| /*------------------------------------------------------------------------- |
| * Filename: mini_inflate.c |
| * Version: $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $ |
| * Copyright: Copyright (C) 2001, Russ Dill |
| * Author: Russ Dill <Russ.Dill@asu.edu> |
| * Description: Mini inflate implementation (RFC 1951) |
| *-----------------------------------------------------------------------*/ |
| /* |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| #include <config.h> |
| |
| #if (CONFIG_COMMANDS & CFG_CMD_JFFS2) |
| |
| #include <jffs2/mini_inflate.h> |
| |
| /* The order that the code lengths in section 3.2.7 are in */ |
| static unsigned char huffman_order[] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, |
| 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
| |
| inline void cramfs_memset(int *s, const int c, size n) |
| { |
| n--; |
| for (;n > 0; n--) s[n] = c; |
| s[0] = c; |
| } |
| |
| /* associate a stream with a block of data and reset the stream */ |
| static void init_stream(struct bitstream *stream, unsigned char *data, |
| void *(*inflate_memcpy)(void *, const void *, size)) |
| { |
| stream->error = NO_ERROR; |
| stream->memcpy = inflate_memcpy; |
| stream->decoded = 0; |
| stream->data = data; |
| stream->bit = 0; /* The first bit of the stream is the lsb of the |
| * first byte */ |
| |
| /* really sorry about all this initialization, think of a better way, |
| * let me know and it will get cleaned up */ |
| stream->codes.bits = 8; |
| stream->codes.num_symbols = 19; |
| stream->codes.lengths = stream->code_lengths; |
| stream->codes.symbols = stream->code_symbols; |
| stream->codes.count = stream->code_count; |
| stream->codes.first = stream->code_first; |
| stream->codes.pos = stream->code_pos; |
| |
| stream->lengths.bits = 16; |
| stream->lengths.num_symbols = 288; |
| stream->lengths.lengths = stream->length_lengths; |
| stream->lengths.symbols = stream->length_symbols; |
| stream->lengths.count = stream->length_count; |
| stream->lengths.first = stream->length_first; |
| stream->lengths.pos = stream->length_pos; |
| |
| stream->distance.bits = 16; |
| stream->distance.num_symbols = 32; |
| stream->distance.lengths = stream->distance_lengths; |
| stream->distance.symbols = stream->distance_symbols; |
| stream->distance.count = stream->distance_count; |
| stream->distance.first = stream->distance_first; |
| stream->distance.pos = stream->distance_pos; |
| |
| } |
| |
| /* pull 'bits' bits out of the stream. The last bit pulled it returned as the |
| * msb. (section 3.1.1) |
| */ |
| inline unsigned long pull_bits(struct bitstream *stream, |
| const unsigned int bits) |
| { |
| unsigned long ret; |
| int i; |
| |
| ret = 0; |
| for (i = 0; i < bits; i++) { |
| ret += ((*(stream->data) >> stream->bit) & 1) << i; |
| |
| /* if, before incrementing, we are on bit 7, |
| * go to the lsb of the next byte */ |
| if (stream->bit++ == 7) { |
| stream->bit = 0; |
| stream->data++; |
| } |
| } |
| return ret; |
| } |
| |
| inline int pull_bit(struct bitstream *stream) |
| { |
| int ret = ((*(stream->data) >> stream->bit) & 1); |
| if (stream->bit++ == 7) { |
| stream->bit = 0; |
| stream->data++; |
| } |
| return ret; |
| } |
| |
| /* discard bits up to the next whole byte */ |
| static void discard_bits(struct bitstream *stream) |
| { |
| if (stream->bit != 0) { |
| stream->bit = 0; |
| stream->data++; |
| } |
| } |
| |
| /* No decompression, the data is all literals (section 3.2.4) */ |
| static void decompress_none(struct bitstream *stream, unsigned char *dest) |
| { |
| unsigned int length; |
| |
| discard_bits(stream); |
| length = *(stream->data++); |
| length += *(stream->data++) << 8; |
| pull_bits(stream, 16); /* throw away the inverse of the size */ |
| |
| stream->decoded += length; |
| stream->memcpy(dest, stream->data, length); |
| stream->data += length; |
| } |
| |
| /* Read in a symbol from the stream (section 3.2.2) */ |
| static int read_symbol(struct bitstream *stream, struct huffman_set *set) |
| { |
| int bits = 0; |
| int code = 0; |
| while (!(set->count[bits] && code < set->first[bits] + |
| set->count[bits])) { |
