blob: e5fedb395192895da9094b97c3c21919ba6a3a6c [file] [log] [blame]
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
#include <div64.h>
/* Set block count limit because of 16 bit register limit on some hardware*/
#ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
#define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
#endif
static struct list_head mmc_devices;
static int cur_dev_num = -1;
int __board_mmc_getcd(u8 *cd, struct mmc *mmc) {
return -1;
}
int board_mmc_getcd(u8 *cd, struct mmc *mmc)__attribute__((weak,
alias("__board_mmc_getcd")));
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
#ifdef CONFIG_MMC_TRACE
int ret;
int i;
u8 *ptr;
printf("CMD_SEND:%d\n", cmd->cmdidx);
printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
printf("\t\tFLAG\t\t\t %d\n", cmd->flags);
ret = mmc->send_cmd(mmc, cmd, data);
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
cmd->response[0]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[1]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[2]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[3]);
printf("\n");
printf("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = &cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02X ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
cmd->response[0]);
break;
default:
printf("\t\tERROR MMC rsp not supported\n");
break;
}
return ret;
#else
return mmc->send_cmd(mmc, cmd, data);
#endif
}
int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
int err;
#ifdef CONFIG_MMC_TRACE
int status;
#endif
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
else if (cmd.response[0] & MMC_STATUS_RDY_FOR_DATA)
break;
udelay(1000);
if (cmd.response[0] & MMC_STATUS_MASK) {
printf("Status Error: 0x%08X\n", cmd.response[0]);
return COMM_ERR;
}
} while (timeout--);
#ifdef CONFIG_MMC_TRACE
status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
#endif
if (!timeout) {
printf("Timeout waiting card ready\n");
return TIMEOUT;
}
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
cmd.flags = 0;
return mmc_send_cmd(mmc, &cmd, NULL);
}
struct mmc *find_mmc_device(int dev_num)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->block_dev.dev == dev_num)
return m;
}
printf("MMC Device %d not found\n", dev_num);
return NULL;
}
static ulong mmc_erase_t(struct mmc *mmc, ulong start, lbaint_t blkcnt)
{
struct mmc_cmd cmd;
ulong end;
int err, start_cmd, end_cmd;
if (mmc->high_capacity)
end = start + blkcnt - 1;
else {
end = (start + blkcnt - 1) * mmc->write_bl_len;
start *= mmc->write_bl_len;
}
if (IS_SD(mmc)) {
start_cmd = SD_CMD_ERASE_WR_BLK_START;
end_cmd = SD_CMD_ERASE_WR_BLK_END;
} else {
start_cmd = MMC_CMD_ERASE_GROUP_START;
end_cmd = MMC_CMD_ERASE_GROUP_END;
}
cmd.cmdidx = start_cmd;
cmd.cmdarg = start;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
cmd.cmdidx = end_cmd;
cmd.cmdarg = end;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
cmd.cmdidx = MMC_CMD_ERASE;
cmd.cmdarg = SECURE_ERASE;
cmd.resp_type = MMC_RSP_R1b;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
return 0;
err_out:
puts("mmc erase failed\n");
return err;
}
static unsigned long
mmc_berase(int dev_num, unsigned long start, lbaint_t blkcnt)
{
int err = 0;
struct mmc *mmc = find_mmc_device(dev_num);
lbaint_t blk = 0, blk_r = 0;
if (!mmc)
return -1;
if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size))
printf("\n\nCaution! Your devices Erase group is 0x%x\n"
"The erase range would be change to 0x%lx~0x%lx\n\n",
mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1),
((start + blkcnt + mmc->erase_grp_size)
& ~(mmc->erase_grp_size - 1)) - 1);
while (blk < blkcnt) {
blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ?
