| /* |
| * (C) Copyright 2000-2003 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * |
| * Copyright (C) 2004-2007 Freescale Semiconductor, Inc. |
| * TsiChung Liew (Tsi-Chung.Liew@freescale.com) |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| |
| #include <asm/immap.h> |
| |
| #ifndef CFG_FLASH_CFI |
| typedef unsigned char FLASH_PORT_WIDTH; |
| typedef volatile unsigned char FLASH_PORT_WIDTHV; |
| |
| #define FPW FLASH_PORT_WIDTH |
| #define FPWV FLASH_PORT_WIDTHV |
| |
| #define CFG_FLASH_CFI_WIDTH FLASH_CFI_8BIT |
| #define CFG_FLASH_NONCFI_WIDTH FLASH_CFI_8BIT |
| |
| /* Intel-compatible flash commands */ |
| #define INTEL_PROGRAM 0x00100010 |
| #define INTEL_ERASE 0x00200020 |
| #define INTEL_WRSETUP 0x00400040 |
| #define INTEL_CLEAR 0x00500050 |
| #define INTEL_LOCKBIT 0x00600060 |
| #define INTEL_PROTECT 0x00010001 |
| #define INTEL_STATUS 0x00700070 |
| #define INTEL_READID 0x00900090 |
| #define INTEL_CFIQRY 0x00980098 |
| #define INTEL_SUSERASE 0x00B000B0 |
| #define INTEL_PROTPROG 0x00C000C0 |
| #define INTEL_CONFIRM 0x00D000D0 |
| #define INTEL_WRBLK 0x00e800e8 |
| #define INTEL_RESET 0x00FF00FF |
| |
| /* Intel-compatible flash status bits */ |
| #define INTEL_FINISHED 0x00800080 |
| #define INTEL_OK 0x00800080 |
| #define INTEL_ERASESUS 0x00600060 |
| #define INTEL_WSM_SUS (INTEL_FINISHED | INTEL_ERASESUS) |
| |
| /* 28F160C3B CFI Data offset - This could vary */ |
| #define INTEL_CFI_MFG 0x00 /* Manufacturer ID */ |
| #define INTEL_CFI_PART 0x01 /* Product ID */ |
| #define INTEL_CFI_LOCK 0x02 /* */ |
| #define INTEL_CFI_TWPRG 0x1F /* Typical Single Word Program Timeout 2^n us */ |
| #define INTEL_CFI_MBUFW 0x20 /* Typical Max Buffer Write Timeout 2^n us */ |
| #define INTEL_CFI_TERB 0x21 /* Typical Block Erase Timeout 2^n ms */ |
| #define INTEL_CFI_MWPRG 0x23 /* Maximum Word program timeout 2^n us */ |
| #define INTEL_CFI_MERB 0x25 /* Maximum Block Erase Timeout 2^n s */ |
| #define INTEL_CFI_SIZE 0x27 /* Device size 2^n bytes */ |
| #define INTEL_CFI_CAP 0x28 |
| #define INTEL_CFI_WRBUF 0x2A |
| #define INTEL_CFI_BANK 0x2C /* Number of Bank */ |
| #define INTEL_CFI_BLK1A 0x2D /* Number of Blocks */ |
| #define INTEL_CFI_BLK1B 0x2E /* Number of Blocks */ |
| #define INTEL_CFI_SZ1A 0x2F /* Block Region Size */ |
| #define INTEL_CFI_SZ1B 0x30 |
| #define INTEL_CFI_BLK2A 0x31 |
| #define INTEL_CFI_BLK2B 0x32 |
| #define INTEL_CFI_SZ2A 0x33 |
| #define INTEL_CFI_SZ2B 0x34 |
| |
| #define FLASH_CYCLE1 0x0555 |
| #define FLASH_CYCLE2 0x0aaa |
| |
| #define WR_BLOCK 0x20 |
| |
| /* not in the flash.h yet */ |
| #define FLASH_28F64P30T 0x00B9 /* Intel 28F64P30T ( 64M) */ |
| #define FLASH_28F64P30B 0x00BA /* Intel 28F64P30B ( 64M) */ |
| #define FLASH_28F128P30T 0x00BB /* Intel 28F128P30T ( 128M = 8M x 16 ) */ |
| #define FLASH_28F128P30B 0x00BC /* Intel 28F128P30B ( 128M = 8M x 16 ) */ |
| #define FLASH_28F256P30T 0x00BD /* Intel 28F256P30T ( 256M = 16M x 16 ) */ |
| #define FLASH_28F256P30B 0x00BE /* Intel 28F256P30B ( 256M = 16M x 16 ) */ |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| #define STM_ID_M25P16 0x20152015 |
| #define FLASH_M25P16 0x0055 |
| #endif |
| |
| #define SYNC __asm__("nop") |
| |
| /*----------------------------------------------------------------------- |
| * Functions |
| */ |
| |
| ulong flash_get_size(FPWV * addr, flash_info_t * info); |
| int flash_get_offsets(ulong base, flash_info_t * info); |
| int flash_cmd_rd(volatile u16 * addr, int index); |
| int write_data(flash_info_t * info, ulong dest, FPW data); |
| int write_data_block(flash_info_t * info, ulong src, ulong dest); |
| int write_word_atm(flash_info_t * info, volatile u8 * dest, u16 data); |
| void inline spin_wheel(void); |
| void flash_sync_real_protect(flash_info_t * info); |
| uchar intel_sector_protected(flash_info_t * info, ushort sector); |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| int write_ser_data(flash_info_t * info, ulong dest, uchar * data, ulong cnt); |
