt_loop(struct ddr_priv *priv, int rankx, struct rl_score |
| rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4]) |
| { |
| union cvmx_lmcx_comp_ctl2 cc2; |
| const int rl_separate_ab = 1; |
| int i; |
| |
| rl_best_rank_score = DEFAULT_BEST_RANK_SCORE; |
| rl_rodt_err = 0; |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| cc2.cn78xx.rodt_ctl = rodt_ctl; |
| lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64); |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| udelay(1); /* Give it a little time to take affect */ |
| if (rl_print > 1) { |
| debug("Read ODT_CTL : 0x%x (%d ohms)\n", |
| cc2.cn78xx.rodt_ctl, |
| imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]); |
| } |
| |
| memset(rl_byte, 0, sizeof(rl_byte)); |
| memset(&rodt_perfect_counts, 0, sizeof(rodt_perfect_counts)); |
| |
| // when iter RODT is the target RODT, take more samples... |
| max_samples = rl_samples; |
| if (rodt_ctl == default_rodt_ctl) |
| max_samples += rl_samples + 1; |
| |
| for (sample_loops = 0; sample_loops < max_samples; sample_loops++) { |
| int redoing_nonseq_errs = 0; |
| |
| rl_mask_err = 0; |
| |
| if (!(rl_separate_ab && spd_rdimm && |
| ddr_type == DDR4_DRAM)) { |
| /* Clear read-level delays */ |
| lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0); |
| |
| /* read-leveling */ |
| oct3_ddr3_seq(priv, 1 << rankx, if_num, 1); |
| |
| do { |
| rl_rank.u64 = |
| lmc_rd(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| } while (rl_rank.cn78xx.status != 3); |
| } |
| |
| rl_rank.u64 = |
| lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num)); |
| |
| // start bitmask interpretation block |
| |
| memset(rl_mask, 0, sizeof(rl_mask)); |
| |
| if (rl_separate_ab && spd_rdimm && ddr_type == DDR4_DRAM) { |
| union cvmx_lmcx_rlevel_rankx rl_rank_aside; |
| union cvmx_lmcx_modereg_params0 mp0; |
| |
| /* A-side */ |
| mp0.u64 = |
| lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num)); |
| mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */ |
| lmc_wr(priv, |
| CVMX_LMCX_MODEREG_PARAMS0(if_num), |
| mp0.u64); |
| |
| /* Clear read-level delays */ |
| lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0); |
| |
| /* read-leveling */ |
| oct3_ddr3_seq(priv, 1 << rankx, if_num, 1); |
| |
| do { |
| rl_rank.u64 = |
| lmc_rd(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| } while (rl_rank.cn78xx.status != 3); |
| |
| rl_rank.u64 = |
| lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| |
| rl_rank_aside.u64 = rl_rank.u64; |
| |
| rl_mask[0].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 0); |
| rl_mask[1].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 1); |
| rl_mask[2].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 2); |
| rl_mask[3].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 3); |
| rl_mask[8].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 8); |
| /* A-side complete */ |
| |
| /* B-side */ |
| mp0.u64 = |
| lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num)); |
| mp0.s.mprloc = 3; /* MPR Page 0 Location 3 */ |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), |
| mp0.u64); |
| |
| /* Clear read-level delays */ |
| lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0); |
| |
| /* read-leveling */ |
| oct3_ddr3_seq(priv, 1 << rankx, if_num, 1); |
| |
| do { |
| rl_rank.u64 = |
| lmc_rd(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| } while (rl_rank.cn78xx.status != 3); |
| |
| rl_rank.u64 = |
| lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| |
| rl_mask[4].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 4); |
| rl_mask[5].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 5); |
| rl_mask[6].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 6); |
| rl_mask[7].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 7); |
| /* B-side complete */ |
| |
| upd_rl_rank(&rl_rank, 0, rl_rank_aside.s.byte0); |
| upd_rl_rank(&rl_rank, 1, rl_rank_aside.s.byte1); |
| upd_rl_rank(&rl_rank, 2, rl_rank_aside.s.byte2); |
| upd_rl_rank(&rl_rank, 3, rl_rank_aside.s.byte3); |
| /* ECC A-side */ |
| upd_rl_rank(&rl_rank, 8, rl_rank_aside.s.byte8); |
| |
| mp0.u64 = |
| lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num)); |
| mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */ |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), |
| mp0.u64); |
| } |
| |
| /* |
| * Evaluate the quality of the read-leveling delays from the |
| * bitmasks. Also save off a software computed read-leveling |
| * mask that may be used later to qualify the delay results |
| * from Octeon. |
| */ |
| for (i = 0; i < (8 + ecc_ena); ++i) { |
| int bmerr; |
| |
| if (!(if_bytemask & (1 << i))) |
| continue; |
| if (!(rl_separate_ab && spd_rdimm && |
| ddr_type == DDR4_DRAM)) { |
| rl_mask[i].bm = |
| lmc_ddr3_rl_dbg_read(priv, if_num, i); |
| } |
| bmerr = validate_ddr3_rlevel_bitmask(&rl_mask[i], |
| ddr_type); |
| rl_mask[i].errs = bmerr; |
| rl_mask_err += bmerr; |
| // count only the "perfect" bitmasks |
| if (ddr_type == DDR4_DRAM && !bmerr) { |
| int delay; |
| // FIXME: for now, simple filtering: |
| // do NOT count PBMs for RODTs in skip mask |
| if ((1U << rodt_ctl) & pbm_rodt_skip) |
| continue; |
| // FIXME: could optimize this a bit? |
| delay = get_rl_rank(&rl_rank, i); |
| rank_perf[rankx].count[i][delay] += 1; |
| rank_perf[rankx].mask[i] |= |
| (1ULL << delay); |
| rodt_perfect_counts.count[i][delay] += 1; |
| rodt_perfect_counts.mask[i] |= (1ULL << delay); |
| } |
| } |
| |
| /* Set delays for unused bytes to match byte 0. */ |
| for (i = 0; i < 9; ++i) { |
| if (if_bytemask & (1 << i)) |
| continue; |
| upd_rl_rank(&rl_rank, i, rl_rank.s.byte0); |
| } |
| |
| /* |
| * Save a copy of the byte delays in physical |
| * order for sequential evaluation. |
| */ |
| unpack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, rl_rank); |
| |
| redo_nonseq_errs: |
| |
| rl_nonseq_err = 0; |
| if (!disable_sequential_delay_check) { |
| for (i = 0; i < 9; ++i) |
| rl_byte[i].sqerrs = 0; |
| |
| if ((if_bytemask & 0xff) == 0xff) { |
| /* |
| * Evaluate delay sequence across the whole |
| * range of bytes for standard dimms. |
| */ |
| /* 1=RDIMM, 5=Mini-RDIMM */ |
| if (spd_dimm_type == 1 || spd_dimm_type == 5) { |
| int reg_adj_del = abs(rl_byte[4].delay - |
| rl_byte[5].delay); |
| |
| /* |
| * Registered dimm topology routes |
| * from the center. |
| */ |
| rl_nonseq_err += |
| nonseq_del(rl_byte, 0, |
| 3 + ecc_ena, |
| max_adj_rl_del_inc); |
| rl_nonseq_err += |
| nonseq_del(rl_byte, 5, |
| 7 + ecc_ena, |
| max_adj_rl_del_inc); |
| // byte 5 sqerrs never gets cleared |
| // for RDIMMs |
| rl_byte[5].sqerrs = 0; |
| if (reg_adj_del > 1) { |
| /* |
| * Assess proximity of bytes on |
| * opposite sides of register |
| */ |
| rl_nonseq_err += (reg_adj_del - |
| 1) * |
| RLEVEL_ADJACENT_DELAY_ERROR; |
| // update byte 5 error |
| rl_byte[5].sqerrs += |
| (reg_adj_del - 1) * |
| RLEVEL_ADJACENT_DELAY_ERROR; |
| } |
| } |
| |
| /* 2=UDIMM, 6=Mini-UDIMM */ |
| if (spd_dimm_type == 2 || spd_dimm_type == 6) { |
| /* |
| * Unbuffered dimm topology routes |
| * from end to end. |
| */ |
| rl_nonseq_err += nonseq_del(rl_byte, 0, |
| 7 + ecc_ena, |
| max_adj_rl_del_inc); |
| } |
| } else { |
| rl_nonseq_err += nonseq_del(rl_byte, 0, |
| 3 + ecc_ena, |
| max_adj_rl_del_inc); |
| } |
| } /* if (! disable_sequential_delay_check) */ |
| |
| rl_rank_errors = rl_mask_err + rl_nonseq_err; |
| |
| // print original sample here only if we are not really |
| // averaging or picking best |
| // also do not print if we were redoing the NONSEQ score |
| // for using COMPUTED |
| if (!redoing_nonseq_errs && rl_samples < 2) { |
| if (rl_print > 1) { |
| display_rl_bm(if_num, rankx, rl_mask, ecc_ena); |
| display_rl_bm_scores(if_num, rankx, rl_mask, |
| ecc_ena); |
| display_rl_seq_scores(if_num, rankx, rl_byte, |
| ecc_ena); |
| } |
| display_rl_with_score(if_num, rl_rank, rankx, |
| rl_rank_errors); |
| } |
| |
| if (rl_compute) { |
| if (!redoing_nonseq_errs) { |
| /* Recompute the delays based on the bitmask */ |
| for (i = 0; i < (8 + ecc_ena); ++i) { |
| if (!(if_bytemask & (1 << i))) |
| continue; |
| |
| upd_rl_rank(&rl_rank, i, |
| compute_ddr3_rlevel_delay( |
| rl_mask[i].mstart, |
| rl_mask[i].width, |
| rl_ctl)); |
| } |
| |
| /* |
| * Override the copy of byte delays with the |
| * computed results. |
| */ |
| unpack_rlevel_settings(if_bytemask, ecc_ena, |
| rl_byte, rl_rank); |
| |
| redoing_nonseq_errs = 1; |
| goto redo_nonseq_errs; |
| |
| } else { |
| /* |
| * now print this if already printed the |
| * original sample |
| */ |
| if (rl_samples < 2 || rl_print) { |
| display_rl_with_computed(if_num, |
| rl_rank, rankx, |
| rl_rank_errors); |
| } |
| } |
| } /* if (rl_compute) */ |
| |
| // end bitmask interpretation block |
| |
| // if it is a better (lower) score, then keep it |
| if (rl_rank_errors < rl_best_rank_score) { |
| rl_best_rank_score = rl_rank_errors; |
| |
| // save the new best delays and best errors |
| for (i = 0; i < (8 + ecc_ena); ++i) { |
| rl_byte[i].best = rl_byte[i].delay; |
| rl_byte[i].bestsq = rl_byte[i].sqerrs; |
| // save bitmasks and their scores as well |
| // xlate UNPACKED index to PACKED index to |
| // get from rl_mask |
| rl_byte[i].bm = rl_mask[XUP(i, !!ecc_ena)].bm; |
| rl_byte[i].bmerrs = |
| rl_mask[XUP(i, !!ecc_ena)].errs; |
| } |
| } |
| |
| rl_rodt_err += rl_rank_errors; |
| } |
| |
| /* We recorded the best score across the averaging loops */ |
| rl_score[rtt_nom][rodt_ctl][rankx].score = rl_best_rank_score; |
| |
| /* |
| * Restore the delays from the best fields that go with the best |
| * score |
| */ |
| for (i = 0; i < 9; ++i) { |
| rl_byte[i].delay = rl_byte[i].best; |
| rl_byte[i].sqerrs = rl_byte[i].bestsq; |
| } |
| |
| rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num)); |
| |
| pack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, &rl_rank); |
| |
| if (rl_samples > 1) { |
| // restore the "best" bitmasks and their scores for printing |
| for (i = 0; i < 9; ++i) { |
| if ((if_bytemask & (1 << i)) == 0) |
| continue; |
| // xlate PACKED index to UNPACKED index to get from |
| // rl_byte |
| rl_mask[i].bm = rl_byte[XPU(i, !!ecc_ena)].bm; |
| rl_mask[i].errs = rl_byte[XPU(i, !!ecc_ena)].bmerrs; |
| } |
| |
| // maybe print bitmasks/scores here |
| if (rl_print > 1) { |
| display_rl_bm(if_num, rankx, rl_mask, ecc_ena); |
| display_rl_bm_scores(if_num, rankx, rl_mask, ecc_ena); |
| display_rl_seq_scores(if_num, rankx, rl_byte, ecc_ena); |
| |
| display_rl_with_rodt(if_num, rl_rank, rankx, |
| rl_score[rtt_nom][rodt_ctl][rankx].score, |
| print_nom_ohms, |
| imp_val->rodt_ohms[rodt_ctl], |
| WITH_RODT_BESTSCORE); |
| |
| debug("-----------\n"); |
| } |
| } |
| |
| rl_score[rtt_nom][rodt_ctl][rankx].setting = rl_rank.u64; |
| |
| // print out the PBMs for the current RODT |
| if (ddr_type == DDR4_DRAM && rl_print > 1) { // verbosity? |
| // FIXME: change verbosity level after debug complete... |
| |
| for (i = 0; i < 9; i++) { |
| u64 temp_mask; |
| int num_values; |
| |
| // FIXME: PBM skip for RODTs in mask |
| if ((1U << rodt_ctl) & pbm_rodt_skip) |
| continue; |
| |
| temp_mask = rodt_perfect_counts.mask[i]; |
| num_values = __builtin_popcountll(temp_mask); |
| i = __builtin_ffsll(temp_mask) - 1; |
| |
| debug("N%d.LMC%d.R%d: PERFECT: RODT %3d: Byte %d: mask 0x%02llx (%d): ", |
| node, if_num, rankx, |
| imp_val->rodt_ohms[rodt_ctl], |
| i, temp_mask >> i, num_values); |
| |
| while (temp_mask != 0) { |
| i = __builtin_ffsll(temp_mask) - 1; |
| debug("%2d(%2d) ", i, |
| rodt_perfect_counts.count[i][i]); |
| temp_mask &= ~(1UL << i); |
| } /* while (temp_mask != 0) */ |
| debug("\n"); |
| } |
| } |
| } |
| |
| static void rank_major_loop(struct ddr_priv *priv, int rankx, struct rl_score |
| rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4]) |
| { |
| /* Start with an arbitrarily high score */ |
| int best_rank_score = DEFAULT_BEST_RANK_SCORE; |
| int best_rank_rtt_nom = 0; |
| int best_rank_ctl = 0; |
| int best_rank_ohms = 0; |
| int best_rankx = 0; |
| int dimm_rank_mask; |
| int max_rank_score; |
| union cvmx_lmcx_rlevel_rankx saved_rl_rank; |
| int next_ohms; |
| int orankx; |
| int next_score = 0; |
| int best_byte, new_byte, temp_byte, orig_best_byte; |
| int rank_best_bytes[9]; |
| int byte_sh; |
| int avg_byte; |
| int avg_diff; |
| int i; |
| |
| if (!(rank_mask & (1 << rankx))) |
| return; |
| |
| // some of the rank-related loops below need to operate only on |
| // the ranks of a single DIMM, |
| // so create a mask for their use here |
| if (num_ranks == 4) { |
| dimm_rank_mask = rank_mask; // should be 1111 |
| } else { |
| dimm_rank_mask = rank_mask & 3; // should be 01 or 11 |
| if (rankx >= 2) { |
| // doing a rank on the second DIMM, should be |
| // 0100 or 1100 |
| dimm_rank_mask <<= 2; |
| } |
| } |
| debug("DIMM rank mask: 0x%x, rank mask: 0x%x, rankx: %d\n", |
| dimm_rank_mask, rank_mask, rankx); |
| |
| // this is the start of the BEST ROW SCORE LOOP |
| |
| for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) { |
| rtt_nom = imp_val->rtt_nom_table[rtt_idx]; |
| |
| debug("N%d.LMC%d.R%d: starting RTT_NOM %d (%d)\n", |
| node, if_num, rankx, rtt_nom, |
| imp_val->rtt_nom_ohms[rtt_nom]); |
| |
| for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; |
| --rodt_ctl) { |
| next_ohms = imp_val->rodt_ohms[rodt_ctl]; |
| |
| // skip RODT rows in mask, but *NOT* rows with too |
| // high a score; |
| // we will not use the skipped ones for printing or |
| // evaluating, but we need to allow all the |
| // non-skipped ones to be candidates for "best" |
| if (((1 << rodt_ctl) & rodt_row_skip_mask) != 0) { |
| debug("N%d.LMC%d.R%d: SKIPPING rodt:%d (%d) with rank_score:%d\n", |
| node, if_num, rankx, rodt_ctl, |
| next_ohms, next_score); |
| continue; |
| } |
| |
| // this is ROFFIX-0528 |
| for (orankx = 0; orankx < dimm_count * 4; orankx++) { |
| // stay on the same DIMM |
| if (!(dimm_rank_mask & (1 << orankx))) |
| continue; |
| |
| next_score = rl_score[rtt_nom][rodt_ctl][orankx].score; |
| |
| // always skip a higher score |
| if (next_score > best_rank_score) |
| continue; |
| |
| // if scores are equal |
| if (next_score == best_rank_score) { |
| // always skip lower ohms |
| if (next_ohms < best_rank_ohms) |
| continue; |
| |
| // if same ohms |
| if (next_ohms == best_rank_ohms) { |
| // always skip the other rank(s) |
| if (orankx != rankx) |
| continue; |
| } |
| // else next_ohms are greater, |
| // always choose it |
| } |
| // else next_score is less than current best, |
| // so always choose it |
| debug("N%d.LMC%d.R%d: new best score: rank %d, rodt %d(%3d), new best %d, previous best %d(%d)\n", |
| node, if_num, rankx, orankx, rodt_ctl, next_ohms, next_score, |
| best_rank_score, best_rank_ohms); |
| best_rank_score = next_score; |
| best_rank_rtt_nom = rtt_nom; |
| //best_rank_nom_ohms = rtt_nom_ohms; |
| best_rank_ctl = rodt_ctl; |
| best_rank_ohms = next_ohms; |
| best_rankx = orankx; |
| rl_rank.u64 = |
| rl_score[rtt_nom][rodt_ctl][orankx].setting; |
| } |
| } |
| } |
| |
| // this is the end of the BEST ROW SCORE LOOP |
| |
| // DANGER, Will Robinson!! Abort now if we did not find a best |
| // score at all... |
| if (best_rank_score == DEFAULT_BEST_RANK_SCORE) { |
| printf("N%d.LMC%d.R%d: WARNING: no best rank score found - resetting node...\n", |
| node, if_num, rankx); |
| mdelay(500); |
| do_reset(NULL, 0, 0, NULL); |
| } |
| |
| // FIXME: relative now, but still arbitrary... |
| max_rank_score = best_rank_score; |
| if (ddr_type == DDR4_DRAM) { |
| // halve the range if 2 DIMMs unless they are single rank... |
| max_rank_score += (MAX_RANK_SCORE_LIMIT / ((num_ranks > 1) ? |
| dimm_count : 1)); |
| } else { |
| // Since DDR3 typically has a wider score range, |
| // keep more of them always |
| max_rank_score += MAX_RANK_SCORE_LIMIT; |
| } |
| |
| if (!ecc_ena) { |
| /* ECC is not used */ |
| rl_rank.s.byte8 = rl_rank.s.byte0; |
| } |
| |
| // at the end, write the best row settings to the current rank |
| lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), rl_rank.u64); |
| rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num)); |
| |
| saved_rl_rank.u64 = rl_rank.u64; |
| |
| // this is the start of the PRINT LOOP |
| int pass; |
| |
| // for pass==0, print current rank, pass==1 print other rank(s) |
| // this is done because we want to show each ranks RODT values |
| // together, not interlaced |
| // keep separates for ranks - pass=0 target rank, pass=1 other |
| // rank on DIMM |
| int mask_skipped[2] = {0, 0}; |
| int score_skipped[2] = {0, 0}; |
| int selected_rows[2] = {0, 0}; |
| int zero_scores[2] = {0, 0}; |
| for (pass = 0; pass < 2; pass++) { |
| for (orankx = 0; orankx < dimm_count * 4; orankx++) { |
| // stay on the same DIMM |
| if (!(dimm_rank_mask & (1 << orankx))) |
| continue; |
| |
| if ((pass == 0 && orankx != rankx) || |
| (pass != 0 && orankx == rankx)) |
| continue; |
| |
| for (rtt_idx = min_rtt_nom_idx; |
| rtt_idx <= max_rtt_nom_idx; ++rtt_idx) { |
| rtt_nom = imp_val->rtt_nom_table[rtt_idx]; |
| if (dyn_rtt_nom_mask == 0) { |
| print_nom_ohms = -1; |
| } else { |
| print_nom_ohms = |
| imp_val->rtt_nom_ohms[rtt_nom]; |
| } |
| |
| // cycle through all the RODT values... |
| for (rodt_ctl = max_rodt_ctl; |
| rodt_ctl >= min_rodt_ctl; --rodt_ctl) { |
| union cvmx_lmcx_rlevel_rankx |
| temp_rl_rank; |
| int temp_score = |
| rl_score[rtt_nom][rodt_ctl][orankx].score; |
| int skip_row; |
| |
| temp_rl_rank.u64 = |
| rl_score[rtt_nom][rodt_ctl][orankx].setting; |
| |
| // skip RODT rows in mask, or rows |
| // with too high a score; |
| // we will not use them for printing |
| // or evaluating... |
| if ((1 << rodt_ctl) & |
| rodt_row_skip_mask) { |