| code = (code << 1) + pull_bit(stream); |
| if (++bits > set->bits) { |
| /* error decoding (corrupted data?) */ |
| stream->error = CODE_NOT_FOUND; |
| return -1; |
| } |
| } |
| return set->symbols[set->pos[bits] + code - set->first[bits]]; |
| } |
| |
| /* decompress a stream of data encoded with the passed length and distance |
| * huffman codes */ |
| static void decompress_huffman(struct bitstream *stream, unsigned char *dest) |
| { |
| struct huffman_set *lengths = &(stream->lengths); |
| struct huffman_set *distance = &(stream->distance); |
| |
| int symbol, length, dist, i; |
| |
| do { |
| if ((symbol = read_symbol(stream, lengths)) < 0) return; |
| if (symbol < 256) { |
| *(dest++) = symbol; /* symbol is a literal */ |
| stream->decoded++; |
| } else if (symbol > 256) { |
| /* Determine the length of the repitition |
| * (section 3.2.5) */ |
| if (symbol < 265) length = symbol - 254; |
| else if (symbol == 285) length = 258; |
| else { |
| length = pull_bits(stream, (symbol - 261) >> 2); |
| length += (4 << ((symbol - 261) >> 2)) + 3; |
| length += ((symbol - 1) % 4) << |
| ((symbol - 261) >> 2); |
| } |
| |
| /* Determine how far back to go */ |
| if ((symbol = read_symbol(stream, distance)) < 0) |
| return; |
| if (symbol < 4) dist = symbol + 1; |
| else { |
| dist = pull_bits(stream, (symbol - 2) >> 1); |
| dist += (2 << ((symbol - 2) >> 1)) + 1; |
| dist += (symbol % 2) << ((symbol - 2) >> 1); |
| } |
| stream->decoded += length; |
| for (i = 0; i < length; i++) { |
| *dest = dest[-dist]; |
| dest++; |
| } |
| } |
| } while (symbol != 256); /* 256 is the end of the data block */ |
| } |
| |
| /* Fill the lookup tables (section 3.2.2) */ |
| static void fill_code_tables(struct huffman_set *set) |
| { |
| int code = 0, i, length; |
| |
| /* fill in the first code of each bit length, and the pos pointer */ |
| set->pos[0] = 0; |
| for (i = 1; i < set->bits; i++) { |
| code = (code + set->count[i - 1]) << 1; |
| set->first[i] = code; |
| set->pos[i] = set->pos[i - 1] + set->count[i - 1]; |
| } |
| |
| /* Fill in the table of symbols in order of their huffman code */ |
| for (i = 0; i < set->num_symbols; i++) { |
| if ((length = set->lengths[i])) |
| set->symbols[set->pos[length]++] = i; |
| } |
| |
| /* reset the pos pointer */ |
| for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i]; |
| } |
| |
| static void init_code_tables(struct huffman_set *set) |
| { |
| cramfs_memset(set->lengths, 0, set->num_symbols); |
| cramfs_memset(set->count, 0, set->bits); |
| cramfs_memset(set->first, 0, set->bits); |
| } |
| |
| /* read in the huffman codes for dynamic decoding (section 3.2.7) */ |
| static void decompress_dynamic(struct bitstream *stream, unsigned char *dest) |
| { |
| /* I tried my best to minimize the memory footprint here, while still |
| * keeping up performance. I really dislike the _lengths[] tables, but |
| * I see no way of eliminating them without a sizable performance |
| * impact. The first struct table keeps track of stats on each bit |
| * length. The _length table keeps a record of the bit length of each |
| * symbol. The _symbols table is for looking up symbols by the huffman |
| * code (the pos element points to the first place in the symbol table |
| * where that bit length occurs). I also hate the initization of these |
| * structs, if someone knows how to compact these, lemme know. */ |
| |
| struct huffman_set *codes = &(stream->codes); |
| struct huffman_set *lengths = &(stream->lengths); |
| struct huffman_set *distance = &(stream->distance); |
| |
| int hlit = pull_bits(stream, 5) + 257; |
| int hdist = pull_bits(stream, 5) + 1; |
| int hclen = pull_bits(stream, 4) + 4; |
| int length, curr_code, symbol, i, last_code; |
| |
| last_code = 0; |
| |
| init_code_tables(codes); |
| init_code_tables(lengths); |
| init_code_tables(distance); |
| |
| /* fill in the count of each bit length' as well as the lengths |
| * table */ |
| for (i = 0; i < hclen; i++) { |
| length = pull_bits(stream, 3); |
| codes->lengths[huffman_order[i]] = length; |
| if (length) codes->count[length]++; |
| |
| } |
| fill_code_tables(codes); |
| |