| int serial_flash_read_status(int chipsel); |
| static int ser_flash_cs = 0; |
| #endif |
| |
| flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; |
| |
| ulong flash_init(void) |
| { |
| int i; |
| ulong size = 0; |
| ulong fbase = 0; |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| dspi_init(); |
| #endif |
| |
| for (i = 0; i < CFG_MAX_FLASH_BANKS; i++) { |
| memset(&flash_info[i], 0, sizeof(flash_info_t)); |
| |
| switch (i) { |
| case 0: |
| fbase = (ulong) CFG_FLASH0_BASE; |
| break; |
| case 1: |
| fbase = (ulong) CFG_FLASH1_BASE; |
| break; |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| case 2: |
| fbase = (ulong) CFG_FLASH2_BASE; |
| break; |
| #endif |
| } |
| |
| flash_get_size((FPWV *) fbase, &flash_info[i]); |
| flash_get_offsets((ulong) fbase, &flash_info[i]); |
| fbase += flash_info[i].size; |
| size += flash_info[i].size; |
| |
| /* get the h/w and s/w protection status in sync */ |
| flash_sync_real_protect(&flash_info[i]); |
| } |
| |
| /* Protect monitor and environment sectors */ |
| flash_protect(FLAG_PROTECT_SET, |
| CFG_MONITOR_BASE, |
| CFG_MONITOR_BASE + monitor_flash_len - 1, &flash_info[0]); |
| |
| return size; |
| } |
| |
| int flash_get_offsets(ulong base, flash_info_t * info) |
| { |
| int i, j, k; |
| int sectors, bs, banks; |
| |
| if ((info->flash_id & FLASH_VENDMASK) == FLASH_MAN_ATM) { |
| int sect[] = CFG_ATMEL_SECT; |
| int sectsz[] = CFG_ATMEL_SECTSZ; |
| |
| info->start[0] = base; |
| for (k = 0, i = 0; i < CFG_ATMEL_REGION; i++) { |
| for (j = 0; j < sect[i]; j++, k++) { |
| info->start[k + 1] = info->start[k] + sectsz[i]; |
| info->protect[k] = 0; |
| } |
| } |
| } |
| |
| if ((info->flash_id & FLASH_VENDMASK) == FLASH_MAN_INTEL) { |
| volatile u16 *addr16 = (volatile u16 *)base; |
| |
| *addr16 = (FPW) INTEL_RESET; /* restore read mode */ |
| *addr16 = (FPW) INTEL_READID; |
| |
| banks = addr16[INTEL_CFI_BANK] & 0xff; |
| |
| sectors = 0; |
| info->start[0] = base; |
| |
| for (k = 0, i = 0; i < banks; i++) { |
| /* Geometry y1 = y1 + 1, y2 = y2 + 1, CFI spec. |
| * To be exact, Z = [0x2f 0x30] (LE) * 256 bytes * [0x2D 0x2E] block count |
| * Z = [0x33 0x34] (LE) * 256 bytes * [0x31 0x32] block count |
| */ |
| bs = ((((addr16[INTEL_CFI_SZ1B + (i * 4)] & 0xff) << 8) |
| | (addr16[INTEL_CFI_SZ1A + (i * 4)] & 0xff)) * |
| 0x100); |
| sectors = |
| (addr16[INTEL_CFI_BLK1A + (i * 4)] & 0xff) + 1; |
| |
| for (j = 0; j < sectors; j++, k++) { |
| info->start[k + 1] = info->start[k] + bs; |
| } |
| } |
| |
| *addr16 = (FPW) INTEL_RESET; /* restore read mode */ |
| } |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| if ((info->flash_id & FLASH_VENDMASK) == FLASH_MAN_STM) { |
| info->start[0] = CFG_FLASH2_BASE; |
| for (k = 0, i = 0; i < CFG_STM_SECT; i++, k++) { |
| info->start[k + 1] = info->start[k] + CFG_STM_SECTSZ; |
| info->protect[k] = 0; |
| } |
| } |
| #endif |
| |
| return ERR_OK; |
| } |
| |
| void flash_print_info(flash_info_t * info) |
| { |
| int i; |
| |
| switch (info->flash_id & FLASH_VENDMASK) { |
| case FLASH_MAN_INTEL: |
| printf("INTEL "); |
| break; |
| case FLASH_MAN_ATM: |
| printf("ATMEL "); |
| break; |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| case FLASH_MAN_STM: |
| printf("ST "); |
| break; |
| #endif |
| default: |
| printf("Unknown Vendor "); |
| break; |
| } |
| |
| switch (info->flash_id & FLASH_TYPEMASK) { |
| case FLASH_AT040: |
| printf("AT49BV040A\n"); |
| break; |
| case FLASH_28F128J3A: |
| printf("28F128J3A\n"); |
| break; |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| case FLASH_M25P16: |
| printf("M25P16\n"); |
| break; |
| #endif |
| default: |
| printf("Unknown Chip Type\n"); |
| return; |
| } |
| |
| if (info->size > 0x100000) { |
| int remainder; |
| |
| printf(" Size: %ld", info->size >> 20); |
| |
| remainder = (info->size % 0x100000); |
| if (remainder) { |
| remainder >>= 10; |