| skip_row = WITH_RODT_SKIPPING; |
| ++mask_skipped[pass]; |
| } else if (temp_score > |
| max_rank_score) { |
| skip_row = WITH_RODT_SKIPPING; |
| ++score_skipped[pass]; |
| } else { |
| skip_row = WITH_RODT_BLANK; |
| ++selected_rows[pass]; |
| if (temp_score == 0) |
| ++zero_scores[pass]; |
| } |
| |
| // identify and print the BEST ROW |
| // when it comes up |
| if (skip_row == WITH_RODT_BLANK && |
| best_rankx == orankx && |
| best_rank_rtt_nom == rtt_nom && |
| best_rank_ctl == rodt_ctl) |
| skip_row = WITH_RODT_BESTROW; |
| |
| if (rl_print) { |
| display_rl_with_rodt(if_num, |
| temp_rl_rank, orankx, temp_score, |
| print_nom_ohms, |
| imp_val->rodt_ohms[rodt_ctl], |
| skip_row); |
| } |
| } |
| } |
| } |
| } |
| debug("N%d.LMC%d.R%d: RLROWS: selected %d+%d, zero_scores %d+%d, mask_skipped %d+%d, score_skipped %d+%d\n", |
| node, if_num, rankx, selected_rows[0], selected_rows[1], |
| zero_scores[0], zero_scores[1], mask_skipped[0], mask_skipped[1], |
| score_skipped[0], score_skipped[1]); |
| // this is the end of the PRINT LOOP |
| |
| // now evaluate which bytes need adjusting |
| // collect the new byte values; first init with current best for |
| // neighbor use |
| for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) { |
| rank_best_bytes[i] = (int)(rl_rank.u64 >> byte_sh) & |
| RLEVEL_BYTE_MSK; |
| } |
| |
| // this is the start of the BEST BYTE LOOP |
| |
| for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) { |
| int sum = 0, count = 0; |
| int count_less = 0, count_same = 0, count_more = 0; |
| int count_byte; // save the value we counted around |
| // for rank majority use |
| int rank_less = 0, rank_same = 0, rank_more = 0; |
| int neighbor; |
| int neigh_byte; |
| |
| best_byte = rank_best_bytes[i]; |
| orig_best_byte = rank_best_bytes[i]; |
| |
| // this is the start of the BEST BYTE AVERAGING LOOP |
| |
| // validate the initial "best" byte by looking at the |
| // average of the unskipped byte-column entries |
| // we want to do this before we go further, so we can |
| // try to start with a better initial value |
| // this is the so-called "BESTBUY" patch set |
| |
| for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; |
| ++rtt_idx) { |
| rtt_nom = imp_val->rtt_nom_table[rtt_idx]; |
| |
| for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; |
| --rodt_ctl) { |
| union cvmx_lmcx_rlevel_rankx temp_rl_rank; |
| int temp_score; |
| |
| // average over all the ranks |
| for (orankx = 0; orankx < dimm_count * 4; |
| orankx++) { |
| // stay on the same DIMM |
| if (!(dimm_rank_mask & (1 << orankx))) |
| continue; |
| |
| temp_score = |
| rl_score[rtt_nom][rodt_ctl][orankx].score; |
| // skip RODT rows in mask, or rows with |
| // too high a score; |
| // we will not use them for printing or |
| // evaluating... |
| |
| if (!((1 << rodt_ctl) & |
| rodt_row_skip_mask) && |
| temp_score <= max_rank_score) { |
| temp_rl_rank.u64 = |
| rl_score[rtt_nom][rodt_ctl][orankx].setting; |
| temp_byte = |
| (int)(temp_rl_rank.u64 >> byte_sh) & |
| RLEVEL_BYTE_MSK; |
| sum += temp_byte; |
| count++; |
| } |
| } |
| } |
| } |
| |
| // this is the end of the BEST BYTE AVERAGING LOOP |
| |
| // FIXME: validate count and sum?? |
| avg_byte = (int)divide_nint(sum, count); |
| avg_diff = best_byte - avg_byte; |
| new_byte = best_byte; |
| if (avg_diff != 0) { |
| // bump best up/dn by 1, not necessarily all the |
| // way to avg |
| new_byte = best_byte + ((avg_diff > 0) ? -1 : 1); |
| } |
| |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: START: Byte %d: best %d is different by %d from average %d, using %d.\n", |
| node, if_num, rankx, |
| i, best_byte, avg_diff, avg_byte, new_byte); |
| } |
| best_byte = new_byte; |
| count_byte = new_byte; // save the value we will count around |
| |
| // At this point best_byte is either: |
| // 1. the original byte-column value from the best scoring |
| // RODT row, OR |
| // 2. that value bumped toward the average of all the |
| // byte-column values |
| // |
| // best_byte will not change from here on... |
| |
| // this is the start of the BEST BYTE COUNTING LOOP |
| |
| // NOTE: we do this next loop separately from above, because |
| // we count relative to "best_byte" |
| // which may have been modified by the above averaging |
| // operation... |
| |
| for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; |
| ++rtt_idx) { |
| rtt_nom = imp_val->rtt_nom_table[rtt_idx]; |
| |
| for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl; |
| --rodt_ctl) { |
| union cvmx_lmcx_rlevel_rankx temp_rl_rank; |
| int temp_score; |
| |
| for (orankx = 0; orankx < dimm_count * 4; |
| orankx++) { // count over all the ranks |
| // stay on the same DIMM |
| if (!(dimm_rank_mask & (1 << orankx))) |
| continue; |
| |
| temp_score = |
| rl_score[rtt_nom][rodt_ctl][orankx].score; |
| // skip RODT rows in mask, or rows |
| // with too high a score; |
| // we will not use them for printing |
| // or evaluating... |
| if (((1 << rodt_ctl) & |
| rodt_row_skip_mask) || |
| temp_score > max_rank_score) |
| continue; |
| |
| temp_rl_rank.u64 = |
| rl_score[rtt_nom][rodt_ctl][orankx].setting; |
| temp_byte = (temp_rl_rank.u64 >> |
| byte_sh) & RLEVEL_BYTE_MSK; |
| |
| if (temp_byte == 0) |
| ; // do not count it if illegal |
| else if (temp_byte == best_byte) |
| count_same++; |
| else if (temp_byte == best_byte - 1) |
| count_less++; |
| else if (temp_byte == best_byte + 1) |
| count_more++; |
| // else do not count anything more |
| // than 1 away from the best |
| |
| // no rank counting if disabled |
| if (disable_rank_majority) |
| continue; |
| |
| // FIXME? count is relative to |
| // best_byte; should it be rank-based? |
| // rank counts only on main rank |
| if (orankx != rankx) |
| continue; |
| else if (temp_byte == best_byte) |
| rank_same++; |
| else if (temp_byte == best_byte - 1) |
| rank_less++; |
| else if (temp_byte == best_byte + 1) |
| rank_more++; |
| } |
| } |
| } |
| |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: COUNT: Byte %d: orig %d now %d, more %d same %d less %d (%d/%d/%d)\n", |
| node, if_num, rankx, |
| i, orig_best_byte, best_byte, |
| count_more, count_same, count_less, |
| rank_more, rank_same, rank_less); |
| } |
| |
| // this is the end of the BEST BYTE COUNTING LOOP |
| |
| // choose the new byte value |
| // we need to check that there is no gap greater than 2 |
| // between adjacent bytes (adjacency depends on DIMM type) |
| // use the neighbor value to help decide |
| // initially, the rank_best_bytes[] will contain values from |
| // the chosen lowest score rank |
| new_byte = 0; |
| |
| // neighbor is index-1 unless we are index 0 or index 8 (ECC) |
| neighbor = (i == 8) ? 3 : ((i == 0) ? 1 : i - 1); |
| neigh_byte = rank_best_bytes[neighbor]; |
| |
| // can go up or down or stay the same, so look at a numeric |
| // average to help |
| new_byte = (int)divide_nint(((count_more * (best_byte + 1)) + |
| (count_same * (best_byte + 0)) + |
| (count_less * (best_byte - 1))), |
| max(1, (count_more + count_same + |
| count_less))); |
| |
| // use neighbor to help choose with average |
| if (i > 0 && (abs(neigh_byte - new_byte) > 2) && |
| !disable_sequential_delay_check) { |
| // but not for byte 0 |
| int avg_pick = new_byte; |
| |
| if ((new_byte - best_byte) != 0) { |
| // back to best, average did not get better |
| new_byte = best_byte; |
| } else { |
| // avg was the same, still too far, now move |
| // it towards the neighbor |
| new_byte += (neigh_byte > new_byte) ? 1 : -1; |
| } |
| |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: neighbor %d too different %d from average %d, picking %d.\n", |
| node, if_num, rankx, |
| i, neighbor, neigh_byte, avg_pick, |
| new_byte); |
| } |
| } else { |
| // NOTE: |
| // For now, we let the neighbor processing above trump |
| // the new simple majority processing here. |
| // This is mostly because we have seen no smoking gun |
| // for a neighbor bad choice (yet?). |
| // Also note that we will ALWAYS be using byte 0 |
| // majority, because of the if clause above. |
| |
| // majority is dependent on the counts, which are |
| // relative to best_byte, so start there |
| int maj_byte = best_byte; |
| int rank_maj; |
| int rank_sum; |
| |
| if (count_more > count_same && |
| count_more > count_less) { |
| maj_byte++; |
| } else if (count_less > count_same && |
| count_less > count_more) { |
| maj_byte--; |
| } |
| |
| if (maj_byte != new_byte) { |
| // print only when majority choice is |
| // different from average |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: MAJORTY: Byte %d: picking majority of %d over average %d.\n", |
| node, if_num, rankx, i, maj_byte, |
| new_byte); |
| } |
| new_byte = maj_byte; |
| } else { |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: picking average of %d.\n", |
| node, if_num, rankx, i, new_byte); |
| } |
| } |
| |
| if (!disable_rank_majority) { |
| // rank majority is dependent on the rank |
| // counts, which are relative to best_byte, |
| // so start there, and adjust according to the |
| // rank counts majority |
| rank_maj = best_byte; |
| if (rank_more > rank_same && |
| rank_more > rank_less) { |
| rank_maj++; |
| } else if (rank_less > rank_same && |
| rank_less > rank_more) { |
| rank_maj--; |
| } |
| rank_sum = rank_more + rank_same + rank_less; |
| |
| // now, let rank majority possibly rule over |
| // the current new_byte however we got it |
| if (rank_maj != new_byte) { // only if different |
| // Here is where we decide whether to |
| // completely apply RANK_MAJORITY or not |
| // ignore if less than |
| if (rank_maj < new_byte) { |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: LESS: NOT using %d over %d.\n", |
| node, if_num, |
| rankx, i, |
| rank_maj, |
| new_byte); |
| } |
| } else { |
| // For the moment, we do it |
| // ONLY when running 2-slot |
| // configs |
| // OR when rank_sum is big |
| // enough |
| if (dimm_count > 1 || |
| rank_sum > 2) { |
| // print only when rank |
| // majority choice is |
| // selected |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: picking %d over %d.\n", |
| node, |
| if_num, |
| rankx, |
| i, |
| rank_maj, |
| new_byte); |
| } |
| new_byte = rank_maj; |
| } else { |
| // FIXME: print some |
| // info when we could |
| // have chosen RANKMAJ |
| // but did not |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: NOT using %d over %d (best=%d,sum=%d).\n", |
| node, |
| if_num, |
| rankx, |
| i, |
| rank_maj, |
| new_byte, |
| best_byte, |
| rank_sum); |
| } |
| } |
| } |
| } |
| } /* if (!disable_rank_majority) */ |
| } |
| // one last check: |
| // if new_byte is still count_byte, BUT there was no count |
| // for that value, DO SOMETHING!!! |
| // FIXME: go back to original best byte from the best row |
| if (new_byte == count_byte && count_same == 0) { |
| new_byte = orig_best_byte; |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: FAILSAF: Byte %d: going back to original %d.\n", |
| node, if_num, rankx, i, new_byte); |
| } |
| } |
| // Look at counts for "perfect" bitmasks (PBMs) if we had |
| // any for this byte-lane. |
| // Remember, we only counted for DDR4, so zero means none |
| // or DDR3, and we bypass this... |
| value_mask = rank_perf[rankx].mask[i]; |
| disable_rlv_bump_this_byte = 0; |
| |
| if (value_mask != 0 && rl_ctl.cn78xx.offset == 1) { |
| int i, delay_count, delay_max = 0, del_val = 0; |
| int num_values = __builtin_popcountll(value_mask); |
| int sum_counts = 0; |
| u64 temp_mask = value_mask; |
| |
| disable_rlv_bump_this_byte = 1; |
| i = __builtin_ffsll(temp_mask) - 1; |
| if (rl_print) |
| debug("N%d.LMC%d.R%d: PERFECT: Byte %d: OFF1: mask 0x%02llx (%d): ", |
| node, if_num, rankx, i, value_mask >> i, |
| num_values); |
| |
| while (temp_mask != 0) { |
| i = __builtin_ffsll(temp_mask) - 1; |
| delay_count = rank_perf[rankx].count[i][i]; |
| sum_counts += delay_count; |
| if (rl_print) |
| debug("%2d(%2d) ", i, delay_count); |
| if (delay_count >= delay_max) { |
| delay_max = delay_count; |
| del_val = i; |
| } |
| temp_mask &= ~(1UL << i); |
| } /* while (temp_mask != 0) */ |
| |
| // if sum_counts is small, just use NEW_BYTE |
| if (sum_counts < pbm_lowsum_limit) { |
| if (rl_print) |
| debug(": LOWSUM (%2d), choose ORIG ", |
| sum_counts); |
| del_val = new_byte; |
| delay_max = rank_perf[rankx].count[i][del_val]; |
| } |
| |
| // finish printing here... |
| if (rl_print) { |
| debug(": USING %2d (%2d) D%d\n", del_val, |
| delay_max, disable_rlv_bump_this_byte); |
| } |
| |
| new_byte = del_val; // override with best PBM choice |
| |
| } else if ((value_mask != 0) && (rl_ctl.cn78xx.offset == 2)) { |
| // if (value_mask != 0) { |
| int i, delay_count, del_val; |
| int num_values = __builtin_popcountll(value_mask); |
| int sum_counts = 0; |
| u64 temp_mask = value_mask; |
| |
| i = __builtin_ffsll(temp_mask) - 1; |
| if (rl_print) |
| debug("N%d.LMC%d.R%d: PERFECT: Byte %d: mask 0x%02llx (%d): ", |
| node, if_num, rankx, i, value_mask >> i, |
| num_values); |
| while (temp_mask != 0) { |
| i = __builtin_ffsll(temp_mask) - 1; |
| delay_count = rank_perf[rankx].count[i][i]; |
| sum_counts += delay_count; |
| if (rl_print) |
| debug("%2d(%2d) ", i, delay_count); |
| temp_mask &= ~(1UL << i); |
| } /* while (temp_mask != 0) */ |
| |
| del_val = __builtin_ffsll(value_mask) - 1; |
| delay_count = |
| rank_perf[rankx].count[i][del_val]; |
| |
| // overkill, normally only 1-4 bits |
| i = (value_mask >> del_val) & 0x1F; |
| |
| // if sum_counts is small, treat as special and use |
| // NEW_BYTE |
| if (sum_counts < pbm_lowsum_limit) { |
| if (rl_print) |
| debug(": LOWSUM (%2d), choose ORIG", |
| sum_counts); |
| i = 99; // SPECIAL case... |
| } |
| |
| switch (i) { |
| case 0x01 /* 00001b */: |
| // allow BUMP |
| break; |
| |
| case 0x13 /* 10011b */: |
| case 0x0B /* 01011b */: |
| case 0x03 /* 00011b */: |
| del_val += 1; // take the second |
| disable_rlv_bump_this_byte = 1; // allow no BUMP |
| break; |
| |
| case 0x0D /* 01101b */: |
| case 0x05 /* 00101b */: |
| // test count of lowest and all |
| if (delay_count >= 5 || sum_counts <= 5) |
| del_val += 1; // take the hole |
| else |
| del_val += 2; // take the next set |
| disable_rlv_bump_this_byte = 1; // allow no BUMP |
| break; |
| |
| case 0x0F /* 01111b */: |
| case 0x17 /* 10111b */: |
| case 0x07 /* 00111b */: |
| del_val += 1; // take the second |
| if (delay_count < 5) { // lowest count is small |
| int second = |
| rank_perf[rankx].count[i][del_val]; |
| int third = |
| rank_perf[rankx].count[i][del_val + 1]; |
| // test if middle is more than 1 OR |
| // top is more than 1; |
| // this means if they are BOTH 1, |
| // then we keep the second... |
| if (second > 1 || third > 1) { |
| // if middle is small OR top |
| // is large |
| if (second < 5 || |
| third > 1) { |
| // take the top |
| del_val += 1; |
| if (rl_print) |
| debug(": TOP7 "); |
| } |
| } |
| } |
| disable_rlv_bump_this_byte = 1; // allow no BUMP |
| break; |
| |
| default: // all others... |
| if (rl_print) |
| debug(": ABNORMAL, choose ORIG"); |
| |
| case 99: // special |
| // FIXME: choose original choice? |
| del_val = new_byte; |
| disable_rlv_bump_this_byte = 1; // allow no BUMP |
| break; |
| } |
| delay_count = |
| rank_perf[rankx].count[i][del_val]; |
| |
| // finish printing here... |
| if (rl_print) |
| debug(": USING %2d (%2d) D%d\n", del_val, |
| delay_count, disable_rlv_bump_this_byte); |
| new_byte = del_val; // override with best PBM choice |
| } else { |
| if (ddr_type == DDR4_DRAM) { // only report when DDR4 |
| // FIXME: remove or increase VBL for this |
| // output... |
| if (rl_print) |
| debug("N%d.LMC%d.R%d: PERFECT: Byte %d: ZERO PBMs, USING %d\n", |
| node, if_num, rankx, i, |
| new_byte); |
| // prevent ODD bump, rely on original |
| disable_rlv_bump_this_byte = 1; |
| } |
| } /* if (value_mask != 0) */ |
| |
| // optionally bump the delay value |
| if (enable_rldelay_bump && !disable_rlv_bump_this_byte) { |
| if ((new_byte & enable_rldelay_bump) == |
| enable_rldelay_bump) { |
| int bump_value = new_byte + rldelay_bump_incr; |
| |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: RLVBUMP: Byte %d: CHANGING %d to %d (%s)\n", |
| node, if_num, rankx, i, |
| new_byte, bump_value, |
| (value_mask & |
| (1 << bump_value)) ? |
| "PBM" : "NOPBM"); |
| } |
| new_byte = bump_value; |
| } |
| } |
| |
| // last checks for count-related purposes |
| if (new_byte == best_byte && count_more > 0 && |
| count_less == 0) { |
| // we really should take best_byte + 1 |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: CADJMOR: Byte %d: CHANGING %d to %d\n", |
| node, if_num, rankx, i, |
| new_byte, best_byte + 1); |
| new_byte = best_byte + 1; |
| } |
| } else if ((new_byte < best_byte) && (count_same > 0)) { |
| // we really should take best_byte |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: CADJSAM: Byte %d: CHANGING %d to %d\n", |
| node, if_num, rankx, i, |
| new_byte, best_byte); |
| new_byte = best_byte; |
| } |
| } else if (new_byte > best_byte) { |
| if ((new_byte == (best_byte + 1)) && |
| count_more == 0 && count_less > 0) { |
| // we really should take best_byte |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: CADJLE1: Byte %d: CHANGING %d to %d\n", |
| node, if_num, rankx, i, |
| new_byte, best_byte); |
| new_byte = best_byte; |
| } |
| } else if ((new_byte >= (best_byte + 2)) && |
| ((count_more > 0) || (count_same > 0))) { |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: CADJLE2: Byte %d: CHANGING %d to %d\n", |
| node, if_num, rankx, i, |
| new_byte, best_byte + 1); |
| new_byte = best_byte + 1; |
| } |
| } |
| } |
| |
| if (rl_print) { |
| debug("N%d.LMC%d.R%d: SUMMARY: Byte %d: orig %d now %d, more %d same %d less %d, using %d\n", |