mmc->erase_grp_size : (blkcnt - blk);
err = mmc_erase_t(mmc, start + blk, blk_r);
if (err)
break;
blk += blk_r;
}
return blk;
}
static ulong
mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src)
{
struct mmc_cmd cmd;
struct mmc_data data;
int timeout = 1000;
if ((start + blkcnt) > mmc->block_dev.lba) {
printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
start + blkcnt, mmc->block_dev.lba);
return 0;
}
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->write_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.src = src;
data.blocks = blkcnt;
data.blocksize = mmc->write_bl_len;
data.flags = MMC_DATA_WRITE;
if (mmc_send_cmd(mmc, &cmd, &data)) {
printf("mmc write failed\n");
return 0;
}
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
*/
if (!mmc_host_is_spi(mmc) && blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
printf("mmc fail to send stop cmd\n");
return 0;
}
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
}
return blkcnt;
}
static ulong
mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
{
lbaint_t cur, blocks_todo = blkcnt;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return 0;
if (mmc_set_blocklen(mmc, mmc->write_bl_len))
return 0;
do {
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if(mmc_write_blocks(mmc, start, cur, src) != cur)
return 0;
blocks_todo -= cur;
start += cur;
src += cur * mmc->write_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
int mmc_read_blocks(struct mmc *mmc, void *dst, ulong start, lbaint_t blkcnt)
{
struct mmc_cmd cmd;
struct mmc_data data;
int timeout = 1000;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data))
return 0;
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
printf("mmc fail to send stop cmd\n");
return 0;
}
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
}
return blkcnt;
}
static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
{
lbaint_t cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return 0;
if ((start + blkcnt) > mmc->block_dev.lba) {
printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
start + blkcnt, mmc->block_dev.lba);
return 0;
}
if (mmc_set_blocklen(mmc, mmc->read_bl_len))
return 0;
do {
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if(mmc_read_blocks(mmc, dst, start, cur) != cur)
return 0;
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
int mmc_go_idle(struct mmc* mmc)
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
int
sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
(mmc->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
int mmc_send_op_cond(struct mmc *mmc)
{
int timeout = 10000;
struct mmc_cmd cmd;
int err;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
do {
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = (mmc_host_is_spi(mmc) ? 0 :
(mmc->voltages &
(cmd.response[0] & OCR_VOLTAGE_MASK)) |
(cmd.response[0] & OCR_ACCESS_MODE));
if (mmc->host_caps & MMC_MODE_HC)
cmd.cmdarg |= OCR_HCS;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while (!(cmd.response[0] & OCR_BUSY) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->version = MMC_VERSION_UNKNOWN;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
data.dest = ext_csd;
data.blocks = 1;
data.blocksize = 512;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
struct mmc_cmd cmd;
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
cmd.flags = 0;
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
return ret;
}
int mmc_change_freq(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
char cardtype;
int err;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
mmc->card_caps |= MMC_MODE_4BIT;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
cardtype = ext_csd[196] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
if (!ext_csd[185])
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & MMC_HS_52MHZ)
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
else
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
int mmc_switch_part(int dev_num, unsigned int part_num)
{
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return -1;
return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK));
}
int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
cmd.flags = 0;
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
int sd_change_freq(struct mmc *mmc)
{
int err;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
if (err)
return err;
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
static const int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
static const int multipliers[] = {
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
void mmc_set_ios(struct mmc *mmc)
{
mmc->set_ios(mmc);
}
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->f_max)
clock = mmc->f_max;
if (clock < mmc->f_min)
clock = mmc->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
int mmc_startup(struct mmc *mmc)
{
int err;
uint mult, freq;
u64 cmult, csize, capacity;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
int timeout = 1000;
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
#endif
/* Put the Card in Identify Mode */
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
if (err)
return err;
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->tran_speed = freq * mult;
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity = (csize + 1) << (cmult + 2);
mmc->capacity *= mmc->read_bl_len;
if (mmc->read_bl_len > 512)
mmc->read_bl_len = 512;
if (mmc->write_bl_len > 512)
mmc->write_bl_len = 512;
/* Select the card, and put it into Transfer Mode */
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
/*
* For SD, its erase group is always one sector
*/
mmc->erase_grp_size = 1;
mmc->part_config = MMCPART_NOAVAILABLE;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err & (ext_csd[192] >= 2)) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = ext_csd[212] << 0 | ext_csd[213] << 8 |
ext_csd[214] << 16 | ext_csd[215] << 24;
capacity *= 512;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity = capacity;
}
/*
* Check whether GROUP_DEF is set, if yes, read out
* group size from ext_csd directly, or calculate
* the group size from the csd value.