| remainder = (int)((float) |
| (((float)remainder / (float)1024) * |
| 10000)); |
| printf(".%d ", remainder); |
| } |
| |
| printf("MB in %d Sectors\n", info->sector_count); |
| } else |
| printf(" Size: %ld KB in %d Sectors\n", |
| info->size >> 10, info->sector_count); |
| |
| printf(" Sector Start Addresses:"); |
| for (i = 0; i < info->sector_count; ++i) { |
| if ((i % 5) == 0) |
| printf("\n "); |
| printf(" %08lX%s", |
| info->start[i], info->protect[i] ? " (RO)" : " "); |
| } |
| printf("\n"); |
| } |
| |
| /* |
| * The following code cannot be run from FLASH! |
| */ |
| ulong flash_get_size(FPWV * addr, flash_info_t * info) |
| { |
| volatile u16 *addr16 = (volatile u16 *)addr; |
| int intel = 0, banks = 0; |
| u16 value; |
| int i; |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| if ((ulong) addr == CFG_FLASH2_BASE) { |
| int manufactId = 0; |
| int deviceId = 0; |
| |
| ser_flash_cs = 1; |
| |
| dspi_tx(ser_flash_cs, 0x80, SER_RDID); |
| dspi_tx(ser_flash_cs, 0x80, 0); |
| dspi_tx(ser_flash_cs, 0x80, 0); |
| dspi_tx(ser_flash_cs, 0x80, 0); |
| |
| dspi_rx(); |
| manufactId = dspi_rx(); |
| deviceId = dspi_rx() << 8; |
| deviceId |= dspi_rx(); |
| |
| dspi_tx(ser_flash_cs, 0x00, 0); |
| dspi_rx(); |
| |
| switch (manufactId) { |
| case (u8) STM_MANUFACT: |
| info->flash_id = FLASH_MAN_STM; |
| break; |
| } |
| |
| switch (deviceId) { |
| case (u16) STM_ID_M25P16: |
| info->flash_id += FLASH_M25P16; |
| break; |
| } |
| |
| info->sector_count = CFG_STM_SECT; |
| info->size = CFG_STM_SECT * CFG_STM_SECTSZ; |
| |
| return (info->size); |
| } |
| #endif |
| |
| addr[FLASH_CYCLE1] = (FPWV) 0x00AA00AA; /* for Atmel, Intel ignores this */ |
| addr[FLASH_CYCLE2] = (FPWV) 0x00550055; /* for Atmel, Intel ignores this */ |
| addr[FLASH_CYCLE1] = (FPWV) 0x00900090; /* selects Intel or Atmel */ |
| |
| switch (addr[0] & 0xff) { |
| case (u8) ATM_MANUFACT: |
| info->flash_id = FLASH_MAN_ATM; |
| value = addr[1]; |
| break; |
| case (u8) INTEL_MANUFACT: |
| /* Terminate Atmel ID read */ |
| addr[0] = (FPWV) 0x00F000F0; |
| /* Write auto select command: read Manufacturer ID */ |
| /* Write auto select command sequence and test FLASH answer */ |
| *addr16 = (FPW) INTEL_RESET; /* restore read mode */ |
| *addr16 = (FPW) INTEL_READID; |
| |
| info->flash_id = FLASH_MAN_INTEL; |
| value = (addr16[INTEL_CFI_MFG] << 8); |
| value |= addr16[INTEL_CFI_PART] & 0xff; |
| intel = 1; |
| break; |
| default: |
| printf("Unknown Flash\n"); |
| info->flash_id = FLASH_UNKNOWN; |
| info->sector_count = 0; |
| info->size = 0; |
| |
| *addr = (FPW) 0x00F000F0; |
| *addr = (FPW) INTEL_RESET; /* restore read mode */ |
| return (0); /* no or unknown flash */ |
| } |
| |
| switch (value) { |
| case (u8) ATM_ID_LV040: |
| info->flash_id += FLASH_AT040; |
| break; |
| case (u16) INTEL_ID_28F128J3: |
| info->flash_id += FLASH_28F128J3A; |
| break; |
| case (u16) INTEL_ID_28F64P30T: |
| info->flash_id += FLASH_28F64P30T; |
| break; |
| case (u16) INTEL_ID_28F64P30B: |
| info->flash_id += FLASH_28F64P30B; |
| break; |
| case (u16) INTEL_ID_28F128P30T: |
| info->flash_id += FLASH_28F128P30T; |
| break; |
| case (u16) INTEL_ID_28F128P30B: |
| info->flash_id += FLASH_28F128P30B; |
| break; |
| case (u16) INTEL_ID_28F256P30T: |
| info->flash_id += FLASH_28F256P30T; |
| break; |
| case (u16) INTEL_ID_28F256P30B: |
| info->flash_id += FLASH_28F256P30B; |
| break; |
| default: |
| info->flash_id = FLASH_UNKNOWN; |
| break; |
| } |
| |
| if (intel) { |
| /* Intel spec. under CFI section */ |
| u32 sz; |
| int sectors, bs; |
| |
| banks = addr16[INTEL_CFI_BANK] & 0xff; |
| |
| sectors = sz = 0; |
| for (i = 0; i < banks; i++) { |
| /* Geometry y1 = y1 + 1, y2 = y2 + 1, CFI spec. |
| * To be exact, Z = [0x2f 0x30] (LE) * 256 bytes * [0x2D 0x2E] block count |
| * Z = [0x33 0x34] (LE) * 256 bytes * [0x31 0x32] block count |
| */ |
| bs = ((((addr16[INTEL_CFI_SZ1B + (i * 4)] & 0xff) << 8) |
