| /* |
| * cpu/ppc4xx/40x_spd_sdram.c |
| * This SPD SDRAM detection code supports IBM/AMCC PPC44x cpu with a |
| * SDRAM controller. Those are all current 405 PPC's. |
| * |
| * (C) Copyright 2001 |
| * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com |
| * |
| * Based on code by: |
| * |
| * Kenneth Johansson ,Ericsson AB. |
| * kenneth.johansson@etx.ericsson.se |
| * |
| * hacked up by bill hunter. fixed so we could run before |
| * serial_init and console_init. previous version avoided this by |
| * running out of cache memory during serial/console init, then running |
| * this code later. |
| * |
| * (C) Copyright 2002 |
| * Jun Gu, Artesyn Technology, jung@artesyncp.com |
| * Support for AMCC 440 based on OpenBIOS draminit.c from IBM. |
| * |
| * (C) Copyright 2005 |
| * Stefan Roese, DENX Software Engineering, sr@denx.de. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/processor.h> |
| #include <i2c.h> |
| #include <ppc4xx.h> |
| |
| #if defined(CONFIG_SPD_EEPROM) && !defined(CONFIG_440) |
| |
| /* |
| * Set default values |
| */ |
| #ifndef CFG_I2C_SPEED |
| #define CFG_I2C_SPEED 50000 |
| #endif |
| |
| #ifndef CFG_I2C_SLAVE |
| #define CFG_I2C_SLAVE 0xFE |
| #endif |
| |
| #define ONE_BILLION 1000000000 |
| |
| #define SDRAM0_CFG_DCE 0x80000000 |
| #define SDRAM0_CFG_SRE 0x40000000 |
| #define SDRAM0_CFG_PME 0x20000000 |
| #define SDRAM0_CFG_MEMCHK 0x10000000 |
| #define SDRAM0_CFG_REGEN 0x08000000 |
| #define SDRAM0_CFG_ECCDD 0x00400000 |
| #define SDRAM0_CFG_EMDULR 0x00200000 |
| #define SDRAM0_CFG_DRW_SHIFT (31-6) |
| #define SDRAM0_CFG_BRPF_SHIFT (31-8) |
| |
| #define SDRAM0_TR_CASL_SHIFT (31-8) |
| #define SDRAM0_TR_PTA_SHIFT (31-13) |
| #define SDRAM0_TR_CTP_SHIFT (31-15) |
| #define SDRAM0_TR_LDF_SHIFT (31-17) |
| #define SDRAM0_TR_RFTA_SHIFT (31-29) |
| #define SDRAM0_TR_RCD_SHIFT (31-31) |
| |
| #define SDRAM0_RTR_SHIFT (31-15) |
| #define SDRAM0_ECCCFG_SHIFT (31-11) |
| |
| /* SDRAM0_CFG enable macro */ |
| #define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT ) |
| |
| #define SDRAM0_BXCR_SZ_MASK 0x000e0000 |
| #define SDRAM0_BXCR_AM_MASK 0x0000e000 |
| |
| #define SDRAM0_BXCR_SZ_SHIFT (31-14) |
| #define SDRAM0_BXCR_AM_SHIFT (31-18) |
| |
| #define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) ) |
| #define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) ) |
| |
| #ifdef CONFIG_SPDDRAM_SILENT |
| # define SPD_ERR(x) do { return 0; } while (0) |
| #else |
| # define SPD_ERR(x) do { printf(x); return(0); } while (0) |
| #endif |
| |
| #define sdram_HZ_to_ns(hertz) (1000000000/(hertz)) |
| |
| /* function prototypes */ |
| int spd_read(uint addr); |
| |
| |
| /* |
| * This function is reading data from the DIMM module EEPROM over the SPD bus |
| * and uses that to program the sdram controller. |
| * |
| * This works on boards that has the same schematics that the AMCC walnut has. |
| * |
| * Input: null for default I2C spd functions or a pointer to a custom function |
| * returning spd_data. |
| */ |
| |
| long int spd_sdram(int(read_spd)(uint addr)) |
| { |
| int tmp,row,col; |
| int total_size,bank_size,bank_code; |
| int ecc_on; |
| int mode; |
| int bank_cnt; |
| |
| int sdram0_pmit=0x07c00000; |
| #ifndef CONFIG_405EP /* not on PPC405EP */ |