| node, if_num, rankx, i, orig_best_byte, |
| best_byte, count_more, count_same, count_less, |
| new_byte); |
| } |
| |
| // update the byte with the new value (NOTE: orig value in |
| // the CSR may not be current "best") |
| upd_rl_rank(&rl_rank, i, new_byte); |
| |
| // save new best for neighbor use |
| rank_best_bytes[i] = new_byte; |
| } /* for (i = 0; i < 8+ecc_ena; i++) */ |
| |
| ////////////////// this is the end of the BEST BYTE LOOP |
| |
| if (saved_rl_rank.u64 != rl_rank.u64) { |
| lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), |
| rl_rank.u64); |
| rl_rank.u64 = lmc_rd(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, if_num)); |
| debug("Adjusting Read-Leveling per-RANK settings.\n"); |
| } else { |
| debug("Not Adjusting Read-Leveling per-RANK settings.\n"); |
| } |
| display_rl_with_final(if_num, rl_rank, rankx); |
| |
| // FIXME: does this help make the output a little easier to focus? |
| if (rl_print > 0) |
| debug("-----------\n"); |
| |
| #define RLEVEL_RANKX_EXTRAS_INCR 0 |
| // if there are unused entries to be filled |
| if ((rank_mask & 0x0f) != 0x0f) { |
| // copy the current rank |
| union cvmx_lmcx_rlevel_rankx temp_rl_rank = rl_rank; |
| |
| if (rankx < 3) { |
| #if RLEVEL_RANKX_EXTRAS_INCR > 0 |
| int byte, delay; |
| |
| // modify the copy in prep for writing to empty slot(s) |
| for (byte = 0; byte < 9; byte++) { |
| delay = get_rl_rank(&temp_rl_rank, byte) + |
| RLEVEL_RANKX_EXTRAS_INCR; |
| if (delay > RLEVEL_BYTE_MSK) |
| delay = RLEVEL_BYTE_MSK; |
| upd_rl_rank(&temp_rl_rank, byte, delay); |
| } |
| #endif |
| |
| // if rank 0, write rank 1 and rank 2 here if empty |
| if (rankx == 0) { |
| // check that rank 1 is empty |
| if (!(rank_mask & (1 << 1))) { |
| debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n", |
| node, if_num, rankx, 1); |
| lmc_wr(priv, |
| CVMX_LMCX_RLEVEL_RANKX(1, |
| if_num), |
| temp_rl_rank.u64); |
| } |
| |
| // check that rank 2 is empty |
| if (!(rank_mask & (1 << 2))) { |
| debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n", |
| node, if_num, rankx, 2); |
| lmc_wr(priv, |
| CVMX_LMCX_RLEVEL_RANKX(2, |
| if_num), |
| temp_rl_rank.u64); |
| } |
| } |
| |
| // if ranks 0, 1 or 2, write rank 3 here if empty |
| // check that rank 3 is empty |
| if (!(rank_mask & (1 << 3))) { |
| debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n", |
| node, if_num, rankx, 3); |
| lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(3, if_num), |
| temp_rl_rank.u64); |
| } |
| } |
| } |
| } |
| |
| static void lmc_read_leveling(struct ddr_priv *priv) |
| { |
| struct rl_score rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4]; |
| union cvmx_lmcx_control ctl; |
| union cvmx_lmcx_config cfg; |
| int rankx; |
| char *s; |
| int i; |
| |
| /* |
| * 4.8.10 LMC Read Leveling |
| * |
| * LMC supports an automatic read-leveling separately per byte-lane |
| * using the DDR3 multipurpose register predefined pattern for system |
| * calibration defined in the JEDEC DDR3 specifications. |
| * |
| * All of DDR PLL, LMC CK, and LMC DRESET, and early LMC initializations |
| * must be completed prior to starting this LMC read-leveling sequence. |
| * |
| * Software could simply write the desired read-leveling values into |
| * LMC(0)_RLEVEL_RANK(0..3). This section describes a sequence that uses |
| * LMC's autoread-leveling capabilities. |
| * |
| * When LMC does the read-leveling sequence for a rank, it first enables |
| * the DDR3 multipurpose register predefined pattern for system |
| * calibration on the selected DRAM rank via a DDR3 MR3 write, then |
| * executes 64 RD operations at different internal delay settings, then |
| * disables the predefined pattern via another DDR3 MR3 write |
| * operation. LMC determines the pass or fail of each of the 64 settings |
| * independently for each byte lane, then writes appropriate |
| * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] values for the rank. |
| * |
| * After read-leveling for a rank, software can read the 64 pass/fail |
| * indications for one byte lane via LMC(0)_RLEVEL_DBG[BITMASK]. |
| * Software can observe all pass/fail results for all byte lanes in a |
| * rank via separate read-leveling sequences on the rank with different |
| * LMC(0)_RLEVEL_CTL[BYTE] values. |
| * |
| * The 64 pass/fail results will typically have failures for the low |
| * delays, followed by a run of some passing settings, followed by more |
| * failures in the remaining high delays. LMC sets |
| * LMC(0)_RLEVEL_RANK(0..3)[BYTE*] to one of the passing settings. |
| * First, LMC selects the longest run of successes in the 64 results. |
| * (In the unlikely event that there is more than one longest run, LMC |
| * selects the first one.) Then if LMC(0)_RLEVEL_CTL[OFFSET_EN] = 1 and |
| * the selected run has more than LMC(0)_RLEVEL_CTL[OFFSET] successes, |
| * LMC selects the last passing setting in the run minus |
| * LMC(0)_RLEVEL_CTL[OFFSET]. Otherwise LMC selects the middle setting |
| * in the run (rounding earlier when necessary). We expect the |
| * read-leveling sequence to produce good results with the reset values |
| * LMC(0)_RLEVEL_CTL [OFFSET_EN]=1, LMC(0)_RLEVEL_CTL[OFFSET] = 2. |
| * |
| * The read-leveling sequence has the following steps: |
| * |
| * 1. Select desired LMC(0)_RLEVEL_CTL[OFFSET_EN,OFFSET,BYTE] settings. |
| * Do the remaining substeps 2-4 separately for each rank i with |
| * attached DRAM. |
| * |
| * 2. Without changing any other fields in LMC(0)_CONFIG, |
| * |
| * o write LMC(0)_SEQ_CTL[SEQ_SEL] to select read-leveling |
| * |
| * o write LMC(0)_CONFIG[RANKMASK] = (1 << i) |
| * |
| * o write LMC(0)_SEQ_CTL[INIT_START] = 1 |
| * |
| * This initiates the previously-described read-leveling. |
| * |
| * 3. Wait until LMC(0)_RLEVEL_RANKi[STATUS] != 2 |
| * |
| * LMC will have updated LMC(0)_RLEVEL_RANKi[BYTE*] for all byte |
| * lanes at this point. |
| * |
| * If ECC DRAM is not present (i.e. when DRAM is not attached to the |
| * DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the DDR_DQS_<4>_* and |
| * DDR_DQ<35:32> chip signals), write LMC(0)_RLEVEL_RANK*[BYTE8] = |
| * LMC(0)_RLEVEL_RANK*[BYTE0]. Write LMC(0)_RLEVEL_RANK*[BYTE4] = |
| * LMC(0)_RLEVEL_RANK*[BYTE0]. |
| * |
| * 4. If desired, consult LMC(0)_RLEVEL_DBG[BITMASK] and compare to |
| * LMC(0)_RLEVEL_RANKi[BYTE*] for the lane selected by |
| * LMC(0)_RLEVEL_CTL[BYTE]. If desired, modify |
| * LMC(0)_RLEVEL_CTL[BYTE] to a new value and repeat so that all |
| * BITMASKs can be observed. |
| * |
| * 5. Initialize LMC(0)_RLEVEL_RANK* values for all unused ranks. |
| * |
| * Let rank i be a rank with attached DRAM. |
| * |
| * For all ranks j that do not have attached DRAM, set |
| * LMC(0)_RLEVEL_RANKj = LMC(0)_RLEVEL_RANKi. |
| * |
| * This read-leveling sequence can help select the proper CN70XX ODT |
| * resistance value (LMC(0)_COMP_CTL2[RODT_CTL]). A hardware-generated |
| * LMC(0)_RLEVEL_RANKi[BYTEj] value (for a used byte lane j) that is |
| * drastically different from a neighboring LMC(0)_RLEVEL_RANKi[BYTEk] |
| * (for a used byte lane k) can indicate that the CN70XX ODT value is |
| * bad. It is possible to simultaneously optimize both |
| * LMC(0)_COMP_CTL2[RODT_CTL] and LMC(0)_RLEVEL_RANKn[BYTE*] values by |
| * performing this read-leveling sequence for several |
| * LMC(0)_COMP_CTL2[RODT_CTL] values and selecting the one with the |
| * best LMC(0)_RLEVEL_RANKn[BYTE*] profile for the ranks. |
| */ |
| |
| rl_rodt_err = 0; |
| rl_dbg_loops = 1; |
| saved_int_zqcs_dis = 0; |
| max_adj_rl_del_inc = 0; |
| rl_print = RLEVEL_PRINTALL_DEFAULT; |
| |
| #ifdef ENABLE_HARDCODED_RLEVEL |
| part_number[21] = {0}; |
| #endif /* ENABLE_HARDCODED_RLEVEL */ |
| |
| pbm_lowsum_limit = 5; // FIXME: is this a good default? |
| // FIXME: PBM skip for RODT 240 and 34 |
| pbm_rodt_skip = (1U << ddr4_rodt_ctl_240_ohm) | |
| (1U << ddr4_rodt_ctl_34_ohm); |
| |
| disable_rank_majority = 0; // control rank majority processing |
| |
| // default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE |
| // for DDR3 |
| rldelay_bump_incr = 0; |
| disable_rlv_bump_this_byte = 0; |
| |
| enable_rldelay_bump = (ddr_type == DDR4_DRAM) ? |
| ((octeon_is_cpuid(OCTEON_CN73XX)) ? 1 : 3) : 0; |
| |
| s = lookup_env(priv, "ddr_disable_rank_majority"); |
| if (s) |
| disable_rank_majority = !!simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_pbm_lowsum_limit"); |
| if (s) |
| pbm_lowsum_limit = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_pbm_rodt_skip"); |
| if (s) |
| pbm_rodt_skip = simple_strtoul(s, NULL, 0); |
| memset(rank_perf, 0, sizeof(rank_perf)); |
| |
| ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| save_ddr2t = ctl.cn78xx.ddr2t; |
| |
| cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num)); |
| ecc_ena = cfg.cn78xx.ecc_ena; |
| |
| s = lookup_env(priv, "ddr_rlevel_2t"); |
| if (s) |
| ctl.cn78xx.ddr2t = simple_strtoul(s, NULL, 0); |
| |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64); |
| |
| debug("LMC%d: Performing Read-Leveling\n", if_num); |
| |
| rl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num)); |
| |
| rl_samples = c_cfg->rlevel_average_loops; |
| if (rl_samples == 0) { |
| rl_samples = RLEVEL_SAMPLES_DEFAULT; |
| // up the samples for these cases |
| if (dimm_count == 1 || num_ranks == 1) |
| rl_samples = rl_samples * 2 + 1; |
| } |
| |
| rl_compute = c_cfg->rlevel_compute; |
| rl_ctl.cn78xx.offset_en = c_cfg->offset_en; |
| rl_ctl.cn78xx.offset = spd_rdimm |
| ? c_cfg->offset_rdimm |
| : c_cfg->offset_udimm; |
| |
| int value = 1; // should ALWAYS be set |
| |
| s = lookup_env(priv, "ddr_rlevel_delay_unload"); |
| if (s) |
| value = !!simple_strtoul(s, NULL, 0); |
| rl_ctl.cn78xx.delay_unload_0 = value; |
| rl_ctl.cn78xx.delay_unload_1 = value; |
| rl_ctl.cn78xx.delay_unload_2 = value; |
| rl_ctl.cn78xx.delay_unload_3 = value; |
| |
| // use OR_DIS=1 to try for better results |
| rl_ctl.cn78xx.or_dis = 1; |
| |
| /* |
| * If we will be switching to 32bit mode level based on only |
| * four bits because there are only 4 ECC bits. |
| */ |
| rl_ctl.cn78xx.bitmask = (if_64b) ? 0xFF : 0x0F; |
| |
| // allow overrides |
| s = lookup_env(priv, "ddr_rlevel_ctl_or_dis"); |
| if (s) |
| rl_ctl.cn78xx.or_dis = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rlevel_ctl_bitmask"); |
| if (s) |
| rl_ctl.cn78xx.bitmask = simple_strtoul(s, NULL, 0); |
| |
| rl_comp_offs = spd_rdimm |
| ? c_cfg->rlevel_comp_offset_rdimm |
| : c_cfg->rlevel_comp_offset_udimm; |
| s = lookup_env(priv, "ddr_rlevel_comp_offset"); |
| if (s) |
| rl_comp_offs = strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rlevel_offset"); |
| if (s) |
| rl_ctl.cn78xx.offset = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rlevel_offset_en"); |
| if (s) |
| rl_ctl.cn78xx.offset_en = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rlevel_ctl"); |
| if (s) |
| rl_ctl.u64 = simple_strtoul(s, NULL, 0); |
| |
| lmc_wr(priv, |
| CVMX_LMCX_RLEVEL_CTL(if_num), |
| rl_ctl.u64); |
| |
| // do this here so we can look at final RLEVEL_CTL[offset] setting... |
| s = lookup_env(priv, "ddr_enable_rldelay_bump"); |
| if (s) { |
| // also use as mask bits |
| enable_rldelay_bump = strtoul(s, NULL, 0); |
| } |
| |
| if (enable_rldelay_bump != 0) |
| rldelay_bump_incr = (rl_ctl.cn78xx.offset == 1) ? -1 : 1; |
| |
| s = lookup_env(priv, "ddr%d_rlevel_debug_loops", if_num); |
| if (s) |
| rl_dbg_loops = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rtt_nom_auto"); |
| if (s) |
| ddr_rtt_nom_auto = !!simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rlevel_average"); |
| if (s) |
| rl_samples = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rlevel_compute"); |
| if (s) |
| rl_compute = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_rlevel_printall"); |
| if (s) |
| rl_print = simple_strtoul(s, NULL, 0); |
| |
| debug("RLEVEL_CTL : 0x%016llx\n", |
| rl_ctl.u64); |
| debug("RLEVEL_OFFSET : %6d\n", |
| rl_ctl.cn78xx.offset); |
| debug("RLEVEL_OFFSET_EN : %6d\n", |
| rl_ctl.cn78xx.offset_en); |
| |
| /* |
| * The purpose for the indexed table is to sort the settings |
| * by the ohm value to simplify the testing when incrementing |
| * through the settings. (index => ohms) 1=120, 2=60, 3=40, |
| * 4=30, 5=20 |
| */ |
| min_rtt_nom_idx = (c_cfg->min_rtt_nom_idx == 0) ? |
| 1 : c_cfg->min_rtt_nom_idx; |
| max_rtt_nom_idx = (c_cfg->max_rtt_nom_idx == 0) ? |
| 5 : c_cfg->max_rtt_nom_idx; |
| |
| min_rodt_ctl = (c_cfg->min_rodt_ctl == 0) ? 1 : c_cfg->min_rodt_ctl; |
| max_rodt_ctl = (c_cfg->max_rodt_ctl == 0) ? 5 : c_cfg->max_rodt_ctl; |
| |
| s = lookup_env(priv, "ddr_min_rodt_ctl"); |
| if (s) |
| min_rodt_ctl = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_max_rodt_ctl"); |
| if (s) |
| max_rodt_ctl = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_min_rtt_nom_idx"); |
| if (s) |
| min_rtt_nom_idx = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_max_rtt_nom_idx"); |
| if (s) |
| max_rtt_nom_idx = simple_strtoul(s, NULL, 0); |
| |
| #ifdef ENABLE_HARDCODED_RLEVEL |
| if (c_cfg->rl_tbl) { |
| /* Check for hard-coded read-leveling settings */ |
| get_dimm_part_number(part_number, &dimm_config_table[0], |
| 0, ddr_type); |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| rl_rank.u64 = lmc_rd(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| |
| i = 0; |
| while (c_cfg->rl_tbl[i].part) { |
| debug("DIMM part number:\"%s\", SPD: \"%s\"\n", |
| c_cfg->rl_tbl[i].part, part_number); |
| if ((strcmp(part_number, |
| c_cfg->rl_tbl[i].part) == 0) && |
| (abs(c_cfg->rl_tbl[i].speed - |
| 2 * ddr_hertz / (1000 * 1000)) < 10)) { |
| debug("Using hard-coded read leveling for DIMM part number: \"%s\"\n", |
| part_number); |
| rl_rank.u64 = |
| c_cfg->rl_tbl[i].rl_rank[if_num][rankx]; |
| lmc_wr(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num), |
| rl_rank.u64); |
| rl_rank.u64 = |
| lmc_rd(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| display_rl(if_num, rl_rank, rankx); |
| /* Disable h/w read-leveling */ |
| rl_dbg_loops = 0; |
| break; |
| } |
| ++i; |
| } |
| } |
| } |
| #endif /* ENABLE_HARDCODED_RLEVEL */ |
| |
| max_adj_rl_del_inc = c_cfg->maximum_adjacent_rlevel_delay_increment; |
| s = lookup_env(priv, "ddr_maximum_adjacent_rlevel_delay_increment"); |
| if (s) |
| max_adj_rl_del_inc = strtoul(s, NULL, 0); |
| |
| while (rl_dbg_loops--) { |
| union cvmx_lmcx_modereg_params1 mp1; |
| union cvmx_lmcx_comp_ctl2 cc2; |
| |
| /* Initialize the error scoreboard */ |
| memset(rl_score, 0, sizeof(rl_score)); |
| |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| saved_ddr__ptune = cc2.cn78xx.ddr__ptune; |
| saved_ddr__ntune = cc2.cn78xx.ddr__ntune; |
| |
| /* Disable dynamic compensation settings */ |
| if (rl_comp_offs != 0) { |
| cc2.cn78xx.ptune = saved_ddr__ptune; |
| cc2.cn78xx.ntune = saved_ddr__ntune; |
| |
| /* |
| * Round up the ptune calculation to bias the odd |
| * cases toward ptune |
| */ |
| cc2.cn78xx.ptune += divide_roundup(rl_comp_offs, 2); |
| cc2.cn78xx.ntune -= rl_comp_offs / 2; |
| |
| ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| saved_int_zqcs_dis = ctl.s.int_zqcs_dis; |
| /* Disable ZQCS while in bypass. */ |
| ctl.s.int_zqcs_dis = 1; |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64); |
| |
| cc2.cn78xx.byp = 1; /* Enable bypass mode */ |
| lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64); |
| lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| /* Read again */ |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n", |
| cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune); |
| } |
| |
| mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num)); |
| |
| for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; |
| ++rtt_idx) { |
| rtt_nom = imp_val->rtt_nom_table[rtt_idx]; |
| |
| /* |
| * When the read ODT mask is zero the dyn_rtt_nom_mask |
| * is zero than RTT_NOM will not be changing during |
| * read-leveling. Since the value is fixed we only need |
| * to test it once. |
| */ |
| if (dyn_rtt_nom_mask == 0) { |
| // flag not to print NOM ohms |
| print_nom_ohms = -1; |
| } else { |
| if (dyn_rtt_nom_mask & 1) |
| mp1.s.rtt_nom_00 = rtt_nom; |
| if (dyn_rtt_nom_mask & 2) |
| mp1.s.rtt_nom_01 = rtt_nom; |
| if (dyn_rtt_nom_mask & 4) |
| mp1.s.rtt_nom_10 = rtt_nom; |
| if (dyn_rtt_nom_mask & 8) |
| mp1.s.rtt_nom_11 = rtt_nom; |
| // FIXME? rank 0 ohms always? |
| print_nom_ohms = |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00]; |
| } |
| |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num), |
| mp1.u64); |
| |
| if (print_nom_ohms >= 0 && rl_print > 1) { |
| debug("\n"); |
| debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00], |
| mp1.s.rtt_nom_11, |
| mp1.s.rtt_nom_10, |
| mp1.s.rtt_nom_01, |
| mp1.s.rtt_nom_00); |
| } |
| |
| ddr_init_seq(priv, rank_mask, if_num); |
| |
| // Try RANK outside RODT to rearrange the output... |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| for (rodt_ctl = max_rodt_ctl; |
| rodt_ctl >= min_rodt_ctl; --rodt_ctl) |
| rodt_loop(priv, rankx, rl_score); |
| } |
| } |
| |
| /* Re-enable dynamic compensation settings. */ |
| if (rl_comp_offs != 0) { |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| |
| cc2.cn78xx.ptune = 0; |
| cc2.cn78xx.ntune = 0; |
| cc2.cn78xx.byp = 0; /* Disable bypass mode */ |
| lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64); |
| /* Read once */ |
| lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| |
| /* Read again */ |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n", |
| cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune); |
| |
| ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| /* Restore original setting */ |