| | (addr16[INTEL_CFI_SZ1A + (i * 4)] & 0xff)) * |
| 0x100); |
| sectors += |
| (addr16[INTEL_CFI_BLK1A + (i * 4)] & 0xff) + 1; |
| sz += (bs * sectors); |
| } |
| |
| info->sector_count = sectors; |
| info->size = sz; |
| *addr = (FPW) INTEL_RESET; /* restore read mode */ |
| } else { |
| int sect[] = CFG_ATMEL_SECT; |
| int sectsz[] = CFG_ATMEL_SECTSZ; |
| |
| info->sector_count = 0; |
| info->size = 0; |
| for (i = 0; i < CFG_ATMEL_REGION; i++) { |
| info->sector_count += sect[i]; |
| info->size += sect[i] * sectsz[i]; |
| } |
| |
| /* reset ID mode */ |
| addr[0] = (FPWV) 0x00F000F0; |
| } |
| |
| if (info->sector_count > CFG_MAX_FLASH_SECT) { |
| printf("** ERROR: sector count %d > max (%d) **\n", |
| info->sector_count, CFG_MAX_FLASH_SECT); |
| info->sector_count = CFG_MAX_FLASH_SECT; |
| } |
| |
| return (info->size); |
| } |
| |
| int flash_cmd_rd(volatile u16 * addr, int index) |
| { |
| return (int)addr[index]; |
| } |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| int serial_flash_read_status(int chipsel) |
| { |
| u16 status; |
| |
| dspi_tx(chipsel, 0x80, SER_RDSR); |
| dspi_rx(); |
| |
| dspi_tx(chipsel, 0x00, 0); |
| status = dspi_rx(); |
| |
| return status; |
| } |
| #endif |
| |
| /* |
| * This function gets the u-boot flash sector protection status |
| * (flash_info_t.protect[]) in sync with the sector protection |
| * status stored in hardware. |
| */ |
| void flash_sync_real_protect(flash_info_t * info) |
| { |
| int i; |
| |
| switch (info->flash_id & FLASH_TYPEMASK) { |
| case FLASH_28F160C3B: |
| case FLASH_28F160C3T: |
| case FLASH_28F320C3B: |
| case FLASH_28F320C3T: |
| case FLASH_28F640C3B: |
| case FLASH_28F640C3T: |
| for (i = 0; i < info->sector_count; ++i) { |
| info->protect[i] = intel_sector_protected(info, i); |
| } |
| break; |
| default: |
| /* no h/w protect support */ |
| break; |
| } |
| } |
| |
| /* |
| * checks if "sector" in bank "info" is protected. Should work on intel |
| * strata flash chips 28FxxxJ3x in 8-bit mode. |
| * Returns 1 if sector is protected (or timed-out while trying to read |
| * protection status), 0 if it is not. |
| */ |
| uchar intel_sector_protected(flash_info_t * info, ushort sector) |
| { |
| FPWV *addr; |
| FPWV *lock_conf_addr; |
| ulong start; |
| unsigned char ret; |
| |
| /* |
| * first, wait for the WSM to be finished. The rationale for |
| * waiting for the WSM to become idle for at most |
| * CFG_FLASH_ERASE_TOUT is as follows. The WSM can be busy |
| * because of: (1) erase, (2) program or (3) lock bit |
| * configuration. So we just wait for the longest timeout of |
| * the (1)-(3), i.e. the erase timeout. |
| */ |
| |
| /* wait at least 35ns (W12) before issuing Read Status Register */ |
| /*udelay(1); */ |
| addr = (FPWV *) info->start[sector]; |
| *addr = (FPW) INTEL_STATUS; |
| |
| start = get_timer(0); |
| while ((*addr & (FPW) INTEL_FINISHED) != (FPW) INTEL_FINISHED) { |
| if (get_timer(start) > CFG_FLASH_UNLOCK_TOUT) { |
| *addr = (FPW) INTEL_RESET; /* restore read mode */ |
| printf("WSM busy too long, can't get prot status\n"); |
| return 1; |
| } |
| } |
| |
| /* issue the Read Identifier Codes command */ |
| *addr = (FPW) INTEL_READID; |
| |
| /* Intel example code uses offset of 4 for 8-bit flash */ |
| lock_conf_addr = (FPWV *) info->start[sector]; |
| ret = (lock_conf_addr[INTEL_CFI_LOCK] & (FPW) INTEL_PROTECT) ? 1 : 0; |
| |
| /* put flash back in read mode */ |
| *addr = (FPW) INTEL_RESET; |
| |
| return ret; |
| } |
| |
| int flash_erase(flash_info_t * info, int s_first, int s_last) |
| { |
| int flag, prot, sect; |
| ulong type, start, last; |
| int rcode = 0, flashtype = 0; |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| int count; |
| u16 status; |
| #endif |
| if ((s_first < 0) || (s_first > s_last)) { |
| if (info->flash_id == FLASH_UNKNOWN) |
| printf("- missing\n"); |
| else |
| printf("- no sectors to erase\n"); |
| return 1; |
| } |
| |
| type = (info->flash_id & FLASH_VENDMASK); |