| int sdram0_besr0=-1; |
| int sdram0_besr1=-1; |
| int sdram0_eccesr=-1; |
| #endif |
| int sdram0_ecccfg; |
| |
| int sdram0_rtr=0; |
| int sdram0_tr=0; |
| |
| int sdram0_b0cr; |
| int sdram0_b1cr; |
| int sdram0_b2cr; |
| int sdram0_b3cr; |
| |
| int sdram0_cfg=0; |
| |
| int t_rp; |
| int t_rcd; |
| int t_ras; |
| int t_rc; |
| int min_cas; |
| |
| PPC4xx_SYS_INFO sys_info; |
| unsigned long bus_period_x_10; |
| |
| /* |
| * get the board info |
| */ |
| get_sys_info(&sys_info); |
| bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); |
| |
| if (read_spd == 0){ |
| read_spd=spd_read; |
| /* |
| * Make sure I2C controller is initialized |
| * before continuing. |
| */ |
| i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| } |
| |
| /* Make shure we are using SDRAM */ |
| if (read_spd(2) != 0x04) { |
| SPD_ERR("SDRAM - non SDRAM memory module found\n"); |
| } |
| |
| /* ------------------------------------------------------------------ |
| * configure memory timing register |
| * |
| * data from DIMM: |
| * 27 IN Row Precharge Time ( t RP) |
| * 29 MIN RAS to CAS Delay ( t RCD) |
| * 127 Component and Clock Detail ,clk0-clk3, junction temp, CAS |
| * -------------------------------------------------------------------*/ |
| |
| /* |
| * first figure out which cas latency mode to use |
| * use the min supported mode |
| */ |
| |
| tmp = read_spd(127) & 0x6; |
| if (tmp == 0x02) { /* only cas = 2 supported */ |
| min_cas = 2; |
| /* t_ck = read_spd(9); */ |
| /* t_ac = read_spd(10); */ |
| } else if (tmp == 0x04) { /* only cas = 3 supported */ |
| min_cas = 3; |
| /* t_ck = read_spd(9); */ |
| /* t_ac = read_spd(10); */ |
| } else if (tmp == 0x06) { /* 2,3 supported, so use 2 */ |
| min_cas = 2; |
| /* t_ck = read_spd(23); */ |
| /* t_ac = read_spd(24); */ |
| } else { |
| SPD_ERR("SDRAM - unsupported CAS latency \n"); |
| } |
| |
| /* get some timing values, t_rp,t_rcd,t_ras,t_rc |
| */ |
| t_rp = read_spd(27); |
| t_rcd = read_spd(29); |
| t_ras = read_spd(30); |
| t_rc = t_ras + t_rp; |
| |
| /* The following timing calcs subtract 1 before deviding. |
| * this has effect of using ceiling instead of floor rounding, |
| * and also subtracting 1 to convert number to reg value |
| */ |
| /* set up CASL */ |
| sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT; |
| /* set up PTA */ |
| sdram0_tr |= ((((t_rp - 1) * 10)/bus_period_x_10) & 0x3) << SDRAM0_TR_PTA_SHIFT; |
| /* set up CTP */ |
| tmp = (((t_rc - t_rcd - t_rp -1) * 10) / bus_period_x_10) & 0x3; |
| if (tmp < 1) |
| tmp = 1; |
| sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT; |
| /* set LDF = 2 cycles, reg value = 1 */ |
| sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT; |
| /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */ |
| tmp = (((t_rc - 1) * 10) / bus_period_x_10) - 3; |
| if (tmp < 0) |
| tmp = 0; |
| if (tmp > 6) |
| tmp = 6; |
| sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT; |
| /* set RCD = t_rcd/bus_period*/ |
| sdram0_tr |= ((((t_rcd - 1) * 10) / bus_period_x_10) &0x3) << SDRAM0_TR_RCD_SHIFT ; |
| |
| |
| /*------------------------------------------------------------------ |
| * configure RTR register |
| * -------------------------------------------------------------------*/ |