| ctl.s.int_zqcs_dis = saved_int_zqcs_dis; |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64); |
| } |
| |
| int override_compensation = 0; |
| |
| s = lookup_env(priv, "ddr__ptune"); |
| if (s) |
| saved_ddr__ptune = strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr__ntune"); |
| if (s) { |
| saved_ddr__ntune = strtoul(s, NULL, 0); |
| override_compensation = 1; |
| } |
| |
| if (override_compensation) { |
| cc2.cn78xx.ptune = saved_ddr__ptune; |
| cc2.cn78xx.ntune = saved_ddr__ntune; |
| |
| ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| saved_int_zqcs_dis = ctl.s.int_zqcs_dis; |
| /* Disable ZQCS while in bypass. */ |
| ctl.s.int_zqcs_dis = 1; |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64); |
| |
| cc2.cn78xx.byp = 1; /* Enable bypass mode */ |
| lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64); |
| /* Read again */ |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| |
| debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n", |
| cc2.cn78xx.ptune, cc2.cn78xx.ntune); |
| } |
| |
| /* Evaluation block */ |
| /* Still at initial value? */ |
| int best_rodt_score = DEFAULT_BEST_RANK_SCORE; |
| int auto_rodt_ctl = 0; |
| int auto_rtt_nom = 0; |
| int rodt_score; |
| |
| rodt_row_skip_mask = 0; |
| |
| // just add specific RODT rows to the skip mask for DDR4 |
| // at this time... |
| if (ddr_type == DDR4_DRAM) { |
| // skip RODT row 34 ohms for all DDR4 types |
| rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_34_ohm); |
| // skip RODT row 40 ohms for all DDR4 types |
| rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_40_ohm); |
| // For now, do not skip RODT row 40 or 48 ohm when |
| // ddr_hertz is above 1075 MHz |
| if (ddr_hertz > 1075000000) { |
| // noskip RODT row 40 ohms |
| rodt_row_skip_mask &= |
| ~(1 << ddr4_rodt_ctl_40_ohm); |
| // noskip RODT row 48 ohms |
| rodt_row_skip_mask &= |
| ~(1 << ddr4_rodt_ctl_48_ohm); |
| } |
| // For now, do not skip RODT row 48 ohm for 2Rx4 |
| // stacked die DIMMs |
| if (is_stacked_die && num_ranks == 2 && |
| dram_width == 4) { |
| // noskip RODT row 48 ohms |
| rodt_row_skip_mask &= |
| ~(1 << ddr4_rodt_ctl_48_ohm); |
| } |
| // for now, leave all rows eligible when we have |
| // mini-DIMMs... |
| if (spd_dimm_type == 5 || spd_dimm_type == 6) |
| rodt_row_skip_mask = 0; |
| // for now, leave all rows eligible when we have |
| // a 2-slot 1-rank config |
| if (dimm_count == 2 && num_ranks == 1) |
| rodt_row_skip_mask = 0; |
| |
| debug("Evaluating Read-Leveling Scoreboard for AUTO settings.\n"); |
| for (rtt_idx = min_rtt_nom_idx; |
| rtt_idx <= max_rtt_nom_idx; ++rtt_idx) { |
| rtt_nom = imp_val->rtt_nom_table[rtt_idx]; |
| |
| for (rodt_ctl = max_rodt_ctl; |
| rodt_ctl >= min_rodt_ctl; --rodt_ctl) { |
| rodt_score = 0; |
| for (rankx = 0; rankx < dimm_count * 4; |
| rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| debug("rl_score[rtt_nom=%d][rodt_ctl=%d][rankx=%d].score:%d\n", |
| rtt_nom, rodt_ctl, rankx, |
| rl_score[rtt_nom][rodt_ctl][rankx].score); |
| rodt_score += |
| rl_score[rtt_nom][rodt_ctl][rankx].score; |
| } |
| // FIXME: do we need to skip RODT rows |
| // here, like we do below in the |
| // by-RANK settings? |
| |
| /* |
| * When using automatic ODT settings use |
| * the ODT settings associated with the |
| * best score for all of the tested ODT |
| * combinations. |
| */ |
| |
| if (rodt_score < best_rodt_score || |
| (rodt_score == best_rodt_score && |
| (imp_val->rodt_ohms[rodt_ctl] > |
| imp_val->rodt_ohms[auto_rodt_ctl]))) { |
| debug("AUTO: new best score for rodt:%d (%d), new score:%d, previous score:%d\n", |
| rodt_ctl, |
| imp_val->rodt_ohms[rodt_ctl], |
| rodt_score, |
| best_rodt_score); |
| best_rodt_score = rodt_score; |
| auto_rodt_ctl = rodt_ctl; |
| auto_rtt_nom = rtt_nom; |
| } |
| } |
| } |
| |
| mp1.u64 = lmc_rd(priv, |
| CVMX_LMCX_MODEREG_PARAMS1(if_num)); |
| |
| if (ddr_rtt_nom_auto) { |
| /* Store the automatically set RTT_NOM value */ |
| if (dyn_rtt_nom_mask & 1) |
| mp1.s.rtt_nom_00 = auto_rtt_nom; |
| if (dyn_rtt_nom_mask & 2) |
| mp1.s.rtt_nom_01 = auto_rtt_nom; |
| if (dyn_rtt_nom_mask & 4) |
| mp1.s.rtt_nom_10 = auto_rtt_nom; |
| if (dyn_rtt_nom_mask & 8) |
| mp1.s.rtt_nom_11 = auto_rtt_nom; |
| } else { |
| /* |
| * restore the manual settings to the register |
| */ |
| mp1.s.rtt_nom_00 = default_rtt_nom[0]; |
| mp1.s.rtt_nom_01 = default_rtt_nom[1]; |
| mp1.s.rtt_nom_10 = default_rtt_nom[2]; |
| mp1.s.rtt_nom_11 = default_rtt_nom[3]; |
| } |
| |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num), |
| mp1.u64); |
| debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01], |
| imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00], |
| mp1.s.rtt_nom_11, |
| mp1.s.rtt_nom_10, |
| mp1.s.rtt_nom_01, |
| mp1.s.rtt_nom_00); |
| |
| debug("RTT_WR %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)], |
| imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)], |
| imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)], |
| imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)], |
| extr_wr(mp1.u64, 3), |
| extr_wr(mp1.u64, 2), |
| extr_wr(mp1.u64, 1), |
| extr_wr(mp1.u64, 0)); |
| |
| debug("DIC %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->dic_ohms[mp1.s.dic_11], |
| imp_val->dic_ohms[mp1.s.dic_10], |
| imp_val->dic_ohms[mp1.s.dic_01], |
| imp_val->dic_ohms[mp1.s.dic_00], |
| mp1.s.dic_11, |
| mp1.s.dic_10, |
| mp1.s.dic_01, |
| mp1.s.dic_00); |
| |
| if (ddr_type == DDR4_DRAM) { |
| union cvmx_lmcx_modereg_params2 mp2; |
| /* |
| * We must read the CSR, and not depend on |
| * odt_config[odt_idx].odt_mask2, since we could |
| * have overridden values with envvars. |
| * NOTE: this corrects the printout, since the |
| * CSR is not written with the old values... |
| */ |
| mp2.u64 = lmc_rd(priv, |
| CVMX_LMCX_MODEREG_PARAMS2(if_num)); |
| |
| debug("RTT_PARK %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n", |
| imp_val->rtt_nom_ohms[mp2.s.rtt_park_11], |
| imp_val->rtt_nom_ohms[mp2.s.rtt_park_10], |
| imp_val->rtt_nom_ohms[mp2.s.rtt_park_01], |
| imp_val->rtt_nom_ohms[mp2.s.rtt_park_00], |
| mp2.s.rtt_park_11, |
| mp2.s.rtt_park_10, |
| mp2.s.rtt_park_01, |
| mp2.s.rtt_park_00); |
| |
| debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n", |
| "VREF_RANGE", |
| mp2.s.vref_range_11, |
| mp2.s.vref_range_10, |
| mp2.s.vref_range_01, |
| mp2.s.vref_range_00); |
| |
| debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n", |
| "VREF_VALUE", |
| mp2.s.vref_value_11, |
| mp2.s.vref_value_10, |
| mp2.s.vref_value_01, |
| mp2.s.vref_value_00); |
| } |
| |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| if (ddr_rodt_ctl_auto) { |
| cc2.cn78xx.rodt_ctl = auto_rodt_ctl; |
| } else { |
| // back to the original setting |
| cc2.cn78xx.rodt_ctl = default_rodt_ctl; |
| } |
| lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64); |
| cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num)); |
| debug("Read ODT_CTL : 0x%x (%d ohms)\n", |
| cc2.cn78xx.rodt_ctl, |
| imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]); |
| |
| /* |
| * Use the delays associated with the best score for |
| * each individual rank |
| */ |
| debug("Evaluating Read-Leveling Scoreboard for per-RANK settings.\n"); |
| |
| // this is the the RANK MAJOR LOOP |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) |
| rank_major_loop(priv, rankx, rl_score); |
| } /* Evaluation block */ |
| } /* while(rl_dbg_loops--) */ |
| |
| ctl.cn78xx.ddr2t = save_ddr2t; |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64); |
| ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| /* Display final 2T value */ |
| debug("DDR2T : %6d\n", |
| ctl.cn78xx.ddr2t); |
| |
| ddr_init_seq(priv, rank_mask, if_num); |
| |
| for (rankx = 0; rankx < dimm_count * 4; rankx++) { |
| u64 value; |
| int parameter_set = 0; |
| |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| |
| for (i = 0; i < 9; ++i) { |
| s = lookup_env(priv, "ddr%d_rlevel_rank%d_byte%d", |
| if_num, rankx, i); |
| if (s) { |
| parameter_set |= 1; |
| value = simple_strtoul(s, NULL, 0); |
| |
| upd_rl_rank(&rl_rank, i, value); |
| } |
| } |
| |
| s = lookup_env_ull(priv, "ddr%d_rlevel_rank%d", if_num, rankx); |
| if (s) { |
| parameter_set |= 1; |
| value = simple_strtoull(s, NULL, 0); |
| rl_rank.u64 = value; |
| } |
| |
| if (parameter_set) { |
| lmc_wr(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), |
| rl_rank.u64); |
| rl_rank.u64 = lmc_rd(priv, |
| CVMX_LMCX_RLEVEL_RANKX(rankx, |
| if_num)); |
| display_rl(if_num, rl_rank, rankx); |
| } |
| } |
| } |
| |
| int init_octeon3_ddr3_interface(struct ddr_priv *priv, |
| struct ddr_conf *_ddr_conf, u32 _ddr_hertz, |
| u32 cpu_hertz, u32 ddr_ref_hertz, int _if_num, |
| u32 _if_mask) |
| { |
| union cvmx_lmcx_control ctrl; |
| int ret; |
| char *s; |
| int i; |
| |
| if_num = _if_num; |
| ddr_hertz = _ddr_hertz; |
| ddr_conf = _ddr_conf; |
| if_mask = _if_mask; |
| odt_1rank_config = ddr_conf->odt_1rank_config; |
| odt_2rank_config = ddr_conf->odt_2rank_config; |
| odt_4rank_config = ddr_conf->odt_4rank_config; |
| dimm_config_table = ddr_conf->dimm_config_table; |
| c_cfg = &ddr_conf->custom_lmc_config; |
| |
| /* |
| * Compute clock rates to the nearest picosecond. |
| */ |
| tclk_psecs = hertz_to_psecs(ddr_hertz); /* Clock in psecs */ |
| eclk_psecs = hertz_to_psecs(cpu_hertz); /* Clock in psecs */ |
| |
| dimm_count = 0; |
| /* Accumulate and report all the errors before giving up */ |
| fatal_error = 0; |
| |
| /* Flag that indicates safe DDR settings should be used */ |
| safe_ddr_flag = 0; |
| if_64b = 1; /* Octeon II Default: 64bit interface width */ |
| mem_size_mbytes = 0; |
| bank_bits = 0; |
| column_bits_start = 1; |
| use_ecc = 1; |
| min_cas_latency = 0, max_cas_latency = 0, override_cas_latency = 0; |
| spd_package = 0; |
| spd_rawcard = 0; |
| spd_rawcard_aorb = 0; |
| spd_rdimm_registers = 0; |
| is_stacked_die = 0; |
| is_3ds_dimm = 0; // 3DS |
| lranks_per_prank = 1; // 3DS: logical ranks per package rank |
| lranks_bits = 0; // 3DS: logical ranks bits |
| die_capacity = 0; // in Mbits; only used for 3DS |
| |
| wl_mask_err = 0; |
| dyn_rtt_nom_mask = 0; |
| ddr_disable_chip_reset = 1; |
| match_wl_rtt_nom = 0; |
| |
| internal_retries = 0; |
| |
| disable_deskew_training = 0; |
| restart_if_dsk_incomplete = 0; |
| last_lane = ((if_64b) ? 8 : 4) + use_ecc; |
| |
| disable_sequential_delay_check = 0; |
| wl_print = WLEVEL_PRINTALL_DEFAULT; |
| |
| enable_by_rank_init = 1; // FIXME: default by-rank ON |
| saved_rank_mask = 0; |
| |
| node = 0; |
| |
| memset(hwl_alts, 0, sizeof(hwl_alts)); |
| |
| /* |
| * Initialize these to shut up the compiler. They are configured |
| * and used only for DDR4 |
| */ |
| ddr4_trrd_lmin = 6000; |
| ddr4_tccd_lmin = 6000; |
| |
| debug("\nInitializing node %d DDR interface %d, DDR Clock %d, DDR Reference Clock %d, CPUID 0x%08x\n", |
| node, if_num, ddr_hertz, ddr_ref_hertz, read_c0_prid()); |
| |
| if (dimm_config_table[0].spd_addrs[0] == 0 && |
| !dimm_config_table[0].spd_ptrs[0]) { |
| printf("ERROR: No dimms specified in the dimm_config_table.\n"); |
| return -1; |
| } |
| |
| // allow some overrides to be done |
| |
| // this one controls several things related to DIMM geometry: HWL and RL |
| disable_sequential_delay_check = c_cfg->disable_sequential_delay_check; |
| s = lookup_env(priv, "ddr_disable_sequential_delay_check"); |
| if (s) |
| disable_sequential_delay_check = strtoul(s, NULL, 0); |
| |
| // this one controls whether chip RESET is done, or LMC init restarted |
| // from step 6.9.6 |
| s = lookup_env(priv, "ddr_disable_chip_reset"); |
| if (s) |
| ddr_disable_chip_reset = !!strtoul(s, NULL, 0); |
| |
| // this one controls whether Deskew Training is performed |
| s = lookup_env(priv, "ddr_disable_deskew_training"); |
| if (s) |
| disable_deskew_training = !!strtoul(s, NULL, 0); |
| |
| if (ddr_verbose(priv)) { |
| printf("DDR SPD Table:"); |
| for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) { |
| if (dimm_config_table[didx].spd_addrs[0] == 0) |
| break; |
| |
| printf(" --ddr%dspd=0x%02x", if_num, |
| dimm_config_table[didx].spd_addrs[0]); |
| if (dimm_config_table[didx].spd_addrs[1] != 0) |
| printf(",0x%02x", |
| dimm_config_table[didx].spd_addrs[1]); |
| } |
| printf("\n"); |
| } |
| |
| /* |
| * Walk the DRAM Socket Configuration Table to see what is installed. |
| */ |
| for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) { |
| /* Check for lower DIMM socket populated */ |
| if (validate_dimm(priv, &dimm_config_table[didx], 0)) { |
| if (ddr_verbose(priv)) |
| report_dimm(&dimm_config_table[didx], 0, |
| dimm_count, if_num); |
| ++dimm_count; |
| } else { |
| break; |
| } /* Finished when there is no lower DIMM */ |
| } |
| |
| initialize_ddr_clock(priv, ddr_conf, cpu_hertz, ddr_hertz, |
| ddr_ref_hertz, if_num, if_mask); |
| |
| if (!odt_1rank_config) |
| odt_1rank_config = disable_odt_config; |
| if (!odt_2rank_config) |
| odt_2rank_config = disable_odt_config; |
| if (!odt_4rank_config) |
| odt_4rank_config = disable_odt_config; |
| |
| s = env_get("ddr_safe"); |
| if (s) { |
| safe_ddr_flag = !!simple_strtoul(s, NULL, 0); |
| printf("Parameter found in environment. ddr_safe = %d\n", |
| safe_ddr_flag); |
| } |
| |
| if (dimm_count == 0) { |
| printf("ERROR: DIMM 0 not detected.\n"); |
| return (-1); |
| } |
| |
| if (c_cfg->mode32b) |
| if_64b = 0; |
| |
| s = lookup_env(priv, "if_64b"); |
| if (s) |
| if_64b = !!simple_strtoul(s, NULL, 0); |
| |
| if (if_64b == 1) { |
| if (octeon_is_cpuid(OCTEON_CN70XX)) { |
| printf("64-bit interface width is not supported for this Octeon model\n"); |
| ++fatal_error; |
| } |
| } |
| |
| /* ddr_type only indicates DDR4 or DDR3 */ |
| ddr_type = (read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_KEY_BYTE_DEVICE_TYPE) == 0x0C) ? 4 : 3; |
| debug("DRAM Device Type: DDR%d\n", ddr_type); |
| |
| if (ddr_type == DDR4_DRAM) { |
| int spd_module_type; |
| int asymmetric; |
| const char *signal_load[4] = { "", "MLS", "3DS", "RSV" }; |
| |
| imp_val = &ddr4_impedence_val; |
| |
| spd_addr = |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_ADDRESSING_ROW_COL_BITS); |
| spd_org = |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MODULE_ORGANIZATION); |
| spd_banks = |
| 0xFF & read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_DENSITY_BANKS); |
| |
| bank_bits = |
| (2 + ((spd_banks >> 4) & 0x3)) + ((spd_banks >> 6) & 0x3); |
| /* Controller can only address 4 bits. */ |
| bank_bits = min((int)bank_bits, 4); |
| |
| spd_package = |
| 0XFF & read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_PACKAGE_TYPE); |
| if (spd_package & 0x80) { // non-monolithic device |
| is_stacked_die = ((spd_package & 0x73) == 0x11); |
| debug("DDR4: Package Type 0x%02x (%s), %d die\n", |
| spd_package, signal_load[(spd_package & 3)], |
| ((spd_package >> 4) & 7) + 1); |
| is_3ds_dimm = ((spd_package & 3) == 2); // is it 3DS? |
| if (is_3ds_dimm) { // is it 3DS? |
| lranks_per_prank = ((spd_package >> 4) & 7) + 1; |
| // FIXME: should make sure it is only 2H or 4H |
| // or 8H? |
| lranks_bits = lranks_per_prank >> 1; |
| if (lranks_bits == 4) |
| lranks_bits = 3; |
| } |
| } else if (spd_package != 0) { |
| // FIXME: print non-zero monolithic device definition |
| debug("DDR4: Package Type MONOLITHIC: %d die, signal load %d\n", |
| ((spd_package >> 4) & 7) + 1, (spd_package & 3)); |
| } |
| |
| asymmetric = (spd_org >> 6) & 1; |
| if (asymmetric) { |
| int spd_secondary_pkg = |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_SECONDARY_PACKAGE_TYPE); |
| debug("DDR4: Module Organization: ASYMMETRICAL: Secondary Package Type 0x%02x\n", |
| spd_secondary_pkg); |
| } else { |
| u64 bus_width = |
| 8 << (0x07 & |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MODULE_MEMORY_BUS_WIDTH)); |
| u64 ddr_width = 4 << ((spd_org >> 0) & 0x7); |
| u64 module_cap; |
| int shift = (spd_banks & 0x0F); |
| |
| die_capacity = (shift < 8) ? (256UL << shift) : |
| ((12UL << (shift & 1)) << 10); |
| debug("DDR4: Module Organization: SYMMETRICAL: capacity per die %d %cbit\n", |
| (die_capacity > 512) ? (die_capacity >> 10) : |
| die_capacity, (die_capacity > 512) ? 'G' : 'M'); |
| module_cap = ((u64)die_capacity << 20) / 8UL * |
| bus_width / ddr_width * |
| (1UL + ((spd_org >> 3) & 0x7)); |
| |
| // is it 3DS? |
| if (is_3ds_dimm) { |
| module_cap *= (u64)(((spd_package >> 4) & 7) + |
| 1); |
| } |
| debug("DDR4: Module Organization: SYMMETRICAL: capacity per module %lld GB\n", |
| module_cap >> 30); |
| } |
| |
| spd_rawcard = |
| 0xFF & read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_REFERENCE_RAW_CARD); |
| debug("DDR4: Reference Raw Card 0x%02x\n", spd_rawcard); |
| |
| spd_module_type = |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_KEY_BYTE_MODULE_TYPE); |
| if (spd_module_type & 0x80) { // HYBRID module |
| debug("DDR4: HYBRID module, type %s\n", |
| ((spd_module_type & 0x70) == |
| 0x10) ? "NVDIMM" : "UNKNOWN"); |
| } |
| spd_thermal_sensor = |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MODULE_THERMAL_SENSOR); |
| spd_dimm_type = spd_module_type & 0x0F; |
| spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) || |
| (spd_dimm_type == 8); |
| if (spd_rdimm) { |
| u16 spd_mfgr_id, spd_register_rev, spd_mod_attr; |
| static const u16 manu_ids[4] = { |
| 0xb380, 0x3286, 0x9780, 0xb304 |
| }; |
| static const char *manu_names[4] = { |
| "XXX", "XXXXXXX", "XX", "XXXXX" |
| }; |
| int mc; |
| |
| spd_mfgr_id = |
| (0xFFU & |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_REGISTER_MANUFACTURER_ID_LSB)) | |
| ((0xFFU & |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_REGISTER_MANUFACTURER_ID_MSB)) |
| << 8); |