| /* Do the same for the length codes, being carefull of wrap through |
| * to the distance table */ |
| curr_code = 0; |
| while (curr_code < hlit) { |
| if ((symbol = read_symbol(stream, codes)) < 0) return; |
| if (symbol == 0) { |
| curr_code++; |
| last_code = 0; |
| } else if (symbol < 16) { /* Literal length */ |
| lengths->lengths[curr_code] = last_code = symbol; |
| lengths->count[symbol]++; |
| curr_code++; |
| } else if (symbol == 16) { /* repeat the last symbol 3 - 6 |
| * times */ |
| length = 3 + pull_bits(stream, 2); |
| for (;length; length--, curr_code++) |
| if (curr_code < hlit) { |
| lengths->lengths[curr_code] = |
| last_code; |
| lengths->count[last_code]++; |
| } else { /* wrap to the distance table */ |
| distance->lengths[curr_code - hlit] = |
| last_code; |
| distance->count[last_code]++; |
| } |
| } else if (symbol == 17) { /* repeat a bit length 0 */ |
| curr_code += 3 + pull_bits(stream, 3); |
| last_code = 0; |
| } else { /* same, but more times */ |
| curr_code += 11 + pull_bits(stream, 7); |
| last_code = 0; |
| } |
| } |
| fill_code_tables(lengths); |
| |
| /* Fill the distance table, don't need to worry about wrapthrough |
| * here */ |
| curr_code -= hlit; |
| while (curr_code < hdist) { |
| if ((symbol = read_symbol(stream, codes)) < 0) return; |
| if (symbol == 0) { |
| curr_code++; |
| last_code = 0; |
| } else if (symbol < 16) { |
| distance->lengths[curr_code] = last_code = symbol; |
| distance->count[symbol]++; |
| curr_code++; |
| } else if (symbol == 16) { |
| length = 3 + pull_bits(stream, 2); |
| for (;length; length--, curr_code++) { |
| distance->lengths[curr_code] = |
| last_code; |
| distance->count[last_code]++; |
| } |
| } else if (symbol == 17) { |
| curr_code += 3 + pull_bits(stream, 3); |
| last_code = 0; |
| } else { |
| curr_code += 11 + pull_bits(stream, 7); |
| last_code = 0; |
| } |
| } |
| fill_code_tables(distance); |
| |
| decompress_huffman(stream, dest); |
| } |
| |
| /* fill in the length and distance huffman codes for fixed encoding |
| * (section 3.2.6) */ |
| static void decompress_fixed(struct bitstream *stream, unsigned char *dest) |
| { |
| /* let gcc fill in the initial values */ |
| struct huffman_set *lengths = &(stream->lengths); |
| struct huffman_set *distance = &(stream->distance); |
| |
| cramfs_memset(lengths->count, 0, 16); |
| cramfs_memset(lengths->first, 0, 16); |
| cramfs_memset(lengths->lengths, 8, 144); |
| cramfs_memset(lengths->lengths + 144, 9, 112); |
| cramfs_memset(lengths->lengths + 256, 7, 24); |
| cramfs_memset(lengths->lengths + 280, 8, 8); |
| lengths->count[7] = 24; |
| lengths->count[8] = 152; |
| lengths->count[9] = 112; |
| |
| cramfs_memset(distance->count, 0, 16); |
| cramfs_memset(distance->first, 0, 16); |
| cramfs_memset(distance->lengths, 5, 32); |
| distance->count[5] = 32; |
| |
| |
| fill_code_tables(lengths); |
| fill_code_tables(distance); |
| |
| |
| decompress_huffman(stream, dest); |
| } |
| |
| /* returns the number of bytes decoded, < 0 if there was an error. Note that |
| * this function assumes that the block starts on a byte boundry |
| * (non-compliant, but I don't see where this would happen). section 3.2.3 */ |
| long decompress_block(unsigned char *dest, unsigned char *source, |
| void *(*inflate_memcpy)(void *, const void *, size)) |
| { |
| int bfinal, btype; |
| struct bitstream stream; |
| |
| init_stream(&stream, source, inflate_memcpy); |
| do { |
| bfinal = pull_bit(&stream); |
| btype = pull_bits(&stream, 2); |
| if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded); |
| else if (btype == DYNAMIC_COMP) |
| decompress_dynamic(&stream, dest + stream.decoded); |
| else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded); |
| else stream.error = COMP_UNKNOWN; |
| } while (!bfinal && !stream.error); |
| |
| #if 0 |
| putstr("decompress_block start\r\n"); |
| putLabeledWord("stream.error = ",stream.error); |
| putLabeledWord("stream.decoded = ",stream.decoded); |
| putLabeledWord("dest = ",dest); |
| putstr("decompress_block end\r\n"); |
| #endif |
| return stream.error ? -stream.error : stream.decoded; |
| } |
| |
| #endif /* CFG_CMD_JFFS2 */ |