| |
| switch (type) { |
| case FLASH_MAN_ATM: |
| flashtype = 1; |
| break; |
| case FLASH_MAN_INTEL: |
| flashtype = 2; |
| break; |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| case FLASH_MAN_STM: |
| flashtype = 3; |
| break; |
| #endif |
| default: |
| type = (info->flash_id & FLASH_VENDMASK); |
| printf("Can't erase unknown flash type %08lx - aborted\n", |
| info->flash_id); |
| return 1; |
| } |
| |
| prot = 0; |
| for (sect = s_first; sect <= s_last; ++sect) { |
| if (info->protect[sect]) { |
| prot++; |
| } |
| } |
| |
| if (prot) |
| printf("- Warning: %d protected sectors will not be erased!\n", |
| prot); |
| else |
| printf("\n"); |
| |
| start = get_timer(0); |
| last = start; |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| /* Perform bulk erase */ |
| if (flashtype == 3) { |
| if ((s_last - s_first) == (CFG_STM_SECT - 1)) { |
| if (prot == 0) { |
| dspi_tx(ser_flash_cs, 0x00, SER_WREN); |
| dspi_rx(); |
| |
| status = serial_flash_read_status(ser_flash_cs); |
| if (((status & 0x9C) != 0) |
| && ((status & 0x02) != 0x02)) { |
| printf("Can't erase flash\n"); |
| return 1; |
| } |
| |
| dspi_tx(ser_flash_cs, 0x00, SER_BULK_ERASE); |
| dspi_rx(); |
| |
| count = 0; |
| start = get_timer(0); |
| do { |
| status = |
| serial_flash_read_status |
| (ser_flash_cs); |
| |
| if (count++ > 0x10000) { |
| spin_wheel(); |
| count = 0; |
| } |
| |
| if (get_timer(start) > |
| CFG_FLASH_ERASE_TOUT) { |
| printf("Timeout\n"); |
| return 1; |
| } |
| } while (status & 0x01); |
| |
| printf("\b. done\n"); |
| return 0; |
| } else if (prot == CFG_STM_SECT) { |
| return 1; |
| } |
| } |
| } |
| #endif |
| /* Start erase on unprotected sectors */ |
| for (sect = s_first; sect <= s_last; sect++) { |
| if (info->protect[sect] == 0) { /* not protected */ |
| |
| FPWV *addr = (FPWV *) (info->start[sect]); |
| int min = 0; |
| |
| printf("."); |
| |
| /* arm simple, non interrupt dependent timer */ |
| start = get_timer(0); |
| |
| switch (flashtype) { |
| case 1: |
| { |
| FPWV *base; /* first address in bank */ |
| FPWV *atmeladdr; |
| |
| flag = disable_interrupts(); |
| |
| atmeladdr = (FPWV *) addr; /* concatenate to 8 bit */ |
| base = (FPWV *) (CFG_ATMEL_BASE); /* First sector */ |
| |
| base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */ |
| base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */ |
| base[FLASH_CYCLE1] = (u8) 0x00800080; /* erase mode */ |
| base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */ |
| base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */ |
| *atmeladdr = (u8) 0x00300030; /* erase sector */ |
| |
| if (flag) |
| enable_interrupts(); |
| |
| while ((*atmeladdr & (u8) 0x00800080) != |
| (u8) 0x00800080) { |
| if (get_timer(start) > |
| CFG_FLASH_ERASE_TOUT) { |
| printf("Timeout\n"); |
| *atmeladdr = (u8) 0x00F000F0; /* reset to read mode */ |
| |
| rcode = 1; |
| break; |
| } |
| } |
| |
| *atmeladdr = (u8) 0x00F000F0; /* reset to read mode */ |
| break; |
| } |
| |
| case 2: |
| { |
| *addr = (FPW) INTEL_READID; |
| min = addr[INTEL_CFI_TERB] & 0xff; |
| min = 1 << min; /* ms */ |
| min = (min / info->sector_count) * 1000; |
| |
| /* start erase block */ |
| *addr = (FPW) INTEL_CLEAR; /* clear status register */ |
| *addr = (FPW) INTEL_ERASE; /* erase setup */ |
| *addr = (FPW) INTEL_CONFIRM; /* erase confirm */ |
| |
| while ((*addr & (FPW) INTEL_FINISHED) != |
| (FPW) INTEL_FINISHED) { |
| |
| if (get_timer(start) > |
| CFG_FLASH_ERASE_TOUT) { |
| printf("Timeout\n"); |
| *addr = (FPW) INTEL_SUSERASE; /* suspend erase */ |
| *addr = (FPW) INTEL_RESET; /* reset to read mode */ |
| |
| rcode = 1; |
| break; |
| } |
| } |
| |
| *addr = (FPW) INTEL_RESET; /* resest to read mode */ |
| break; |
| } |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| case 3: |
| { |
| u8 sec = ((ulong) addr >> 16) & 0xFF; |
| |
| dspi_tx(ser_flash_cs, 0x00, SER_WREN); |
| dspi_rx(); |