| spd_register_rev = |
| 0xFFU & read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_REGISTER_REVISION_NUMBER); |
| for (mc = 0; mc < 4; mc++) |
| if (manu_ids[mc] == spd_mfgr_id) |
| break; |
| |
| debug("DDR4: RDIMM Register Manufacturer ID: %s, Revision: 0x%02x\n", |
| (mc >= 4) ? "UNKNOWN" : manu_names[mc], |
| spd_register_rev); |
| |
| // RAWCARD A or B must be bit 7=0 and bits 4-0 |
| // either 00000(A) or 00001(B) |
| spd_rawcard_aorb = ((spd_rawcard & 0x9fUL) <= 1); |
| // RDIMM Module Attributes |
| spd_mod_attr = |
| 0xFFU & read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE); |
| spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1); |
| debug("DDR4: RDIMM Module Attributes (0x%02x): Register Type DDR4RCD%02d, DRAM rows %d, Registers %d\n", |
| spd_mod_attr, (spd_mod_attr >> 4) + 1, |
| ((1 << ((spd_mod_attr >> 2) & 3)) >> 1), |
| spd_rdimm_registers); |
| } |
| dimm_type_name = ddr4_dimm_types[spd_dimm_type]; |
| } else { /* if (ddr_type == DDR4_DRAM) */ |
| const char *signal_load[4] = { "UNK", "MLS", "SLS", "RSV" }; |
| |
| imp_val = &ddr3_impedence_val; |
| |
| spd_addr = |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_ADDRESSING_ROW_COL_BITS); |
| spd_org = |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MODULE_ORGANIZATION); |
| spd_banks = |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_DENSITY_BANKS) & 0xff; |
| |
| bank_bits = 3 + ((spd_banks >> 4) & 0x7); |
| /* Controller can only address 3 bits. */ |
| bank_bits = min((int)bank_bits, 3); |
| spd_dimm_type = |
| 0x0f & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_KEY_BYTE_MODULE_TYPE); |
| spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) || |
| (spd_dimm_type == 9); |
| |
| spd_package = |
| 0xFF & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_SDRAM_DEVICE_TYPE); |
| if (spd_package & 0x80) { // non-standard device |
| debug("DDR3: Device Type 0x%02x (%s), %d die\n", |
| spd_package, signal_load[(spd_package & 3)], |
| ((1 << ((spd_package >> 4) & 7)) >> 1)); |
| } else if (spd_package != 0) { |
| // FIXME: print non-zero monolithic device definition |
| debug("DDR3: Device Type MONOLITHIC: %d die, signal load %d\n", |
| ((1 << (spd_package >> 4) & 7) >> 1), |
| (spd_package & 3)); |
| } |
| |
| spd_rawcard = |
| 0xFF & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_REFERENCE_RAW_CARD); |
| debug("DDR3: Reference Raw Card 0x%02x\n", spd_rawcard); |
| spd_thermal_sensor = |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MODULE_THERMAL_SENSOR); |
| |
| if (spd_rdimm) { |
| int spd_mfgr_id, spd_register_rev, spd_mod_attr; |
| |
| spd_mfgr_id = |
| (0xFFU & |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_REGISTER_MANUFACTURER_ID_LSB)) | |
| ((0xFFU & |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_REGISTER_MANUFACTURER_ID_MSB)) |
| << 8); |
| spd_register_rev = |
| 0xFFU & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_REGISTER_REVISION_NUMBER); |
| debug("DDR3: RDIMM Register Manufacturer ID 0x%x Revision 0x%02x\n", |
| spd_mfgr_id, spd_register_rev); |
| // Module Attributes |
| spd_mod_attr = |
| 0xFFU & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_ADDRESS_MAPPING); |
| spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1); |
| debug("DDR3: RDIMM Module Attributes (0x%02x): DRAM rows %d, Registers %d\n", |
| spd_mod_attr, |
| ((1 << ((spd_mod_attr >> 2) & 3)) >> 1), |
| spd_rdimm_registers); |
| } |
| dimm_type_name = ddr3_dimm_types[spd_dimm_type]; |
| } |
| |
| if (spd_thermal_sensor & 0x80) { |
| debug("DDR%d: SPD: Thermal Sensor PRESENT\n", |
| (ddr_type == DDR4_DRAM) ? 4 : 3); |
| } |
| |
| debug("spd_addr : %#06x\n", spd_addr); |
| debug("spd_org : %#06x\n", spd_org); |
| debug("spd_banks : %#06x\n", spd_banks); |
| |
| row_bits = 12 + ((spd_addr >> 3) & 0x7); |
| col_bits = 9 + ((spd_addr >> 0) & 0x7); |
| |
| num_ranks = 1 + ((spd_org >> 3) & 0x7); |
| dram_width = 4 << ((spd_org >> 0) & 0x7); |
| num_banks = 1 << bank_bits; |
| |
| s = lookup_env(priv, "ddr_num_ranks"); |
| if (s) |
| num_ranks = simple_strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_enable_by_rank_init"); |
| if (s) |
| enable_by_rank_init = !!simple_strtoul(s, NULL, 0); |
| |
| // FIXME: for now, we can only handle a DDR4 2rank-1slot config |
| // FIXME: also, by-rank init does not work correctly if 32-bit mode... |
| if (enable_by_rank_init && (ddr_type != DDR4_DRAM || |
| dimm_count != 1 || if_64b != 1 || |
| num_ranks != 2)) |
| enable_by_rank_init = 0; |
| |
| if (enable_by_rank_init) { |
| struct dimm_odt_config *odt_config; |
| union cvmx_lmcx_modereg_params1 mp1; |
| union cvmx_lmcx_modereg_params2 modereg_params2; |
| int by_rank_rodt, by_rank_wr, by_rank_park; |
| |
| // Do ODT settings changes which work best for 2R-1S configs |
| debug("DDR4: 2R-1S special BY-RANK init ODT settings updated\n"); |
| |
| // setup for modifying config table values - 2 ranks and 1 DIMM |
| odt_config = |
| (struct dimm_odt_config *)&ddr_conf->odt_2rank_config[0]; |
| |
| // original was 80, first try was 60 |
| by_rank_rodt = ddr4_rodt_ctl_48_ohm; |
| s = lookup_env(priv, "ddr_by_rank_rodt"); |
| if (s) |
| by_rank_rodt = strtoul(s, NULL, 0); |
| |
| odt_config->qs_dic = /*RODT_CTL */ by_rank_rodt; |
| |
| // this is for MODEREG_PARAMS1 fields |
| // fetch the original settings |
| mp1.u64 = odt_config->modereg_params1.u64; |
| |
| by_rank_wr = ddr4_rttwr_80ohm; // originals were 240 |
| s = lookup_env(priv, "ddr_by_rank_wr"); |
| if (s) |
| by_rank_wr = simple_strtoul(s, NULL, 0); |
| |
| // change specific settings here... |
| insrt_wr(&mp1.u64, /*rank */ 00, by_rank_wr); |
| insrt_wr(&mp1.u64, /*rank */ 01, by_rank_wr); |
| |
| // save final settings |
| odt_config->modereg_params1.u64 = mp1.u64; |
| |
| // this is for MODEREG_PARAMS2 fields |
| // fetch the original settings |
| modereg_params2.u64 = odt_config->modereg_params2.u64; |
| |
| by_rank_park = ddr4_rttpark_none; // originals were 120 |
| s = lookup_env(priv, "ddr_by_rank_park"); |
| if (s) |
| by_rank_park = simple_strtoul(s, NULL, 0); |
| |
| // change specific settings here... |
| modereg_params2.s.rtt_park_00 = by_rank_park; |
| modereg_params2.s.rtt_park_01 = by_rank_park; |
| |
| // save final settings |
| odt_config->modereg_params2.u64 = modereg_params2.u64; |
| } |
| |
| /* |
| * FIX |
| * Check that values are within some theoretical limits. |
| * col_bits(min) = row_lsb(min) - bank_bits(max) - bus_bits(max) = |
| * 14 - 3 - 4 = 7 |
| * col_bits(max) = row_lsb(max) - bank_bits(min) - bus_bits(min) = |
| * 18 - 2 - 3 = 13 |
| */ |
| if (col_bits > 13 || col_bits < 7) { |
| printf("Unsupported number of Col Bits: %d\n", col_bits); |
| ++fatal_error; |
| } |
| |
| /* |
| * FIX |
| * Check that values are within some theoretical limits. |
| * row_bits(min) = pbank_lsb(min) - row_lsb(max) - rank_bits = |
| * 26 - 18 - 1 = 7 |
| * row_bits(max) = pbank_lsb(max) - row_lsb(min) - rank_bits = |
| * 33 - 14 - 1 = 18 |
| */ |
| if (row_bits > 18 || row_bits < 7) { |
| printf("Unsupported number of Row Bits: %d\n", row_bits); |
| ++fatal_error; |
| } |
| |
| s = lookup_env(priv, "ddr_rdimm_ena"); |
| if (s) |
| spd_rdimm = !!simple_strtoul(s, NULL, 0); |
| |
| wl_loops = WLEVEL_LOOPS_DEFAULT; |
| // accept generic or interface-specific override |
| s = lookup_env(priv, "ddr_wlevel_loops"); |
| if (!s) |
| s = lookup_env(priv, "ddr%d_wlevel_loops", if_num); |
| |
| if (s) |
| wl_loops = strtoul(s, NULL, 0); |
| |
| s = lookup_env(priv, "ddr_ranks"); |
| if (s) |
| num_ranks = simple_strtoul(s, NULL, 0); |
| |
| bunk_enable = (num_ranks > 1); |
| |
| if (octeon_is_cpuid(OCTEON_CN7XXX)) |
| column_bits_start = 3; |
| else |
| printf("ERROR: Unsupported Octeon model: 0x%x\n", |
| read_c0_prid()); |
| |
| row_lsb = column_bits_start + col_bits + bank_bits - (!if_64b); |
| debug("row_lsb = column_bits_start + col_bits + bank_bits = %d\n", |
| row_lsb); |
| |
| pbank_lsb = row_lsb + row_bits + bunk_enable; |
| debug("pbank_lsb = row_lsb + row_bits + bunk_enable = %d\n", pbank_lsb); |
| |
| if (lranks_per_prank > 1) { |
| pbank_lsb = row_lsb + row_bits + lranks_bits + bunk_enable; |
| debug("DDR4: 3DS: pbank_lsb = (%d row_lsb) + (%d row_bits) + (%d lranks_bits) + (%d bunk_enable) = %d\n", |
| row_lsb, row_bits, lranks_bits, bunk_enable, pbank_lsb); |
| } |
| |
| mem_size_mbytes = dimm_count * ((1ull << pbank_lsb) >> 20); |
| if (num_ranks == 4) { |
| /* |
| * Quad rank dimm capacity is equivalent to two dual-rank |
| * dimms. |
| */ |
| mem_size_mbytes *= 2; |
| } |
| |
| /* |
| * Mask with 1 bits set for for each active rank, allowing 2 bits |
| * per dimm. This makes later calculations simpler, as a variety |
| * of CSRs use this layout. This init needs to be updated for dual |
| * configs (ie non-identical DIMMs). |
| * |
| * Bit 0 = dimm0, rank 0 |
| * Bit 1 = dimm0, rank 1 |
| * Bit 2 = dimm1, rank 0 |
| * Bit 3 = dimm1, rank 1 |
| * ... |
| */ |
| rank_mask = 0x1; |
| if (num_ranks > 1) |
| rank_mask = 0x3; |
| if (num_ranks > 2) |
| rank_mask = 0xf; |
| |
| for (i = 1; i < dimm_count; i++) |
| rank_mask |= ((rank_mask & 0x3) << (2 * i)); |
| |
| /* |
| * If we are booting from RAM, the DRAM controller is |
| * already set up. Just return the memory size |
| */ |
| if (priv->flags & FLAG_RAM_RESIDENT) { |
| debug("Ram Boot: Skipping LMC config\n"); |
| return mem_size_mbytes; |
| } |
| |
| if (ddr_type == DDR4_DRAM) { |
| spd_ecc = |
| !!(read_spd |
| (&dimm_config_table[0], 0, |
| DDR4_SPD_MODULE_MEMORY_BUS_WIDTH) & 8); |
| } else { |
| spd_ecc = |
| !!(read_spd |
| (&dimm_config_table[0], 0, |
| DDR3_SPD_MEMORY_BUS_WIDTH) & 8); |
| } |
| |
| char rank_spec[8]; |
| |
| printable_rank_spec(rank_spec, num_ranks, dram_width, spd_package); |
| debug("Summary: %d %s%s %s %s, row bits=%d, col bits=%d, bank bits=%d\n", |
| dimm_count, dimm_type_name, (dimm_count > 1) ? "s" : "", |
| rank_spec, |
| (spd_ecc) ? "ECC" : "non-ECC", row_bits, col_bits, bank_bits); |
| |
| if (ddr_type == DDR4_DRAM) { |
| spd_cas_latency = |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_CAS_LATENCIES_BYTE0)) << 0); |
| spd_cas_latency |= |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_CAS_LATENCIES_BYTE1)) << 8); |
| spd_cas_latency |= |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_CAS_LATENCIES_BYTE2)) << 16); |
| spd_cas_latency |= |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_CAS_LATENCIES_BYTE3)) << 24); |
| } else { |
| spd_cas_latency = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_CAS_LATENCIES_LSB); |
| spd_cas_latency |= |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_CAS_LATENCIES_MSB)) << 8); |
| } |
| debug("spd_cas_latency : %#06x\n", spd_cas_latency); |
| |
| if (ddr_type == DDR4_DRAM) { |
| /* |
| * No other values for DDR4 MTB and FTB are specified at the |
| * current time so don't bother reading them. Can't speculate |
| * how new values will be represented. |
| */ |
| int spdmtb = 125; |
| int spdftb = 1; |
| |
| taamin = spdmtb * read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_CAS_LATENCY_TAAMIN) + |
| spdftb * (signed char)read_spd(&dimm_config_table[0], |
| 0, DDR4_SPD_MIN_CAS_LATENCY_FINE_TAAMIN); |
| |
| ddr4_tckavgmin = spdmtb * read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN) + |
| spdftb * (signed char)read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN); |
| |
| ddr4_tckavgmax = spdmtb * read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MAXIMUM_CYCLE_TIME_TCKAVGMAX) + |
| spdftb * (signed char)read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MAX_CYCLE_TIME_FINE_TCKAVGMAX); |
| |
| ddr4_trdcmin = spdmtb * read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_RAS_CAS_DELAY_TRCDMIN) + |
| spdftb * (signed char)read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_RAS_TO_CAS_DELAY_FINE_TRCDMIN); |
| |
| ddr4_trpmin = spdmtb * read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN) + |
| spdftb * (signed char)read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN); |
| |
| ddr4_trasmin = spdmtb * |
| (((read_spd |
| (&dimm_config_table[0], 0, |
| DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8) + |
| (read_spd |
| (&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN) & 0xff)); |
| |
| ddr4_trcmin = spdmtb * |
| ((((read_spd |
| (&dimm_config_table[0], 0, |
| DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) >> 4) & 0xf) << |
| 8) + (read_spd |
| (&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN) & |
| 0xff)) |
| + spdftb * (signed char)read_spd(&dimm_config_table[0], |
| 0, |
| DDR4_SPD_MIN_ACT_TO_ACT_REFRESH_DELAY_FINE_TRCMIN); |
| |
| ddr4_trfc1min = spdmtb * (((read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC1MIN) & 0xff) << |
| 8) + (read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC1MIN) & 0xff)); |
| |
| ddr4_trfc2min = spdmtb * (((read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC2MIN) & 0xff) << |
| 8) + (read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC2MIN) & 0xff)); |
| |
| ddr4_trfc4min = spdmtb * (((read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC4MIN) & 0xff) << |
| 8) + (read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC4MIN) & 0xff)); |
| |
| ddr4_tfawmin = spdmtb * (((read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_MSN_TFAWMIN) & 0xf) << |
| 8) + (read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_LSB_TFAWMIN) & 0xff)); |
| |
| ddr4_trrd_smin = spdmtb * read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_ROW_ACTIVE_DELAY_SAME_TRRD_SMIN) + |
| spdftb * (signed char)read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_ACT_TO_ACT_DELAY_DIFF_FINE_TRRD_SMIN); |
| |
| ddr4_trrd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_ROW_ACTIVE_DELAY_DIFF_TRRD_LMIN) + |
| spdftb * (signed char)read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_ACT_TO_ACT_DELAY_SAME_FINE_TRRD_LMIN); |
| |
| ddr4_tccd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_CAS_TO_CAS_DELAY_TCCD_LMIN) + |
| spdftb * (signed char)read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_MIN_CAS_TO_CAS_DELAY_FINE_TCCD_LMIN); |
| |
| debug("%-45s : %6d ps\n", "Medium Timebase (MTB)", spdmtb); |
| debug("%-45s : %6d ps\n", "Fine Timebase (FTB)", spdftb); |
| |
| debug("%-45s : %6d ps (%ld MT/s)\n", |
| "SDRAM Minimum Cycle Time (tCKAVGmin)", ddr4_tckavgmin, |
| pretty_psecs_to_mts(ddr4_tckavgmin)); |
| debug("%-45s : %6d ps\n", |
| "SDRAM Maximum Cycle Time (tCKAVGmax)", ddr4_tckavgmax); |
| debug("%-45s : %6d ps\n", "Minimum CAS Latency Time (taamin)", |
| taamin); |
| debug("%-45s : %6d ps\n", |
| "Minimum RAS to CAS Delay Time (tRCDmin)", ddr4_trdcmin); |
| debug("%-45s : %6d ps\n", |
| "Minimum Row Precharge Delay Time (tRPmin)", ddr4_trpmin); |
| debug("%-45s : %6d ps\n", |
| "Minimum Active to Precharge Delay (tRASmin)", |
| ddr4_trasmin); |
| debug("%-45s : %6d ps\n", |
| "Minimum Active to Active/Refr. Delay (tRCmin)", |
| ddr4_trcmin); |
| debug("%-45s : %6d ps\n", |
| "Minimum Refresh Recovery Delay (tRFC1min)", |
| ddr4_trfc1min); |
| debug("%-45s : %6d ps\n", |
| "Minimum Refresh Recovery Delay (tRFC2min)", |
| ddr4_trfc2min); |
| debug("%-45s : %6d ps\n", |
| "Minimum Refresh Recovery Delay (tRFC4min)", |
| ddr4_trfc4min); |
| debug("%-45s : %6d ps\n", |
| "Minimum Four Activate Window Time (tFAWmin)", |
| ddr4_tfawmin); |
| debug("%-45s : %6d ps\n", |
| "Minimum Act. to Act. Delay (tRRD_Smin)", ddr4_trrd_smin); |
| debug("%-45s : %6d ps\n", |
| "Minimum Act. to Act. Delay (tRRD_Lmin)", ddr4_trrd_lmin); |
| debug("%-45s : %6d ps\n", |
| "Minimum CAS to CAS Delay Time (tCCD_Lmin)", |
| ddr4_tccd_lmin); |
| |
| #define DDR4_TWR 15000 |
| #define DDR4_TWTR_S 2500 |
| |
| tckmin = ddr4_tckavgmin; |
| twr = DDR4_TWR; |
| trcd = ddr4_trdcmin; |
| trrd = ddr4_trrd_smin; |
| trp = ddr4_trpmin; |
| tras = ddr4_trasmin; |
| trc = ddr4_trcmin; |
| trfc = ddr4_trfc1min; |
| twtr = DDR4_TWTR_S; |
| tfaw = ddr4_tfawmin; |
| |
| if (spd_rdimm) { |
| spd_addr_mirror = read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_RDIMM_ADDR_MAPPING_FROM_REGISTER_TO_DRAM) & |
| 0x1; |
| } else { |
| spd_addr_mirror = read_spd(&dimm_config_table[0], 0, |
| DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE) & 0x1; |
| } |
| debug("spd_addr_mirror : %#06x\n", spd_addr_mirror); |
| } else { |
| spd_mtb_dividend = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND); |
| spd_mtb_divisor = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR); |
| spd_tck_min = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN); |
| spd_taa_min = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_CAS_LATENCY_TAAMIN); |
| |
| spd_twr = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_WRITE_RECOVERY_TWRMIN); |
| spd_trcd = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_RAS_CAS_DELAY_TRCDMIN); |
| spd_trrd = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_ROW_ACTIVE_DELAY_TRRDMIN); |
| spd_trp = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN); |
| spd_tras = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN); |
| spd_tras |= |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8); |
| spd_trc = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN); |
| spd_trc |= |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf0) << 4); |
| spd_trfc = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_REFRESH_RECOVERY_LSB_TRFCMIN); |
| spd_trfc |= |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_REFRESH_RECOVERY_MSB_TRFCMIN)) << |
| 8); |
| spd_twtr = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_INTERNAL_WRITE_READ_CMD_TWTRMIN); |
| spd_trtp = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_INTERNAL_READ_PRECHARGE_CMD_TRTPMIN); |