*/
if (ext_csd[175])
mmc->erase_grp_size = ext_csd[224] * 512 * 1024;
else {
int erase_gsz, erase_gmul;
erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
mmc->erase_grp_size = (erase_gsz + 1)
* (erase_gmul + 1);
}
/* store the partition info of emmc */
if (ext_csd[160] & PART_SUPPORT)
mmc->part_config = ext_csd[179];
}
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err)
return err;
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->host_caps;
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
mmc_set_clock(mmc, 50000000);
else
mmc_set_clock(mmc, 25000000);
} else {
if (mmc->card_caps & MMC_MODE_4BIT) {
/* Set the card to use 4 bit*/
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_4);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
} else if (mmc->card_caps & MMC_MODE_8BIT) {
/* Set the card to use 8 bit*/
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_8);
if (err)
return err;
mmc_set_bus_width(mmc, 8);
}
if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
mmc_set_clock(mmc, 52000000);
else
mmc_set_clock(mmc, 26000000);
} else
mmc_set_clock(mmc, 20000000);
}
/* fill in device description */
mmc->block_dev.lun = 0;
mmc->block_dev.type = 0;
mmc->block_dev.blksz = mmc->read_bl_len;
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8,
(mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28,
(mmc->cid[2] >> 24) & 0xf);
init_part(&mmc->block_dev);
return 0;
}
int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
int mmc_register(struct mmc *mmc)
{
/* Setup the universal parts of the block interface just once */
mmc->block_dev.if_type = IF_TYPE_MMC;
mmc->block_dev.dev = cur_dev_num++;
mmc->block_dev.removable = 1;
mmc->block_dev.block_read = mmc_bread;
mmc->block_dev.block_write = mmc_bwrite;
mmc->block_dev.block_erase = mmc_berase;
if (!mmc->b_max)
mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
INIT_LIST_HEAD (&mmc->link);
list_add_tail (&mmc->link, &mmc_devices);
return 0;
}
#ifdef CONFIG_PARTITIONS
block_dev_desc_t *mmc_get_dev(int dev)
{
struct mmc *mmc = find_mmc_device(dev);
return mmc ? &mmc->block_dev : NULL;
}
#endif
int mmc_init(struct mmc *mmc)
{
int err;
if (mmc->has_init)
return 0;
err = mmc->init(mmc);
if (err)
return err;
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err)
return err;
/* The internal partition reset to user partition(0) at every CMD0*/
mmc->part_num = 0;
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == TIMEOUT) {
err = mmc_send_op_cond(mmc);
if (err) {
printf("Card did not respond to voltage select!\n");
return UNUSABLE_ERR;
}
}
err = mmc_startup(mmc);
if (err)
mmc->has_init = 0;
else
mmc->has_init = 1;
return err;
}
/*
* CPU and board-specific MMC initializations. Aliased function
* signals caller to move on
*/
static int __def_mmc_init(bd_t *bis)
{
return -1;
}
int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
void print_mmc_devices(char separator)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
printf("%s: %d", m->name, m->block_dev.dev);
if (entry->next != &mmc_devices)
printf("%c ", separator);
}
printf("\n");
}
int get_mmc_num(void)
{
return cur_dev_num;
}
int mmc_initialize(bd_t *bis)
{
INIT_LIST_HEAD (&mmc_devices);
cur_dev_num = 0;
if (board_mmc_init(bis) < 0)
cpu_mmc_init(bis);
print_mmc_devices(',');
return 0;
}