| status = |
| serial_flash_read_status |
| (ser_flash_cs); |
| if (((status & 0x9C) != 0) |
| && ((status & 0x02) != 0x02)) { |
| printf("Error Programming\n"); |
| return 1; |
| } |
| |
| dspi_tx(ser_flash_cs, 0x80, |
| SER_SECT_ERASE); |
| dspi_tx(ser_flash_cs, 0x80, sec); |
| dspi_tx(ser_flash_cs, 0x80, 0); |
| dspi_tx(ser_flash_cs, 0x00, 0); |
| |
| dspi_rx(); |
| dspi_rx(); |
| dspi_rx(); |
| dspi_rx(); |
| |
| do { |
| status = |
| serial_flash_read_status |
| (ser_flash_cs); |
| |
| if (get_timer(start) > |
| CFG_FLASH_ERASE_TOUT) { |
| printf("Timeout\n"); |
| return 1; |
| } |
| } while (status & 0x01); |
| |
| break; |
| } |
| #endif |
| } /* switch (flashtype) */ |
| } |
| } |
| printf(" done\n"); |
| |
| return rcode; |
| } |
| |
| int write_buff(flash_info_t * info, uchar * src, ulong addr, ulong cnt) |
| { |
| int count; |
| |
| if (info->flash_id == FLASH_UNKNOWN) |
| return 4; |
| |
| switch (info->flash_id & FLASH_VENDMASK) { |
| case FLASH_MAN_ATM: |
| { |
| u16 data = 0; |
| int bytes; /* number of bytes to program in current word */ |
| int left; /* number of bytes left to program */ |
| int i, res; |
| |
| for (left = cnt, res = 0; |
| left > 0 && res == 0; |
| addr += sizeof(data), left -= |
| sizeof(data) - bytes) { |
| |
| bytes = addr & (sizeof(data) - 1); |
| addr &= ~(sizeof(data) - 1); |
| |
| /* combine source and destination data so can program |
| * an entire word of 16 or 32 bits |
| */ |
| for (i = 0; i < sizeof(data); i++) { |
| data <<= 8; |
| if (i < bytes || i - bytes >= left) |
| data += *((uchar *) addr + i); |
| else |
| data += *src++; |
| } |
| |
| data = (data >> 8) | (data << 8); |
| res = write_word_atm(info, (FPWV *) addr, data); |
| } |
| return res; |
| } /* case FLASH_MAN_ATM */ |
| |
| case FLASH_MAN_INTEL: |
| { |
| ulong cp, wp; |
| u16 data; |
| int i, l, rc, port_width; |
| |
| /* get lower word aligned address */ |
| wp = addr; |
| port_width = sizeof(FPW); |
| |
| /* |
| * handle unaligned start bytes |
| */ |
| if ((l = addr - wp) != 0) { |
| data = 0; |
| for (i = 0, cp = wp; i < l; ++i, ++cp) { |
| data = (data << 8) | (*(uchar *) cp); |
| } |
| |
| for (; i < port_width && cnt > 0; ++i) { |
| data = (data << 8) | *src++; |
| --cnt; |
| ++cp; |
| } |
| |
| for (; cnt == 0 && i < port_width; ++i, ++cp) |
| data = (data << 8) | (*(uchar *) cp); |
| |
| if ((rc = write_data(info, wp, data)) != 0) |
| return (rc); |
| |
| wp += port_width; |
| } |
| |
| if (cnt > WR_BLOCK) { |
| /* |
| * handle word aligned part |
| */ |
| count = 0; |
| while (cnt >= WR_BLOCK) { |
| |
| if ((rc = |
| write_data_block(info, |
| (ulong) src, |
| wp)) != 0) |
| return (rc); |
| |
| wp += WR_BLOCK; |
| src += WR_BLOCK; |
| cnt -= WR_BLOCK; |
| |
| if (count++ > 0x800) { |
| spin_wheel(); |
| count = 0; |
| } |
| } |
| } |
| |
| /* handle word aligned part */ |
| if (cnt < WR_BLOCK) { |
| /* |
| * handle word aligned part |
| */ |
| count = 0; |
| while (cnt >= port_width) { |
| data = 0; |
| for (i = 0; i < port_width; ++i) |
| data = (data << 8) | *src++; |
| |
| if ((rc = |
| write_data(info, |
| (ulong) ((FPWV *) wp), |
| (FPW) (data))) != 0) |
| return (rc); |
| |
| wp += port_width; |
| cnt -= port_width; |
| if (count++ > 0x800) { |
| spin_wheel(); |
| count = 0; |
| } |
| } |
| } |
| |
| if (cnt == 0) |
| return ERR_OK; |
| |
| /* |
| * handle unaligned tail bytes |
| */ |
| data = 0; |
| for (i = 0, cp = wp; i < port_width && cnt > 0; |
| ++i, ++cp) { |
| data = (data << 8) | (*src++); |
| --cnt; |
| } |
| for (; i < port_width; ++i, ++cp) { |
| data = (data << 8) | (*(uchar *) cp); |
| } |
| |
| return write_data(info, (ulong) ((FPWV *) wp), |
| (FPW) data); |
| |
| } /* case FLASH_MAN_INTEL */ |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| case FLASH_MAN_STM: |
| { |
| ulong wp; |
| u8 *data = (u8 *) src; |
| int left; /* number of bytes left to program */ |
| |
| wp = addr; |
| |
| /* page align, each page is 256 bytes */ |