| spd_tfaw = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_MIN_FOUR_ACTIVE_WINDOW_TFAWMIN); |
| spd_tfaw |= |
| ((0xff & |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_UPPER_NIBBLE_TFAW) & 0xf) << 8); |
| spd_addr_mirror = |
| 0xff & read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_ADDRESS_MAPPING) & 0x1; |
| /* Only address mirror unbuffered dimms. */ |
| spd_addr_mirror = spd_addr_mirror && !spd_rdimm; |
| ftb_dividend = |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) >> 4; |
| ftb_divisor = |
| read_spd(&dimm_config_table[0], 0, |
| DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) & 0xf; |
| /* Make sure that it is not 0 */ |
| ftb_divisor = (ftb_divisor == 0) ? 1 : ftb_divisor; |
| |
| debug("spd_twr : %#06x\n", spd_twr); |
| debug("spd_trcd : %#06x\n", spd_trcd); |
| debug("spd_trrd : %#06x\n", spd_trrd); |
| debug("spd_trp : %#06x\n", spd_trp); |
| debug("spd_tras : %#06x\n", spd_tras); |
| debug("spd_trc : %#06x\n", spd_trc); |
| debug("spd_trfc : %#06x\n", spd_trfc); |
| debug("spd_twtr : %#06x\n", spd_twtr); |
| debug("spd_trtp : %#06x\n", spd_trtp); |
| debug("spd_tfaw : %#06x\n", spd_tfaw); |
| debug("spd_addr_mirror : %#06x\n", spd_addr_mirror); |
| |
| mtb_psec = spd_mtb_dividend * 1000 / spd_mtb_divisor; |
| taamin = mtb_psec * spd_taa_min; |
| taamin += ftb_dividend * |
| (signed char)read_spd(&dimm_config_table[0], |
| 0, DDR3_SPD_MIN_CAS_LATENCY_FINE_TAAMIN) / |
| ftb_divisor; |
| tckmin = mtb_psec * spd_tck_min; |
| tckmin += ftb_dividend * |
| (signed char)read_spd(&dimm_config_table[0], |
| 0, DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN) / |
| ftb_divisor; |
| |
| twr = spd_twr * mtb_psec; |
| trcd = spd_trcd * mtb_psec; |
| trrd = spd_trrd * mtb_psec; |
| trp = spd_trp * mtb_psec; |
| tras = spd_tras * mtb_psec; |
| trc = spd_trc * mtb_psec; |
| trfc = spd_trfc * mtb_psec; |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) && trfc < 260000) { |
| // default to this - because it works... |
| int new_trfc = 260000; |
| |
| s = env_get("ddr_trfc"); |
| if (s) { |
| new_trfc = simple_strtoul(s, NULL, 0); |
| printf("Parameter found in environment. ddr_trfc = %d\n", |
| new_trfc); |
| if (new_trfc < 160000 || new_trfc > 260000) { |
| // back to default if out of range |
| new_trfc = 260000; |
| } |
| } |
| debug("N%d.LMC%d: Adjusting tRFC from %d to %d, for CN78XX Pass 2.x\n", |
| node, if_num, trfc, new_trfc); |
| trfc = new_trfc; |
| } |
| |
| twtr = spd_twtr * mtb_psec; |
| trtp = spd_trtp * mtb_psec; |
| tfaw = spd_tfaw * mtb_psec; |
| |
| debug("Medium Timebase (MTB) : %6d ps\n", |
| mtb_psec); |
| debug("Minimum Cycle Time (tckmin) : %6d ps (%ld MT/s)\n", |
| tckmin, pretty_psecs_to_mts(tckmin)); |
| debug("Minimum CAS Latency Time (taamin) : %6d ps\n", |
| taamin); |
| debug("Write Recovery Time (tWR) : %6d ps\n", |
| twr); |
| debug("Minimum RAS to CAS delay (tRCD) : %6d ps\n", |
| trcd); |
| debug("Minimum Row Active to Row Active delay (tRRD) : %6d ps\n", |
| trrd); |
| debug("Minimum Row Precharge Delay (tRP) : %6d ps\n", |
| trp); |
| debug("Minimum Active to Precharge (tRAS) : %6d ps\n", |
| tras); |
| debug("Minimum Active to Active/Refresh Delay (tRC) : %6d ps\n", |
| trc); |
| debug("Minimum Refresh Recovery Delay (tRFC) : %6d ps\n", |
| trfc); |
| debug("Internal write to read command delay (tWTR) : %6d ps\n", |
| twtr); |
| debug("Min Internal Rd to Precharge Cmd Delay (tRTP) : %6d ps\n", |
| trtp); |
| debug("Minimum Four Activate Window Delay (tFAW) : %6d ps\n", |
| tfaw); |
| } |
| |
| /* |
| * When the cycle time is within 1 psec of the minimum accept it |
| * as a slight rounding error and adjust it to exactly the minimum |
| * cycle time. This avoids an unnecessary warning. |
| */ |
| if (abs(tclk_psecs - tckmin) < 2) |
| tclk_psecs = tckmin; |
| |
| if (tclk_psecs < (u64)tckmin) { |
| printf("WARNING!!!!: DDR Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin: %ld)!!!!\n", |
| tclk_psecs, (ulong)tckmin); |
| } |
| |
| debug("DDR Clock Rate (tCLK) : %6ld ps\n", |
| tclk_psecs); |
| debug("Core Clock Rate (eCLK) : %6ld ps\n", |
| eclk_psecs); |
| |
| s = env_get("ddr_use_ecc"); |
| if (s) { |
| use_ecc = !!simple_strtoul(s, NULL, 0); |
| printf("Parameter found in environment. ddr_use_ecc = %d\n", |
| use_ecc); |
| } |
| use_ecc = use_ecc && spd_ecc; |
| |
| if_bytemask = if_64b ? (use_ecc ? 0x1ff : 0xff) |
| : (use_ecc ? 0x01f : 0x0f); |
| |
| debug("DRAM Interface width: %d bits %s bytemask 0x%03x\n", |
| if_64b ? 64 : 32, use_ecc ? "+ECC" : "", if_bytemask); |
| |
| debug("\n------ Board Custom Configuration Settings ------\n"); |
| debug("%-45s : %d\n", "MIN_RTT_NOM_IDX ", c_cfg->min_rtt_nom_idx); |
| debug("%-45s : %d\n", "MAX_RTT_NOM_IDX ", c_cfg->max_rtt_nom_idx); |
| debug("%-45s : %d\n", "MIN_RODT_CTL ", c_cfg->min_rodt_ctl); |
| debug("%-45s : %d\n", "MAX_RODT_CTL ", c_cfg->max_rodt_ctl); |
| debug("%-45s : %d\n", "MIN_CAS_LATENCY ", c_cfg->min_cas_latency); |
| debug("%-45s : %d\n", "OFFSET_EN ", c_cfg->offset_en); |
| debug("%-45s : %d\n", "OFFSET_UDIMM ", c_cfg->offset_udimm); |
| debug("%-45s : %d\n", "OFFSET_RDIMM ", c_cfg->offset_rdimm); |
| debug("%-45s : %d\n", "DDR_RTT_NOM_AUTO ", c_cfg->ddr_rtt_nom_auto); |
| debug("%-45s : %d\n", "DDR_RODT_CTL_AUTO ", c_cfg->ddr_rodt_ctl_auto); |
| if (spd_rdimm) |
| debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET", |
| c_cfg->rlevel_comp_offset_rdimm); |
| else |
| debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET", |
| c_cfg->rlevel_comp_offset_udimm); |
| debug("%-45s : %d\n", "RLEVEL_COMPUTE ", c_cfg->rlevel_compute); |
| debug("%-45s : %d\n", "DDR2T_UDIMM ", c_cfg->ddr2t_udimm); |
| debug("%-45s : %d\n", "DDR2T_RDIMM ", c_cfg->ddr2t_rdimm); |
| debug("%-45s : %d\n", "FPRCH2 ", c_cfg->fprch2); |
| debug("%-45s : %d\n", "PTUNE_OFFSET ", c_cfg->ptune_offset); |
| debug("%-45s : %d\n", "NTUNE_OFFSET ", c_cfg->ntune_offset); |
| debug("-------------------------------------------------\n"); |
| |
| cl = divide_roundup(taamin, tclk_psecs); |
| |
| debug("Desired CAS Latency : %6d\n", cl); |
| |
| min_cas_latency = c_cfg->min_cas_latency; |
| |
| s = lookup_env(priv, "ddr_min_cas_latency"); |
| if (s) |
| min_cas_latency = simple_strtoul(s, NULL, 0); |
| |
| debug("CAS Latencies supported in DIMM :"); |
| base_cl = (ddr_type == DDR4_DRAM) ? 7 : 4; |
| for (i = 0; i < 32; ++i) { |
| if ((spd_cas_latency >> i) & 1) { |
| debug(" %d", i + base_cl); |
| max_cas_latency = i + base_cl; |
| if (min_cas_latency == 0) |
| min_cas_latency = i + base_cl; |
| } |
| } |
| debug("\n"); |
| |
| /* |
| * Use relaxed timing when running slower than the minimum |
| * supported speed. Adjust timing to match the smallest supported |
| * CAS Latency. |
| */ |
| if (min_cas_latency > cl) { |
| ulong adjusted_tclk = taamin / min_cas_latency; |
| |
| cl = min_cas_latency; |
| debug("Slow clock speed. Adjusting timing: tClk = %ld, Adjusted tClk = %ld\n", |
| tclk_psecs, adjusted_tclk); |
| tclk_psecs = adjusted_tclk; |
| } |
| |
| s = env_get("ddr_cas_latency"); |
| if (s) { |
| override_cas_latency = simple_strtoul(s, NULL, 0); |
| printf("Parameter found in environment. ddr_cas_latency = %d\n", |
| override_cas_latency); |
| } |
| |
| /* Make sure that the selected cas latency is legal */ |
| for (i = (cl - base_cl); i < 32; ++i) { |
| if ((spd_cas_latency >> i) & 1) { |
| cl = i + base_cl; |
| break; |
| } |
| } |
| |
| if (max_cas_latency < cl) |
| cl = max_cas_latency; |
| |
| if (override_cas_latency != 0) |
| cl = override_cas_latency; |
| |
| debug("CAS Latency : %6d\n", cl); |
| |
| if ((cl * tckmin) > 20000) { |
| debug("(CLactual * tckmin) = %d exceeds 20 ns\n", |
| (cl * tckmin)); |
| } |
| |
| if (tclk_psecs < (ulong)tckmin) { |
| printf("WARNING!!!!!!: DDR3 Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin:%ld)!!!!!!!!\n", |
| tclk_psecs, (ulong)tckmin); |
| } |
| |
| if (num_banks != 4 && num_banks != 8 && num_banks != 16) { |
| printf("Unsupported number of banks %d. Must be 4 or 8.\n", |
| num_banks); |
| ++fatal_error; |
| } |
| |
| if (num_ranks != 1 && num_ranks != 2 && num_ranks != 4) { |
| printf("Unsupported number of ranks: %d\n", num_ranks); |
| ++fatal_error; |
| } |
| |
| if (octeon_is_cpuid(OCTEON_CN78XX) || |
| octeon_is_cpuid(OCTEON_CN73XX) || |
| octeon_is_cpuid(OCTEON_CNF75XX)) { |
| if (dram_width != 8 && dram_width != 16 && dram_width != 4) { |
| printf("Unsupported SDRAM Width, %d. Must be 4, 8 or 16.\n", |
| dram_width); |
| ++fatal_error; |
| } |
| } else if (dram_width != 8 && dram_width != 16) { |
| printf("Unsupported SDRAM Width, %d. Must be 8 or 16.\n", |
| dram_width); |
| ++fatal_error; |
| } |
| |
| /* |
| ** Bail out here if things are not copasetic. |
| */ |
| if (fatal_error) |
| return (-1); |
| |
| /* |
| * 4.8.4 LMC RESET Initialization |
| * |
| * The purpose of this step is to assert/deassert the RESET# pin at the |
| * DDR3/DDR4 parts. |
| * |
| * This LMC RESET step is done for all enabled LMCs. |
| */ |
| perform_lmc_reset(priv, node, if_num); |
| |
| // Make sure scrambling is disabled during init... |
| ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num)); |
| ctrl.s.scramble_ena = 0; |
| lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64); |
| |
| lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), 0); |
| lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), 0); |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) |
| lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num), 0); |
| |
| odt_idx = min(dimm_count - 1, 3); |
| |
| switch (num_ranks) { |
| case 1: |
| odt_config = odt_1rank_config; |
| break; |
| case 2: |
| odt_config = odt_2rank_config; |
| break; |
| case 4: |
| odt_config = odt_4rank_config; |
| break; |
| default: |
| odt_config = disable_odt_config; |
| printf("Unsupported number of ranks: %d\n", num_ranks); |
| ++fatal_error; |
| } |
| |
| /* |
| * 4.8.5 Early LMC Initialization |
| * |
| * All of DDR PLL, LMC CK, and LMC DRESET initializations must be |
| * completed prior to starting this LMC initialization sequence. |
| * |
| * Perform the following five substeps for early LMC initialization: |
| * |
| * 1. Software must ensure there are no pending DRAM transactions. |
| * |
| * 2. Write LMC(0)_CONFIG, LMC(0)_CONTROL, LMC(0)_TIMING_PARAMS0, |
| * LMC(0)_TIMING_PARAMS1, LMC(0)_MODEREG_PARAMS0, |
| * LMC(0)_MODEREG_PARAMS1, LMC(0)_DUAL_MEMCFG, LMC(0)_NXM, |
| * LMC(0)_WODT_MASK, LMC(0)_RODT_MASK, LMC(0)_COMP_CTL2, |
| * LMC(0)_PHY_CTL, LMC(0)_DIMM0/1_PARAMS, and LMC(0)_DIMM_CTL with |
| * appropriate values. All sections in this chapter can be used to |
| * derive proper register settings. |
| */ |
| |
| /* LMC(0)_CONFIG */ |
| lmc_config(priv); |
| |
| /* LMC(0)_CONTROL */ |
| lmc_control(priv); |
| |
| /* LMC(0)_TIMING_PARAMS0 */ |
| lmc_timing_params0(priv); |
| |
| /* LMC(0)_TIMING_PARAMS1 */ |
| lmc_timing_params1(priv); |
| |
| /* LMC(0)_TIMING_PARAMS2 */ |
| lmc_timing_params2(priv); |
| |
| /* LMC(0)_MODEREG_PARAMS0 */ |
| lmc_modereg_params0(priv); |
| |
| /* LMC(0)_MODEREG_PARAMS1 */ |
| lmc_modereg_params1(priv); |
| |
| /* LMC(0)_MODEREG_PARAMS2 */ |
| lmc_modereg_params2(priv); |
| |
| /* LMC(0)_MODEREG_PARAMS3 */ |
| lmc_modereg_params3(priv); |
| |
| /* LMC(0)_NXM */ |
| lmc_nxm(priv); |
| |
| /* LMC(0)_WODT_MASK */ |
| lmc_wodt_mask(priv); |
| |
| /* LMC(0)_RODT_MASK */ |
| lmc_rodt_mask(priv); |
| |
| /* LMC(0)_COMP_CTL2 */ |
| lmc_comp_ctl2(priv); |
| |
| /* LMC(0)_PHY_CTL */ |
| lmc_phy_ctl(priv); |
| |
| /* LMC(0)_EXT_CONFIG */ |
| lmc_ext_config(priv); |
| |
| /* LMC(0)_EXT_CONFIG2 */ |
| lmc_ext_config2(priv); |
| |
| /* LMC(0)_DIMM0/1_PARAMS */ |
| lmc_dimm01_params(priv); |
| |
| ret = lmc_rank_init(priv); |
| if (ret < 0) |
| return 0; /* 0 indicates problem */ |
| |
| lmc_config_2(priv); |
| |
| lmc_write_leveling(priv); |
| |
| lmc_read_leveling(priv); |
| |
| lmc_workaround(priv); |
| |
| ret = lmc_sw_write_leveling(priv); |
| if (ret < 0) |
| return 0; /* 0 indicates problem */ |
| |
| // this sometimes causes stack overflow crashes.. |
| // display only for DDR4 RDIMMs. |
| if (ddr_type == DDR4_DRAM && spd_rdimm) { |
| int i; |
| |
| for (i = 0; i < 3; i += 2) // just pages 0 and 2 for now.. |
| display_mpr_page(priv, rank_mask, if_num, i); |
| } |
| |
| lmc_dll(priv); |
| |
| lmc_workaround_2(priv); |
| |
| lmc_final(priv); |
| |
| lmc_scrambling(priv); |
| |
| return mem_size_mbytes; |
| } |
| |
| ///// HW-assist byte DLL offset tuning ////// |
| |
| static int cvmx_dram_get_num_lmc(struct ddr_priv *priv) |
| { |
| union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2; |
| |
| if (octeon_is_cpuid(OCTEON_CN70XX)) |
| return 1; |
| |
| if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX)) { |
| // sample LMC1 |
| lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(1)); |
| if (lmcx_dll_ctl2.cn78xx.intf_en) |
| return 2; |
| else |
| return 1; |
| } |
| |
| // for CN78XX, LMCs are always active in pairs, and always LMC0/1 |
| // so, we sample LMC2 to see if 2 and 3 are active |
| lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(2)); |
| if (lmcx_dll_ctl2.cn78xx.intf_en) |
| return 4; |
| else |
| return 2; |
| } |
| |
| // got to do these here, even though already defined in BDK |
| |
| // all DDR3, and DDR4 x16 today, use only 3 bank bits; |
| // DDR4 x4 and x8 always have 4 bank bits |
| // NOTE: this will change in the future, when DDR4 x16 devices can |
| // come with 16 banks!! FIXME!! |
| static int cvmx_dram_get_num_bank_bits(struct ddr_priv *priv, int lmc) |
| { |
| union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2; |
| union cvmx_lmcx_config lmcx_config; |
| union cvmx_lmcx_ddr_pll_ctl lmcx_ddr_pll_ctl; |
| int bank_width; |
| |
| // can always read this |
| lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc)); |
| |
| if (lmcx_dll_ctl2.cn78xx.dreset) // check LMCn |
| return 0; |
| |
| lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc)); |
| lmcx_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(lmc)); |
| |
| bank_width = ((lmcx_ddr_pll_ctl.s.ddr4_mode != 0) && |
| (lmcx_config.s.bg2_enable)) ? 4 : 3; |
| |
| return bank_width; |
| } |
| |
| #define EXTRACT(v, lsb, width) (((v) >> (lsb)) & ((1ull << (width)) - 1)) |
| #define ADDRESS_HOLE 0x10000000ULL |
| |
| static void cvmx_dram_address_extract_info(struct ddr_priv *priv, u64 address, |
| int *node, int *lmc, int *dimm, |
| int *prank, int *lrank, int *bank, |
| int *row, int *col) |
| { |
| int bank_lsb, xbits; |
| union cvmx_l2c_ctl l2c_ctl; |
| union cvmx_lmcx_config lmcx_config; |
| union cvmx_lmcx_control lmcx_control; |
| union cvmx_lmcx_ext_config ext_config; |
| int bitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18; |
| int bank_width; |
| int dimm_lsb; |
| int dimm_width; |
| int prank_lsb, lrank_lsb; |
| int prank_width, lrank_width; |
| int row_lsb; |
| int row_width; |
| int col_hi_lsb; |
| int col_hi_width; |
| int col_hi; |
| |
| if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX)) |
| bitno = 18; |
| |
| *node = EXTRACT(address, 40, 2); /* Address bits [41:40] */ |
| |
| address &= (1ULL << 40) - 1; // lop off any node bits or above |
| if (address >= ADDRESS_HOLE) // adjust down if at HOLE or above |
| address -= ADDRESS_HOLE; |
| |
| /* Determine the LMC controllers */ |
| l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL_REL); |
| |
| /* xbits depends on number of LMCs */ |
| xbits = cvmx_dram_get_num_lmc(priv) >> 1; // 4->2, 2->1, 1->0 |
| bank_lsb = 7 + xbits; |
| |
| /* LMC number is probably aliased */ |
| if (l2c_ctl.s.disidxalias) { |
| *lmc = EXTRACT(address, 7, xbits); |
| } else { |
| *lmc = EXTRACT(address, 7, xbits) ^ |
| EXTRACT(address, bitno, xbits) ^ |
| EXTRACT(address, 12, xbits); |
| } |
| |
| /* Figure out the bank field width */ |
| lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(*lmc)); |
| ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(*lmc)); |
| bank_width = cvmx_dram_get_num_bank_bits(priv, *lmc); |
| |
| /* Extract additional info from the LMC_CONFIG CSR */ |
| dimm_lsb = 28 + lmcx_config.s.pbank_lsb + xbits; |
| dimm_width = 40 - dimm_lsb; |
| prank_lsb = dimm_lsb - lmcx_config.s.rank_ena; |
| prank_width = dimm_lsb - prank_lsb; |
| lrank_lsb = prank_lsb - ext_config.s.dimm0_cid; |
| lrank_width = prank_lsb - lrank_lsb; |
| row_lsb = 14 + lmcx_config.s.row_lsb + xbits; |
| row_width = lrank_lsb - row_lsb; |
| col_hi_lsb = bank_lsb + bank_width; |
| col_hi_width = row_lsb - col_hi_lsb; |
| |
| /* Extract the parts of the address */ |
| *dimm = EXTRACT(address, dimm_lsb, dimm_width); |
| *prank = EXTRACT(address, prank_lsb, prank_width); |
| *lrank = EXTRACT(address, lrank_lsb, lrank_width); |
| *row = EXTRACT(address, row_lsb, row_width); |
| |
| /* bank calculation may be aliased... */ |
| lmcx_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(*lmc)); |
| if (lmcx_control.s.xor_bank) { |
| *bank = EXTRACT(address, bank_lsb, bank_width) ^ |
| EXTRACT(address, 12 + xbits, bank_width); |
| } else { |
| *bank = EXTRACT(address, bank_lsb, bank_width); |
| } |
| |
| /* LMC number already extracted */ |
| col_hi = EXTRACT(address, col_hi_lsb, col_hi_width); |
| *col = EXTRACT(address, 3, 4) | (col_hi << 4); |
| /* Bus byte is address bits [2:0]. Unused here */ |
| } |
| |
| // end of added workarounds |
| |
| // NOTE: "mode" argument: |
| // DBTRAIN_TEST: for testing using GP patterns, includes ECC |
| // DBTRAIN_DBI: for DBI deskew training behavior (uses GP patterns) |
| // DBTRAIN_LFSR: for testing using LFSR patterns, includes ECC |
| // NOTE: trust the caller to specify the correct/supported mode |
| // |
| static int test_dram_byte_hw(struct ddr_priv *priv, int if_num, u64 p, |
| int mode, u64 *xor_data) |
| { |
| u64 p1; |
| u64 k; |
| int errors = 0; |