| row = read_spd(3); |
| col = read_spd(4); |
| tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */ |
| switch (tmp) { |
| case 0x00: |
| tmp = 15625; |
| break; |
| case 0x01: |
| tmp = 15625 / 4; |
| break; |
| case 0x02: |
| tmp = 15625 / 2; |
| break; |
| case 0x03: |
| tmp = 15625 * 2; |
| break; |
| case 0x04: |
| tmp = 15625 * 4; |
| break; |
| case 0x05: |
| tmp = 15625 * 8; |
| break; |
| default: |
| SPD_ERR("SDRAM - Bad refresh period \n"); |
| } |
| /* convert from nsec to bus cycles */ |
| tmp = (tmp * 10) / bus_period_x_10; |
| sdram0_rtr = (tmp & 0x3ff8) << SDRAM0_RTR_SHIFT; |
| |
| /*------------------------------------------------------------------ |
| * determine the number of banks used |
| * -------------------------------------------------------------------*/ |
| /* byte 7:6 is module data width */ |
| if (read_spd(7) != 0) |
| SPD_ERR("SDRAM - unsupported module width\n"); |
| tmp = read_spd(6); |
| if (tmp < 32) |
| SPD_ERR("SDRAM - unsupported module width\n"); |
| else if (tmp < 64) |
| bank_cnt = 1; /* one bank per sdram side */ |
| else if (tmp < 73) |
| bank_cnt = 2; /* need two banks per side */ |
| else if (tmp < 161) |
| bank_cnt = 4; /* need four banks per side */ |
| else |
| SPD_ERR("SDRAM - unsupported module width\n"); |
| |
| /* byte 5 is the module row count (refered to as dimm "sides") */ |
| tmp = read_spd(5); |
| if (tmp == 1) |
| ; |
| else if (tmp==2) |
| bank_cnt *= 2; |
| else if (tmp==4) |
| bank_cnt *= 4; |
| else |
| bank_cnt = 8; /* 8 is an error code */ |
| |
| if (bank_cnt > 4) /* we only have 4 banks to work with */ |
| SPD_ERR("SDRAM - unsupported module rows for this width\n"); |
| |
| /* now check for ECC ability of module. We only support ECC |
| * on 32 bit wide devices with 8 bit ECC. |
| */ |
| if ((read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8)) { |
| sdram0_ecccfg = 0xf << SDRAM0_ECCCFG_SHIFT; |
| ecc_on = 1; |
| } else { |
| sdram0_ecccfg = 0; |
| ecc_on = 0; |
| } |
| |
| /*------------------------------------------------------------------ |
| * calculate total size |
| * -------------------------------------------------------------------*/ |
| /* calculate total size and do sanity check */ |
| tmp = read_spd(31); |
| total_size = 1 << 22; /* total_size = 4MB */ |
| /* now multiply 4M by the smallest device row density */ |
| /* note that we don't support asymetric rows */ |
| while (((tmp & 0x0001) == 0) && (tmp != 0)) { |
| total_size = total_size << 1; |
| tmp = tmp >> 1; |
| } |
| total_size *= read_spd(5); /* mult by module rows (dimm sides) */ |
| |
| /*------------------------------------------------------------------ |
| * map rows * cols * banks to a mode |
| * -------------------------------------------------------------------*/ |
| |
| switch (row) { |
| case 11: |
| switch (col) { |
| case 8: |
| mode=4; /* mode 5 */ |
| break; |
| case 9: |
| case 10: |
| mode=0; /* mode 1 */ |
| break; |
| default: |
| SPD_ERR("SDRAM - unsupported mode\n"); |
| } |
| break; |
| case 12: |
| switch (col) { |
| case 8: |
| mode=3; /* mode 4 */ |
| break; |
| case 9: |
| case 10: |
| mode=1; /* mode 2 */ |
| break; |
| default: |
| SPD_ERR("SDRAM - unsupported mode\n"); |
| } |
| break; |
| case 13: |
| switch (col) { |
| case 8: |