| if ((wp % 0x100) != 0) { |
| left = (0x100 - (wp & 0xFF)); |
| write_ser_data(info, wp, data, left); |
| cnt -= left; |
| wp += left; |
| data += left; |
| } |
| |
| /* page program - 256 bytes at a time */ |
| if (cnt > 255) { |
| count = 0; |
| while (cnt >= 0x100) { |
| write_ser_data(info, wp, data, 0x100); |
| cnt -= 0x100; |
| wp += 0x100; |
| data += 0x100; |
| |
| if (count++ > 0x400) { |
| spin_wheel(); |
| count = 0; |
| } |
| } |
| } |
| |
| /* remainint bytes */ |
| if (cnt && (cnt < 256)) { |
| write_ser_data(info, wp, data, cnt); |
| wp += cnt; |
| data += cnt; |
| cnt -= cnt; |
| } |
| |
| printf("\b."); |
| } |
| #endif |
| } /* switch */ |
| |
| return ERR_OK; |
| } |
| |
| /*----------------------------------------------------------------------- |
| * Write a word or halfword to Flash, returns: |
| * 0 - OK |
| * 1 - write timeout |
| * 2 - Flash not erased |
| */ |
| int write_data_block(flash_info_t * info, ulong src, ulong dest) |
| { |
| FPWV *srcaddr = (FPWV *) src; |
| FPWV *dstaddr = (FPWV *) dest; |
| ulong start; |
| int flag, i; |
| |
| /* Check if Flash is (sufficiently) erased */ |
| for (i = 0; i < WR_BLOCK; i++) |
| if ((*dstaddr++ & 0xff) != 0xff) { |
| printf("not erased at %08lx (%lx)\n", |
| (ulong) dstaddr, *dstaddr); |
| return (2); |
| } |
| |
| dstaddr = (FPWV *) dest; |
| |
| /* Disable interrupts which might cause a timeout here */ |
| flag = disable_interrupts(); |
| |
| *dstaddr = (FPW) INTEL_WRBLK; /* write block setup */ |
| |
| if (flag) |
| enable_interrupts(); |
| |
| /* arm simple, non interrupt dependent timer */ |
| start = get_timer(0); |
| |
| /* wait while polling the status register */ |
| while ((*dstaddr & (FPW) INTEL_FINISHED) != (FPW) INTEL_OK) { |
| if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| *dstaddr = (FPW) INTEL_RESET; /* restore read mode */ |
| return (1); |
| } |
| } |
| |
| *dstaddr = (FPW) WR_BLOCK - 1; /* write 32 to buffer */ |
| for (i = 0; i < WR_BLOCK; i++) |
| *dstaddr++ = *srcaddr++; |
| |
| dstaddr -= 1; |
| *dstaddr = (FPW) INTEL_CONFIRM; /* write 32 to buffer */ |
| |
| /* arm simple, non interrupt dependent timer */ |
| start = get_timer(0); |
| |
| /* wait while polling the status register */ |
| while ((*dstaddr & (FPW) INTEL_FINISHED) != (FPW) INTEL_OK) { |
| if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| *dstaddr = (FPW) INTEL_RESET; /* restore read mode */ |
| return (1); |
| } |
| } |
| |
| *dstaddr = (FPW) INTEL_RESET; /* restore read mode */ |
| |
| return (0); |
| } |
| |
| /*----------------------------------------------------------------------- |
| * Write a word or halfword to Flash, returns: |
| * 0 - OK |
| * 1 - write timeout |
| * 2 - Flash not erased |
| */ |
| int write_data(flash_info_t * info, ulong dest, FPW data) |
| { |
| FPWV *addr = (FPWV *) dest; |
| ulong start; |
| int flag; |
| |
| /* Check if Flash is (sufficiently) erased */ |
| if ((*addr & data) != data) { |
| printf("not erased at %08lx (%lx)\n", (ulong) addr, |
| (ulong) * addr); |
| return (2); |
| } |
| |
| /* Disable interrupts which might cause a timeout here */ |
| flag = (int)disable_interrupts(); |
| |
| *addr = (FPW) INTEL_CLEAR; |
| *addr = (FPW) INTEL_RESET; |
| |
| *addr = (FPW) INTEL_WRSETUP; /* write setup */ |
| *addr = data; |
| |
| if (flag) |
| enable_interrupts(); |
| |
| /* arm simple, non interrupt dependent timer */ |
| start = get_timer(0); |
| |
| /* wait while polling the status register */ |
| while ((*addr & (FPW) INTEL_OK) != (FPW) INTEL_OK) { |
| if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| *addr = (FPW) INTEL_SUSERASE; /* suspend mode */ |
| *addr = (FPW) INTEL_CLEAR; /* clear status */ |
| *addr = (FPW) INTEL_RESET; /* reset */ |
| return (1); |
| } |
| } |
| |
| *addr = (FPW) INTEL_CLEAR; /* clear status */ |
| *addr = (FPW) INTEL_RESET; /* restore read mode */ |
| |
| return (0); |
| } |
| |