| |
| u64 mpr_data0, mpr_data1; |
| u64 bad_bits[2] = { 0, 0 }; |
| |
| int node_address, lmc, dimm; |
| int prank, lrank; |
| int bank, row, col; |
| int save_or_dis; |
| int byte; |
| int ba_loop, ba_bits; |
| |
| union cvmx_lmcx_rlevel_ctl rlevel_ctl; |
| union cvmx_lmcx_dbtrain_ctl dbtrain_ctl; |
| union cvmx_lmcx_phy_ctl phy_ctl; |
| |
| int biter_errs; |
| |
| // FIXME: K iterations set to 4 for now. |
| // FIXME: decrement to increase interations. |
| // FIXME: must be no less than 22 to stay above an LMC hash field. |
| int kshift = 27; |
| |
| const char *s; |
| int node = 0; |
| |
| // allow override default setting for kshift |
| s = env_get("ddr_tune_set_kshift"); |
| if (s) { |
| int temp = simple_strtoul(s, NULL, 0); |
| |
| if (temp < 22 || temp > 28) { |
| debug("N%d.LMC%d: ILLEGAL override of kshift to %d, using default %d\n", |
| node, if_num, temp, kshift); |
| } else { |
| debug("N%d.LMC%d: overriding kshift (%d) to %d\n", |
| node, if_num, kshift, temp); |
| kshift = temp; |
| } |
| } |
| |
| /* |
| * 1) Make sure that RLEVEL_CTL[OR_DIS] = 0. |
| */ |
| rlevel_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num)); |
| save_or_dis = rlevel_ctl.s.or_dis; |
| /* or_dis must be disabled for this sequence */ |
| rlevel_ctl.s.or_dis = 0; |
| lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64); |
| |
| /* |
| * NOTE: this step done in the calling routine(s)... |
| * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern |
| * of choice. |
| * a. GENERAL_PURPOSE0[DATA<63:0>] – sets the initial lower |
| * (rising edge) 64 bits of data. |
| * b. GENERAL_PURPOSE1[DATA<63:0>] – sets the initial upper |
| * (falling edge) 64 bits of data. |
| * c. GENERAL_PURPOSE2[DATA<15:0>] – sets the initial lower |
| * (rising edge <7:0>) and upper (falling edge <15:8>) ECC data. |
| */ |
| |
| // final address must include LMC and node |
| p |= (if_num << 7); /* Map address into proper interface */ |
| p |= (u64)node << CVMX_NODE_MEM_SHIFT; // map to node |
| |
| /* |
| * Add base offset to both test regions to not clobber u-boot stuff |
| * when running from L2 for NAND boot. |
| */ |
| p += 0x20000000; // offset to 512MB, ie above THE HOLE!!! |
| p |= 1ull << 63; // needed for OCTEON |
| |
| errors = 0; |
| |
| cvmx_dram_address_extract_info(priv, p, &node_address, &lmc, &dimm, |
| &prank, &lrank, &bank, &row, &col); |
| debug("%s: START at A:0x%012llx, N%d L%d D%d/%d R%d B%1x Row:%05x Col:%05x\n", |
| __func__, p, node_address, lmc, dimm, prank, lrank, bank, |
| row, col); |
| |
| // only check once per call, and ignore if no match... |
| if ((int)node != node_address) { |
| printf("ERROR: Node address mismatch\n"); |
| return 0; |
| } |
| if (lmc != if_num) { |
| printf("ERROR: LMC address mismatch\n"); |
| return 0; |
| } |
| |
| /* |
| * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically clears this as |
| * it’s a one-shot operation). This is to get into the habit of |
| * resetting PHY’s SILO to the original 0 location. |
| */ |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| phy_ctl.s.phy_reset = 1; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| /* |
| * Walk through a range of addresses avoiding bits that alias |
| * interfaces on the CN88XX. |
| */ |
| |
| // FIXME: want to try to keep the K increment from affecting the |
| // LMC via hash, so keep it above bit 21 we also want to keep k |
| // less than the base offset of bit 29 (512MB) |
| |
| for (k = 0; k < (1UL << 29); k += (1UL << kshift)) { |
| // FIXME: the sequence will interate over 1/2 cacheline |
| // FIXME: for each unit specified in "read_cmd_count", |
| // FIXME: so, we setup each sequence to do the max cachelines |
| // it can |
| |
| p1 = p + k; |
| |
| cvmx_dram_address_extract_info(priv, p1, &node_address, &lmc, |
| &dimm, &prank, &lrank, &bank, |
| &row, &col); |
| |
| /* |
| * 2) Setup the fields of the CSR DBTRAIN_CTL as follows: |
| * a. COL, ROW, BA, BG, PRANK points to the starting point |
| * of the address. |
| * You can just set them to all 0. |
| * b. RW_TRAIN – set this to 1. |
| * c. TCCD_L – set this to 0. |
| * d. READ_CMD_COUNT – instruct the sequence to the how many |
| * writes/reads. |
| * It is 5 bits field, so set to 31 of maximum # of r/w. |
| */ |
| dbtrain_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DBTRAIN_CTL(if_num)); |
| dbtrain_ctl.s.column_a = col; |
| dbtrain_ctl.s.row_a = row; |
| dbtrain_ctl.s.bg = (bank >> 2) & 3; |
| dbtrain_ctl.s.prank = (dimm * 2) + prank; // FIXME? |
| dbtrain_ctl.s.lrank = lrank; // FIXME? |
| dbtrain_ctl.s.activate = (mode == DBTRAIN_DBI); |
| dbtrain_ctl.s.write_ena = 1; |
| dbtrain_ctl.s.read_cmd_count = 31; // max count pass 1.x |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) || |
| octeon_is_cpuid(OCTEON_CNF75XX)) { |
| // max count on chips that support it |
| dbtrain_ctl.s.cmd_count_ext = 3; |
| } else { |
| // max count pass 1.x |
| dbtrain_ctl.s.cmd_count_ext = 0; |
| } |
| |
| dbtrain_ctl.s.rw_train = 1; |
| dbtrain_ctl.s.tccd_sel = (mode == DBTRAIN_DBI); |
| // LFSR should only be on when chip supports it... |
| dbtrain_ctl.s.lfsr_pattern_sel = (mode == DBTRAIN_LFSR) ? 1 : 0; |
| |
| biter_errs = 0; |
| |
| // for each address, iterate over the 4 "banks" in the BA |
| for (ba_loop = 0, ba_bits = bank & 3; |
| ba_loop < 4; ba_loop++, ba_bits = (ba_bits + 1) & 3) { |
| dbtrain_ctl.s.ba = ba_bits; |
| lmc_wr(priv, CVMX_LMCX_DBTRAIN_CTL(if_num), |
| dbtrain_ctl.u64); |
| |
| /* |
| * We will use the RW_TRAINING sequence (14) for |
| * this task. |
| * |
| * 4) Kick off the sequence (SEQ_CTL[SEQ_SEL] = 14, |
| * SEQ_CTL[INIT_START] = 1). |
| * 5) Poll on SEQ_CTL[SEQ_COMPLETE] for completion. |
| */ |
| oct3_ddr3_seq(priv, prank, if_num, 14); |
| |
| /* |
| * 6) Read MPR_DATA0 and MPR_DATA1 for results. |
| * a. MPR_DATA0[MPR_DATA<63:0>] – comparison results |
| * for DQ63:DQ0. (1 means MATCH, 0 means FAIL). |
| * b. MPR_DATA1[MPR_DATA<7:0>] – comparison results |
| * for ECC bit7:0. |
| */ |
| mpr_data0 = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num)); |
| mpr_data1 = lmc_rd(priv, CVMX_LMCX_MPR_DATA1(if_num)); |
| |
| /* |
| * 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically |
| * clears this as it’s a one-shot operation). |
| * This is to get into the habit of resetting PHY’s |
| * SILO to the original 0 location. |
| */ |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num)); |
| phy_ctl.s.phy_reset = 1; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64); |
| |
| // bypass any error checking or updating when DBI mode |
| if (mode == DBTRAIN_DBI) |
| continue; |
| |
| // data bytes |
| if (~mpr_data0) { |
| for (byte = 0; byte < 8; byte++) { |
| if ((~mpr_data0 >> (8 * byte)) & 0xffUL) |
| biter_errs |= (1 << byte); |
| } |
| // accumulate bad bits |
| bad_bits[0] |= ~mpr_data0; |
| } |
| |
| // include ECC byte errors |
| if (~mpr_data1 & 0xffUL) { |
| biter_errs |= (1 << 8); |
| bad_bits[1] |= ~mpr_data1 & 0xffUL; |
| } |
| } |
| |
| errors |= biter_errs; |
| } /* end for (k=...) */ |
| |
| rlevel_ctl.s.or_dis = save_or_dis; |
| lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64); |
| |
| // send the bad bits back... |
| if (mode != DBTRAIN_DBI && xor_data) { |
| xor_data[0] = bad_bits[0]; |
| xor_data[1] = bad_bits[1]; |
| } |
| |
| return errors; |
| } |
| |
| // setup default for byte test pattern array |
| // take these from the HRM section 6.9.13 |
| static const u64 byte_pattern_0[] = { |
| 0xFFAAFFFFFF55FFFFULL, // GP0 |
| 0x55555555AAAAAAAAULL, // GP1 |
| 0xAA55AAAAULL, // GP2 |
| }; |
| |
| static const u64 byte_pattern_1[] = { |
| 0xFBF7EFDFBF7FFEFDULL, // GP0 |
| 0x0F1E3C78F0E1C387ULL, // GP1 |
| 0xF0E1BF7FULL, // GP2 |
| }; |
| |
| // this is from Andrew via LFSR with PRBS=0xFFFFAAAA |
| static const u64 byte_pattern_2[] = { |
| 0xEE55AADDEE55AADDULL, // GP0 |
| 0x55AADDEE55AADDEEULL, // GP1 |
| 0x55EEULL, // GP2 |
| }; |
| |
| // this is from Mike via LFSR with PRBS=0x4A519909 |
| static const u64 byte_pattern_3[] = { |
| 0x0088CCEE0088CCEEULL, // GP0 |
| 0xBB552211BB552211ULL, // GP1 |
| 0xBB00ULL, // GP2 |
| }; |
| |
| static const u64 *byte_patterns[4] = { |
| byte_pattern_0, byte_pattern_1, byte_pattern_2, byte_pattern_3 |
| }; |
| |
| static const u32 lfsr_patterns[4] = { |
| 0xFFFFAAAAUL, 0x06000000UL, 0xAAAAFFFFUL, 0x4A519909UL |
| }; |
| |
| #define NUM_BYTE_PATTERNS 4 |
| |
| #define DEFAULT_BYTE_BURSTS 32 // compromise between time and rigor |
| |
| static void setup_hw_pattern(struct ddr_priv *priv, int lmc, |
| const u64 *pattern_p) |
| { |
| /* |
| * 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern |
| * of choice. |
| * a. GENERAL_PURPOSE0[DATA<63:0>] – sets the initial lower |
| * (rising edge) 64 bits of data. |
| * b. GENERAL_PURPOSE1[DATA<63:0>] – sets the initial upper |
| * (falling edge) 64 bits of data. |
| * c. GENERAL_PURPOSE2[DATA<15:0>] – sets the initial lower |
| * (rising edge <7:0>) and upper |
| * (falling edge <15:8>) ECC data. |
| */ |
| lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), pattern_p[0]); |
| lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), pattern_p[1]); |
| lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), pattern_p[2]); |
| } |
| |
| static void setup_lfsr_pattern(struct ddr_priv *priv, int lmc, u32 data) |
| { |
| union cvmx_lmcx_char_ctl char_ctl; |
| u32 prbs; |
| const char *s; |
| |
| s = env_get("ddr_lfsr_prbs"); |
| if (s) |
| prbs = simple_strtoul(s, NULL, 0); |
| else |
| prbs = data; |
| |
| /* |
| * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1 |
| * here data comes from the LFSR generating a PRBS pattern |
| * CHAR_CTL.EN = 0 |
| * CHAR_CTL.SEL = 0; // for PRBS |
| * CHAR_CTL.DR = 1; |
| * CHAR_CTL.PRBS = setup for whatever type of PRBS to send |
| * CHAR_CTL.SKEW_ON = 1; |
| */ |
| char_ctl.u64 = lmc_rd(priv, CVMX_LMCX_CHAR_CTL(lmc)); |
| char_ctl.s.en = 0; |
| char_ctl.s.sel = 0; |
| char_ctl.s.dr = 1; |
| char_ctl.s.prbs = prbs; |
| char_ctl.s.skew_on = 1; |
| lmc_wr(priv, CVMX_LMCX_CHAR_CTL(lmc), char_ctl.u64); |
| } |
| |
| static int choose_best_hw_patterns(int lmc, int mode) |
| { |
| int new_mode = mode; |
| const char *s; |
| |
| switch (mode) { |
| case DBTRAIN_TEST: // always choose LFSR if chip supports it |
| if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) { |
| int lfsr_enable = 1; |
| |
| s = env_get("ddr_allow_lfsr"); |
| if (s) { |
| // override? |
| lfsr_enable = !!strtoul(s, NULL, 0); |
| } |
| |
| if (lfsr_enable) |
| new_mode = DBTRAIN_LFSR; |
| } |
| break; |
| |
| case DBTRAIN_DBI: // possibly can allow LFSR use? |
| break; |
| |
| case DBTRAIN_LFSR: // forced already |
| if (!octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) { |
| debug("ERROR: illegal HW assist mode %d\n", mode); |
| new_mode = DBTRAIN_TEST; |
| } |
| break; |
| |
| default: |
| debug("ERROR: unknown HW assist mode %d\n", mode); |
| } |
| |
| if (new_mode != mode) |
| debug("%s: changing mode %d to %d\n", __func__, mode, new_mode); |
| |
| return new_mode; |
| } |
| |
| int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr, |
| int mode, u64 *xor_data) |
| { |
| int pattern; |
| const u64 *pattern_p; |
| int errs, errors = 0; |
| |
| // FIXME? always choose LFSR if chip supports it??? |
| mode = choose_best_hw_patterns(lmc, mode); |
| |
| for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) { |
| if (mode == DBTRAIN_LFSR) { |
| setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]); |
| } else { |
| pattern_p = byte_patterns[pattern]; |
| setup_hw_pattern(priv, lmc, pattern_p); |
| } |
| errs = test_dram_byte_hw(priv, lmc, phys_addr, mode, xor_data); |
| |
| debug("%s: PATTERN %d at A:0x%012llx errors 0x%x\n", |
| __func__, pattern, phys_addr, errs); |
| |
| errors |= errs; |
| } |
| |
| return errors; |
| } |
| |
| static void hw_assist_test_dll_offset(struct ddr_priv *priv, |
| int dll_offset_mode, int lmc, |
| int bytelane, |
| int if_64b, |
| u64 dram_tune_rank_offset, |
| int dram_tune_byte_bursts) |
| { |
| int byte_offset, new_best_offset[9]; |
| int rank_delay_start[4][9]; |
| int rank_delay_count[4][9]; |
| int rank_delay_best_start[4][9]; |
| int rank_delay_best_count[4][9]; |
| int errors[4], off_errors, tot_errors; |
| int rank_mask, rankx, active_ranks; |
| int pattern; |
| const u64 *pattern_p; |
| int byte; |
| char *mode_str = (dll_offset_mode == 2) ? "Read" : "Write"; |
| int pat_best_offset[9]; |
| u64 phys_addr; |
| int pat_beg, pat_end; |
| int rank_beg, rank_end; |
| int byte_lo, byte_hi; |
| union cvmx_lmcx_config lmcx_config; |
| u64 hw_rank_offset; |
| int num_lmcs = cvmx_dram_get_num_lmc(priv); |
| // FIXME? always choose LFSR if chip supports it??? |
| int mode = choose_best_hw_patterns(lmc, DBTRAIN_TEST); |
| int node = 0; |
| |
| if (bytelane == 0x0A) { // all bytelanes |
| byte_lo = 0; |
| byte_hi = 8; |
| } else { // just 1 |
| byte_lo = bytelane; |
| byte_hi = bytelane; |
| } |
| |
| lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc)); |
| rank_mask = lmcx_config.s.init_status; |
| |
| // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs |
| hw_rank_offset = |
| 1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena + |
| (num_lmcs / 2)); |
| |
| debug("N%d: %s: starting LMC%d with rank offset 0x%016llx\n", |
| node, __func__, lmc, (unsigned long long)hw_rank_offset); |
| |
| // start of pattern loop |
| // we do the set of tests for each pattern supplied... |
| |
| memset(new_best_offset, 0, sizeof(new_best_offset)); |
| for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) { |
| memset(pat_best_offset, 0, sizeof(pat_best_offset)); |
| |
| if (mode == DBTRAIN_TEST) { |
| pattern_p = byte_patterns[pattern]; |
| setup_hw_pattern(priv, lmc, pattern_p); |
| } else { |
| setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]); |
| } |
| |
| // now loop through all legal values for the DLL byte offset... |
| |
| #define BYTE_OFFSET_INCR 3 // FIXME: make this tunable? |
| |
| tot_errors = 0; |
| |
| memset(rank_delay_count, 0, sizeof(rank_delay_count)); |
| memset(rank_delay_start, 0, sizeof(rank_delay_start)); |
| memset(rank_delay_best_count, 0, sizeof(rank_delay_best_count)); |
| memset(rank_delay_best_start, 0, sizeof(rank_delay_best_start)); |
| |
| for (byte_offset = -63; byte_offset < 64; |
| byte_offset += BYTE_OFFSET_INCR) { |
| // do the setup on the active LMC |
| // set the bytelanes DLL offsets |
| change_dll_offset_enable(priv, lmc, 0); |
| // FIXME? bytelane? |
| load_dll_offset(priv, lmc, dll_offset_mode, |
| byte_offset, bytelane); |
| change_dll_offset_enable(priv, lmc, 1); |
| |
| //bdk_watchdog_poke(); |
| |
| // run the test on each rank |
| // only 1 call per rank should be enough, let the |
| // bursts, loops, etc, control the load... |
| |
| // errors for this byte_offset, all ranks |
| off_errors = 0; |
| |
| active_ranks = 0; |
| |
| for (rankx = 0; rankx < 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| phys_addr = hw_rank_offset * active_ranks; |
| // FIXME: now done by test_dram_byte_hw() |
| //phys_addr |= (lmc << 7); |
| //phys_addr |= (u64)node << CVMX_NODE_MEM_SHIFT; |
| |
| active_ranks++; |
| |
| // NOTE: return is a now a bitmask of the |
| // erroring bytelanes. |
| errors[rankx] = |
| test_dram_byte_hw(priv, lmc, phys_addr, |
| mode, NULL); |
| |
| // process any errors in the bytelane(s) that |
| // are being tested |
| for (byte = byte_lo; byte <= byte_hi; byte++) { |
| // check errors |
| // yes, an error in the byte lane in |
| // this rank |
| if (errors[rankx] & (1 << byte)) { |
| off_errors |= (1 << byte); |
| |
| debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: Address 0x%012llx errors\n", |
| node, lmc, rankx, byte, |
| mode_str, byte_offset, |
| phys_addr); |
| |
| // had started run |
| if (rank_delay_count |
| [rankx][byte] > 0) { |
| debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: stopping a run here\n", |
| node, lmc, rankx, |
| byte, mode_str, |
| byte_offset); |
| // stop now |
| rank_delay_count |
| [rankx][byte] = |
| 0; |
| } |
| // FIXME: else had not started |
| // run - nothing else to do? |
| } else { |
| // no error in the byte lane |
| // first success, set run start |
| if (rank_delay_count[rankx] |
| [byte] == 0) { |
| debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: starting a run here\n", |
| node, lmc, rankx, |
| byte, mode_str, |
| byte_offset); |
| rank_delay_start[rankx] |
| [byte] = |
| byte_offset; |
| } |
| // bump run length |
| rank_delay_count[rankx][byte] |
| += BYTE_OFFSET_INCR; |
| |
| // is this now the biggest |
| // window? |
| if (rank_delay_count[rankx] |
| [byte] > |
| rank_delay_best_count[rankx] |
| [byte]) { |
| rank_delay_best_count |
| [rankx][byte] = |
| rank_delay_count |
| [rankx][byte]; |
| rank_delay_best_start |
| [rankx][byte] = |
| rank_delay_start |
| [rankx][byte]; |
| debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: updating best to %d/%d\n", |
| node, lmc, rankx, |
| byte, mode_str, |
| byte_offset, |
| rank_delay_best_start |
| [rankx][byte], |
| rank_delay_best_count |
| [rankx][byte]); |
| } |
| } |
| } |
| } /* for (rankx = 0; rankx < 4; rankx++) */ |
| |
| tot_errors |= off_errors; |
| } |
| |
| // set the bytelanes DLL offsets all back to 0 |
| change_dll_offset_enable(priv, lmc, 0); |
| load_dll_offset(priv, lmc, dll_offset_mode, 0, bytelane); |
| change_dll_offset_enable(priv, lmc, 1); |
| |
| // now choose the best byte_offsets for this pattern |
| // according to the best windows of the tested ranks |
| // calculate offset by constructing an average window |
| // from the rank windows |
| for (byte = byte_lo; byte <= byte_hi; byte++) { |
| pat_beg = -999; |
| pat_end = 999; |
| |