| mode=5; /* mode 6 */ |
| break; |
| case 9: |
| case 10: |
| if (read_spd(17) == 2) |
| mode = 6; /* mode 7 */ |
| else |
| mode = 2; /* mode 3 */ |
| break; |
| case 11: |
| mode = 2; /* mode 3 */ |
| break; |
| default: |
| SPD_ERR("SDRAM - unsupported mode\n"); |
| } |
| break; |
| default: |
| SPD_ERR("SDRAM - unsupported mode\n"); |
| } |
| |
| /*------------------------------------------------------------------ |
| * using the calculated values, compute the bank |
| * config register values. |
| * -------------------------------------------------------------------*/ |
| sdram0_b1cr = 0; |
| sdram0_b2cr = 0; |
| sdram0_b3cr = 0; |
| |
| /* compute the size of each bank */ |
| bank_size = total_size / bank_cnt; |
| /* convert bank size to bank size code for ppc4xx |
| by takeing log2(bank_size) - 22 */ |
| tmp = bank_size; /* start with tmp = bank_size */ |
| bank_code = 0; /* and bank_code = 0 */ |
| while (tmp > 1) { /* this takes log2 of tmp */ |
| bank_code++; /* and stores result in bank_code */ |
| tmp = tmp >> 1; |
| } /* bank_code is now log2(bank_size) */ |
| bank_code -= 22; /* subtract 22 to get the code */ |
| |
| tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1; |
| sdram0_b0cr = (bank_size * 0) | tmp; |
| #ifndef CONFIG_405EP /* not on PPC405EP */ |
| if (bank_cnt > 1) |
| sdram0_b2cr = (bank_size * 1) | tmp; |
| if (bank_cnt > 2) |
| sdram0_b1cr = (bank_size * 2) | tmp; |
| if (bank_cnt > 3) |
| sdram0_b3cr = (bank_size * 3) | tmp; |
| #else |
| /* PPC405EP chip only supports two SDRAM banks */ |
| if (bank_cnt > 1) |
| sdram0_b1cr = (bank_size * 1) | tmp; |
| if (bank_cnt > 2) |
| total_size = 2 * bank_size; |
| #endif |
| |
| /* |
| * enable sdram controller DCE=1 |
| * enable burst read prefetch to 32 bytes BRPF=2 |
| * leave other functions off |
| */ |
| |
| /*------------------------------------------------------------------ |
| * now that we've done our calculations, we are ready to |
| * program all the registers. |
| * -------------------------------------------------------------------*/ |
| |
| #define mtsdram0(reg, data) mtdcr(memcfga,reg);mtdcr(memcfgd,data) |
| /* disable memcontroller so updates work */ |
| mtsdram0( mem_mcopt1, 0 ); |
| |
| #ifndef CONFIG_405EP /* not on PPC405EP */ |
| mtsdram0( mem_besra , sdram0_besr0 ); |
| mtsdram0( mem_besrb , sdram0_besr1 ); |
| mtsdram0( mem_ecccf , sdram0_ecccfg ); |
| mtsdram0( mem_eccerr, sdram0_eccesr ); |
| #endif |
| mtsdram0( mem_rtr , sdram0_rtr ); |
| mtsdram0( mem_pmit , sdram0_pmit ); |
| mtsdram0( mem_mb0cf , sdram0_b0cr ); |
| mtsdram0( mem_mb1cf , sdram0_b1cr ); |
| #ifndef CONFIG_405EP /* not on PPC405EP */ |
| mtsdram0( mem_mb2cf , sdram0_b2cr ); |
| mtsdram0( mem_mb3cf , sdram0_b3cr ); |
| #endif |
| mtsdram0( mem_sdtr1 , sdram0_tr ); |
| |
| /* SDRAM have a power on delay, 500 micro should do */ |
| udelay(500); |
| sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR; |
| if (ecc_on) |
| sdram0_cfg |= SDRAM0_CFG_MEMCHK; |
| mtsdram0(mem_mcopt1, sdram0_cfg); |
| |
| return (total_size); |
| } |
| |
| int spd_read(uint addr) |
| { |
| uchar data[2]; |
| |
| if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0) |
| return (int)data[0]; |
| else |
| return 0; |
| } |
| |
| #endif /* CONFIG_SPD_EEPROM */ |