| for (rankx = 0; rankx < 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| rank_beg = rank_delay_best_start[rankx][byte]; |
| pat_beg = max(pat_beg, rank_beg); |
| rank_end = rank_beg + |
| rank_delay_best_count[rankx][byte] - |
| BYTE_OFFSET_INCR; |
| pat_end = min(pat_end, rank_end); |
| |
| debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test: Rank Window %3d:%3d\n", |
| node, lmc, rankx, byte, mode_str, |
| rank_beg, rank_end); |
| |
| } /* for (rankx = 0; rankx < 4; rankx++) */ |
| |
| pat_best_offset[byte] = (pat_end + pat_beg) / 2; |
| |
| // sum the pattern averages |
| new_best_offset[byte] += pat_best_offset[byte]; |
| } |
| |
| // now print them on 1 line, descending order... |
| debug("N%d.LMC%d: HW DLL %s Offset Pattern %d :", |
| node, lmc, mode_str, pattern); |
| for (byte = byte_hi; byte >= byte_lo; --byte) |
| debug(" %4d", pat_best_offset[byte]); |
| debug("\n"); |
| } |
| // end of pattern loop |
| |
| debug("N%d.LMC%d: HW DLL %s Offset Average : ", node, lmc, mode_str); |
| |
| // print in decending byte index order |
| for (byte = byte_hi; byte >= byte_lo; --byte) { |
| // create the new average NINT |
| new_best_offset[byte] = divide_nint(new_best_offset[byte], |
| NUM_BYTE_PATTERNS); |
| |
| // print the best offsets from all patterns |
| |
| // print just the offset of all the bytes |
| if (bytelane == 0x0A) |
| debug("%4d ", new_best_offset[byte]); |
| else // print the bytelanes also |
| debug("(byte %d) %4d ", byte, new_best_offset[byte]); |
| |
| // done with testing, load up the best offsets we found... |
| // disable offsets while we load... |
| change_dll_offset_enable(priv, lmc, 0); |
| load_dll_offset(priv, lmc, dll_offset_mode, |
| new_best_offset[byte], byte); |
| // re-enable the offsets now that we are done loading |
| change_dll_offset_enable(priv, lmc, 1); |
| } |
| |
| debug("\n"); |
| } |
| |
| /* |
| * Automatically adjust the DLL offset for the selected bytelane using |
| * hardware-assist |
| */ |
| static int perform_HW_dll_offset_tuning(struct ddr_priv *priv, |
| int dll_offset_mode, int bytelane) |
| { |
| int if_64b; |
| int save_ecc_ena[4]; |
| union cvmx_lmcx_config lmc_config; |
| int lmc, num_lmcs = cvmx_dram_get_num_lmc(priv); |
| const char *s; |
| int loops = 1, loop; |
| int by; |
| u64 dram_tune_rank_offset; |
| int dram_tune_byte_bursts = DEFAULT_BYTE_BURSTS; |
| int node = 0; |
| |
| // see if we want to do the tuning more than once per LMC... |
| s = env_get("ddr_tune_ecc_loops"); |
| if (s) |
| loops = strtoul(s, NULL, 0); |
| |
| // allow override of the test repeats (bursts) |
| s = env_get("ddr_tune_byte_bursts"); |
| if (s) |
| dram_tune_byte_bursts = strtoul(s, NULL, 10); |
| |
| // print current working values |
| debug("N%d: H/W Tuning for bytelane %d will use %d loops, %d bursts, and %d patterns.\n", |
| node, bytelane, loops, dram_tune_byte_bursts, NUM_BYTE_PATTERNS); |
| |
| // FIXME? get flag from LMC0 only |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0)); |
| if_64b = !lmc_config.s.mode32b; |
| |
| // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs |
| dram_tune_rank_offset = |
| 1ull << (28 + lmc_config.s.pbank_lsb - lmc_config.s.rank_ena + |
| (num_lmcs / 2)); |
| |
| // do once for each active LMC |
| |
| for (lmc = 0; lmc < num_lmcs; lmc++) { |
| debug("N%d: H/W Tuning: starting LMC%d bytelane %d tune.\n", |
| node, lmc, bytelane); |
| |
| /* Enable ECC for the HW tests */ |
| // NOTE: we do enable ECC, but the HW tests used will not |
| // generate "visible" errors |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc)); |
| save_ecc_ena[lmc] = lmc_config.s.ecc_ena; |
| lmc_config.s.ecc_ena = 1; |
| lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64); |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc)); |
| |
| // testing is done on a single LMC at a time |
| // FIXME: for now, loop here to show what happens multiple times |
| for (loop = 0; loop < loops; loop++) { |
| /* Perform DLL offset tuning */ |
| hw_assist_test_dll_offset(priv, 2 /* 2=read */, lmc, |
| bytelane, |
| if_64b, dram_tune_rank_offset, |
| dram_tune_byte_bursts); |
| } |
| |
| // perform cleanup on active LMC |
| debug("N%d: H/W Tuning: finishing LMC%d bytelane %d tune.\n", |
| node, lmc, bytelane); |
| |
| /* Restore ECC for DRAM tests */ |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc)); |
| lmc_config.s.ecc_ena = save_ecc_ena[lmc]; |
| lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64); |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc)); |
| |
| // finally, see if there are any read offset overrides |
| // after tuning |
| for (by = 0; by < 9; by++) { |
| s = lookup_env(priv, "ddr%d_tune_byte%d", lmc, by); |
| if (s) { |
| int dllro = strtoul(s, NULL, 10); |
| |
| change_dll_offset_enable(priv, lmc, 0); |
| load_dll_offset(priv, lmc, 2, dllro, by); |
| change_dll_offset_enable(priv, lmc, 1); |
| } |
| } |
| |
| } /* for (lmc = 0; lmc < num_lmcs; lmc++) */ |
| |
| // finish up... |
| |
| return 0; |
| |
| } /* perform_HW_dll_offset_tuning */ |
| |
| // this routine simply makes the calls to the tuning routine and returns |
| // any errors |
| static int cvmx_tune_node(struct ddr_priv *priv) |
| { |
| int errs, tot_errs; |
| int do_dllwo = 0; // default to NO |
| const char *str; |
| int node = 0; |
| |
| // Automatically tune the data and ECC byte DLL read offsets |
| debug("N%d: Starting DLL Read Offset Tuning for LMCs\n", node); |
| errs = perform_HW_dll_offset_tuning(priv, 2, 0x0A /* all bytelanes */); |
| debug("N%d: Finished DLL Read Offset Tuning for LMCs, %d errors\n", |
| node, errs); |
| tot_errs = errs; |
| |
| // disabled by default for now, does not seem to be needed? |
| // Automatically tune the data and ECC byte DLL write offsets |
| // allow override of default setting |
| str = env_get("ddr_tune_write_offsets"); |
| if (str) |
| do_dllwo = !!strtoul(str, NULL, 0); |
| if (do_dllwo) { |
| debug("N%d: Starting DLL Write Offset Tuning for LMCs\n", node); |
| errs = |
| perform_HW_dll_offset_tuning(priv, 1, |
| 0x0A /* all bytelanes */); |
| debug("N%d: Finished DLL Write Offset Tuning for LMCs, %d errors\n", |
| node, errs); |
| tot_errs += errs; |
| } |
| |
| return tot_errs; |
| } |
| |
| // this routine makes the calls to the tuning routines when criteria are met |
| // intended to be called for automated tuning, to apply filtering... |
| |
| #define IS_DDR4 1 |
| #define IS_DDR3 0 |
| #define IS_RDIMM 1 |
| #define IS_UDIMM 0 |
| #define IS_1SLOT 1 |
| #define IS_2SLOT 0 |
| |
| // FIXME: DDR3 is not tuned |
| static const u32 ddr_speed_filter[2][2][2] = { |
| [IS_DDR4] = { |
| [IS_RDIMM] = { |
| [IS_1SLOT] = 940, |
| [IS_2SLOT] = 800}, |
| [IS_UDIMM] = { |
| [IS_1SLOT] = 1050, |
| [IS_2SLOT] = 940}, |
| }, |
| [IS_DDR3] = { |
| [IS_RDIMM] = { |
| [IS_1SLOT] = 0, // disabled |
| [IS_2SLOT] = 0 // disabled |
| }, |
| [IS_UDIMM] = { |
| [IS_1SLOT] = 0, // disabled |
| [IS_2SLOT] = 0 // disabled |
| } |
| } |
| }; |
| |
| void cvmx_maybe_tune_node(struct ddr_priv *priv, u32 ddr_speed) |
| { |
| const char *s; |
| union cvmx_lmcx_config lmc_config; |
| union cvmx_lmcx_control lmc_control; |
| union cvmx_lmcx_ddr_pll_ctl lmc_ddr_pll_ctl; |
| int is_ddr4; |
| int is_rdimm; |
| int is_1slot; |
| int do_tune = 0; |
| u32 ddr_min_speed; |
| int node = 0; |
| |
| // scale it down from Hz to MHz |
| ddr_speed = divide_nint(ddr_speed, 1000000); |
| |
| // FIXME: allow an override here so that all configs can be tuned |
| // or none |
| // If the envvar is defined, always either force it or avoid it |
| // accordingly |
| s = env_get("ddr_tune_all_configs"); |
| if (s) { |
| do_tune = !!strtoul(s, NULL, 0); |
| printf("N%d: DRAM auto-tuning %s.\n", node, |
| (do_tune) ? "forced" : "disabled"); |
| if (do_tune) |
| cvmx_tune_node(priv); |
| |
| return; |
| } |
| |
| // filter the tuning calls here... |
| // determine if we should/can run automatically for this configuration |
| // |
| // FIXME: tune only when the configuration indicates it will help: |
| // DDR type, RDIMM or UDIMM, 1-slot or 2-slot, and speed |
| // |
| lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0)); // sample LMC0 |
| lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(0)); // sample LMC0 |
| // sample LMC0 |
| lmc_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0)); |
| |
| is_ddr4 = (lmc_ddr_pll_ctl.s.ddr4_mode != 0); |
| is_rdimm = (lmc_control.s.rdimm_ena != 0); |
| // HACK, should do better |
| is_1slot = (lmc_config.s.init_status < 4); |
| |
| ddr_min_speed = ddr_speed_filter[is_ddr4][is_rdimm][is_1slot]; |
| do_tune = ((ddr_min_speed != 0) && (ddr_speed > ddr_min_speed)); |
| |
| debug("N%d: DDR%d %cDIMM %d-slot at %d MHz %s eligible for auto-tuning.\n", |
| node, (is_ddr4) ? 4 : 3, (is_rdimm) ? 'R' : 'U', |
| (is_1slot) ? 1 : 2, ddr_speed, (do_tune) ? "is" : "is not"); |
| |
| // call the tuning routine, filtering is done... |
| if (do_tune) |
| cvmx_tune_node(priv); |
| } |
| |
| /* |
| * first pattern example: |
| * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff; |
| * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff; |
| * GENERAL_PURPOSE0.DATA == 16'h0000; |
| */ |
| |
| static const u64 dbi_pattern[3] = { |
| 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000ULL }; |
| |
| // Perform switchover to DBI |
| static void cvmx_dbi_switchover_interface(struct ddr_priv *priv, int lmc) |
| { |
| union cvmx_lmcx_modereg_params0 modereg_params0; |
| union cvmx_lmcx_modereg_params3 modereg_params3; |
| union cvmx_lmcx_phy_ctl phy_ctl; |
| union cvmx_lmcx_config lmcx_config; |
| union cvmx_lmcx_ddr_pll_ctl ddr_pll_ctl; |
| int rank_mask, rankx, active_ranks; |
| u64 phys_addr, rank_offset; |
| int num_lmcs, errors; |
| int dbi_settings[9], byte, unlocked, retries; |
| int ecc_ena; |
| int rank_max = 1; // FIXME: make this 4 to try all the ranks |
| int node = 0; |
| |
| ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0)); |
| |
| lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc)); |
| rank_mask = lmcx_config.s.init_status; |
| ecc_ena = lmcx_config.s.ecc_ena; |
| |
| // FIXME: must filter out any non-supported configs |
| // ie, no DDR3, no x4 devices |
| if (ddr_pll_ctl.s.ddr4_mode == 0 || lmcx_config.s.mode_x4dev == 1) { |
| debug("N%d.LMC%d: DBI switchover: inappropriate device; EXITING...\n", |
| node, lmc); |
| return; |
| } |
| |
| // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs |
| num_lmcs = cvmx_dram_get_num_lmc(priv); |
| rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb - |
| lmcx_config.s.rank_ena + (num_lmcs / 2)); |
| |
| debug("N%d.LMC%d: DBI switchover: rank mask 0x%x, rank size 0x%016llx.\n", |
| node, lmc, rank_mask, (unsigned long long)rank_offset); |
| |
| /* |
| * 1. conduct the current init sequence as usual all the way |
| * after software write leveling. |
| */ |
| |
| read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings); |
| |
| display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings, |
| " INIT"); |
| |
| /* |
| * 2. set DBI related CSRs as below and issue MR write. |
| * MODEREG_PARAMS3.WR_DBI=1 |
| * MODEREG_PARAMS3.RD_DBI=1 |
| * PHY_CTL.DBI_MODE_ENA=1 |
| */ |
| modereg_params0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc)); |
| |
| modereg_params3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc)); |
| modereg_params3.s.wr_dbi = 1; |
| modereg_params3.s.rd_dbi = 1; |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc), modereg_params3.u64); |
| |
| phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(lmc)); |
| phy_ctl.s.dbi_mode_ena = 1; |
| lmc_wr(priv, CVMX_LMCX_PHY_CTL(lmc), phy_ctl.u64); |
| |
| /* |
| * there are two options for data to send. Lets start with (1) |
| * and could move to (2) in the future: |
| * |
| * 1) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 0 (or for older chips where |
| * this does not exist) set data directly in these reigsters. |
| * this will yield a clk/2 pattern: |
| * GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff; |
| * GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff; |
| * GENERAL_PURPOSE0.DATA == 16'h0000; |
| * 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1 |
| * here data comes from the LFSR generating a PRBS pattern |
| * CHAR_CTL.EN = 0 |
| * CHAR_CTL.SEL = 0; // for PRBS |
| * CHAR_CTL.DR = 1; |
| * CHAR_CTL.PRBS = setup for whatever type of PRBS to send |
| * CHAR_CTL.SKEW_ON = 1; |
| */ |
| lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), dbi_pattern[0]); |
| lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), dbi_pattern[1]); |
| lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), dbi_pattern[2]); |
| |
| /* |
| * 3. adjust cas_latency (only necessary if RD_DBI is set). |
| * here is my code for doing this: |
| * |
| * if (csr_model.MODEREG_PARAMS3.RD_DBI.value == 1) begin |
| * case (csr_model.MODEREG_PARAMS0.CL.value) |
| * 0,1,2,3,4: csr_model.MODEREG_PARAMS0.CL.value += 2; |
| * // CL 9-13 -> 11-15 |
| * 5: begin |
| * // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3 |
| * if((csr_model.MODEREG_PARAMS0.CWL.value==1 || |
| * csr_model.MODEREG_PARAMS0.CWL.value==3)) |
| * csr_model.MODEREG_PARAMS0.CL.value = 7; // 14->16 |
| * else |
| * csr_model.MODEREG_PARAMS0.CL.value = 13; // 14->17 |
| * end |
| * 6: csr_model.MODEREG_PARAMS0.CL.value = 8; // 15->18 |
| * 7: csr_model.MODEREG_PARAMS0.CL.value = 14; // 16->19 |
| * 8: csr_model.MODEREG_PARAMS0.CL.value = 15; // 18->21 |
| * default: |
| * `cn_fatal(("Error mem_cfg (%s) CL (%d) with RD_DBI=1, |
| * I am not sure what to do.", |
| * mem_cfg, csr_model.MODEREG_PARAMS3.RD_DBI.value)) |
| * endcase |
| * end |
| */ |
| |
| if (modereg_params3.s.rd_dbi == 1) { |
| int old_cl, new_cl, old_cwl; |
| |
| old_cl = modereg_params0.s.cl; |
| old_cwl = modereg_params0.s.cwl; |
| |
| switch (old_cl) { |
| case 0: |
| case 1: |
| case 2: |
| case 3: |
| case 4: |
| new_cl = old_cl + 2; |
| break; // 9-13->11-15 |
| // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3 |
| case 5: |
| new_cl = ((old_cwl == 1) || (old_cwl == 3)) ? 7 : 13; |
| break; |
| case 6: |
| new_cl = 8; |
| break; // 15->18 |
| case 7: |
| new_cl = 14; |
| break; // 16->19 |
| case 8: |
| new_cl = 15; |
| break; // 18->21 |
| default: |
| printf("ERROR: Bad CL value (%d) for DBI switchover.\n", |
| old_cl); |
| // FIXME: need to error exit here... |
| old_cl = -1; |
| new_cl = -1; |
| break; |
| } |
| debug("N%d.LMC%d: DBI switchover: CL ADJ: old_cl 0x%x, old_cwl 0x%x, new_cl 0x%x.\n", |
| node, lmc, old_cl, old_cwl, new_cl); |
| modereg_params0.s.cl = new_cl; |
| lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc), |
| modereg_params0.u64); |
| } |
| |
| /* |
| * 4. issue MRW to MR0 (CL) and MR5 (DBI), using LMC sequence |
| * SEQ_CTL[SEQ_SEL] = MRW. |
| */ |
| // Use the default values, from the CSRs fields |
| // also, do B-sides for RDIMMs... |
| |
| for (rankx = 0; rankx < 4; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| // for RDIMMs, B-side writes should get done automatically |
| // when the A-side is written |
| ddr4_mrw(priv, lmc, rankx, -1 /* use_default */, |
| 0 /*MRreg */, 0 /*A-side */); /* MR0 */ |
| ddr4_mrw(priv, lmc, rankx, -1 /* use_default */, |
| 5 /*MRreg */, 0 /*A-side */); /* MR5 */ |
| } |
| |
| /* |
| * 5. conduct DBI bit deskew training via the General Purpose |
| * R/W sequence (dbtrain). may need to run this over and over to get |
| * a lock (I need up to 5 in simulation): |
| * SEQ_CTL[SEQ_SEL] = RW_TRAINING (15) |
| * DBTRAIN_CTL.CMD_COUNT_EXT = all 1's |
| * DBTRAIN_CTL.READ_CMD_COUNT = all 1's |
| * DBTRAIN_CTL.TCCD_SEL = set according to MODEREG_PARAMS3[TCCD_L] |
| * DBTRAIN_CTL.RW_TRAIN = 1 |
| * DBTRAIN_CTL.READ_DQ_COUNT = dont care |
| * DBTRAIN_CTL.WRITE_ENA = 1; |
| * DBTRAIN_CTL.ACTIVATE = 1; |
| * DBTRAIN_CTL LRANK, PRANK, ROW_A, BG, BA, COLUMN_A = set to a |
| * valid address |
| */ |
| |
| // NOW - do the training |
| debug("N%d.LMC%d: DBI switchover: TRAINING begins...\n", node, lmc); |
| |
| active_ranks = 0; |
| for (rankx = 0; rankx < rank_max; rankx++) { |
| if (!(rank_mask & (1 << rankx))) |
| continue; |
| |
| phys_addr = rank_offset * active_ranks; |
| // FIXME: now done by test_dram_byte_hw() |
| |
| active_ranks++; |
| |
| retries = 0; |
| |
| restart_training: |
| |
| // NOTE: return is a bitmask of the erroring bytelanes - |
| // we only print it |
| errors = |
| test_dram_byte_hw(priv, lmc, phys_addr, DBTRAIN_DBI, NULL); |
| |
| debug("N%d.LMC%d: DBI switchover: TEST: rank %d, phys_addr 0x%llx, errors 0x%x.\n", |
| node, lmc, rankx, (unsigned long long)phys_addr, errors); |
| |
| // NEXT - check for locking |
| unlocked = 0; |
| read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings); |
| |
| for (byte = 0; byte < (8 + ecc_ena); byte++) |
| unlocked += (dbi_settings[byte] & 1) ^ 1; |
| |
| // FIXME: print out the DBI settings array after each rank? |
| if (rank_max > 1) // only when doing more than 1 rank |
| display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, |
| dbi_settings, " RANK"); |
| |
| if (unlocked > 0) { |
| debug("N%d.LMC%d: DBI switchover: LOCK: %d still unlocked.\n", |
| node, lmc, unlocked); |
| retries++; |
| if (retries < 10) { |
| goto restart_training; |
| } else { |
| debug("N%d.LMC%d: DBI switchover: LOCK: %d retries exhausted.\n", |
| node, lmc, retries); |
| } |
| } |
| } /* for (rankx = 0; rankx < 4; rankx++) */ |
| |
| // print out the final DBI settings array |
| display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings, |
| "FINAL"); |
| } |
| |
| void cvmx_dbi_switchover(struct ddr_priv *priv) |
| { |
| int lmc; |
| int num_lmcs = cvmx_dram_get_num_lmc(priv); |
| |
| for (lmc = 0; lmc < num_lmcs; lmc++) |
| cvmx_dbi_switchover_interface(priv, lmc); |
| } |