| #if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI) |
| int write_ser_data(flash_info_t * info, ulong dest, uchar * data, ulong cnt) |
| { |
| ulong start; |
| int status, i; |
| u8 flashdata; |
| |
| /* Check if Flash is (sufficiently) erased */ |
| dspi_tx(ser_flash_cs, 0x80, SER_READ); |
| dspi_tx(ser_flash_cs, 0x80, (dest >> 16) & 0xFF); |
| dspi_tx(ser_flash_cs, 0x80, (dest >> 8) & 0xFF); |
| dspi_tx(ser_flash_cs, 0x80, dest & 0xFF); |
| dspi_rx(); |
| dspi_rx(); |
| dspi_rx(); |
| dspi_rx(); |
| dspi_tx(ser_flash_cs, 0x80, 0); |
| flashdata = dspi_rx(); |
| dspi_tx(ser_flash_cs, 0x00, 0); |
| dspi_rx(); |
| |
| if ((flashdata & *data) != *data) { |
| printf("not erased at %08lx (%lx)\n", (ulong) dest, |
| (ulong) flashdata); |
| return (2); |
| } |
| |
| dspi_tx(ser_flash_cs, 0x00, SER_WREN); |
| dspi_rx(); |
| |
| status = serial_flash_read_status(ser_flash_cs); |
| if (((status & 0x9C) != 0) && ((status & 0x02) != 0x02)) { |
| printf("Error Programming\n"); |
| return 1; |
| } |
| |
| start = get_timer(0); |
| |
| dspi_tx(ser_flash_cs, 0x80, SER_PAGE_PROG); |
| dspi_tx(ser_flash_cs, 0x80, ((dest & 0xFF0000) >> 16)); |
| dspi_tx(ser_flash_cs, 0x80, ((dest & 0xFF00) >> 8)); |
| dspi_tx(ser_flash_cs, 0x80, (dest & 0xFF)); |
| dspi_rx(); |
| dspi_rx(); |
| dspi_rx(); |
| dspi_rx(); |
| |
| for (i = 0; i < (cnt - 1); i++) { |
| dspi_tx(ser_flash_cs, 0x80, *data); |
| dspi_rx(); |
| data++; |
| } |
| |
| dspi_tx(ser_flash_cs, 0x00, *data); |
| dspi_rx(); |
| |
| do { |
| status = serial_flash_read_status(ser_flash_cs); |
| |
| if (get_timer(start) > CFG_FLASH_ERASE_TOUT) { |
| printf("Timeout\n"); |
| return 1; |
| } |
| } while (status & 0x01); |
| |
| return (0); |
| } |
| #endif |
| |
| /*----------------------------------------------------------------------- |
| * Write a word to Flash for ATMEL FLASH |
| * A word is 16 bits, whichever the bus width of the flash bank |
| * (not an individual chip) is. |
| * |
| * returns: |
| * 0 - OK |
| * 1 - write timeout |
| * 2 - Flash not erased |
| */ |
| int write_word_atm(flash_info_t * info, volatile u8 * dest, u16 data) |
| { |
| ulong start; |
| int flag, i; |
| int res = 0; /* result, assume success */ |
| FPWV *base; /* first address in flash bank */ |
| |
| /* Check if Flash is (sufficiently) erased */ |
| if ((*((volatile u16 *)dest) & data) != data) { |
| return (2); |
| } |
| |
| base = (FPWV *) (CFG_ATMEL_BASE); |
| |
| for (i = 0; i < sizeof(u16); i++) { |
| /* Disable interrupts which might cause a timeout here */ |
| flag = disable_interrupts(); |
| |
| base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */ |
| base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */ |
| base[FLASH_CYCLE1] = (u8) 0x00A000A0; /* selects program mode */ |
| |
| *dest = data; /* start programming the data */ |
| |
| /* re-enable interrupts if necessary */ |
| if (flag) |
| enable_interrupts(); |
| |
| start = get_timer(0); |
| |
| /* data polling for D7 */ |
| while (res == 0 |
| && (*dest & (u8) 0x00800080) != |
| (data & (u8) 0x00800080)) { |
| if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| *dest = (u8) 0x00F000F0; /* reset bank */ |
| res = 1; |
| } |
| } |
| |
| *dest++ = (u8) 0x00F000F0; /* reset bank */ |
| data >>= 8; |
| } |
| |
| return (res); |
| } |
| |
| void inline spin_wheel(void) |
| { |
| static int p = 0; |
| static char w[] = "\\/-"; |
| |
| printf("\010%c", w[p]); |
| (++p == 3) ? (p = 0) : 0; |
| } |
| |
| #ifdef CFG_FLASH_PROTECTION |
| /*----------------------------------------------------------------------- |
| */ |
| int flash_real_protect(flash_info_t * info, long sector, int prot) |
| { |
| int rcode = 0; /* assume success */ |
| FPWV *addr; /* address of sector */ |
| FPW value; |
| |
| addr = (FPWV *) (info->start[sector]); |
| |
| switch (info->flash_id & FLASH_TYPEMASK) { |
| case FLASH_28F160C3B: |
| case FLASH_28F160C3T: |
| case FLASH_28F320C3B: |
| case FLASH_28F320C3T: |
| case FLASH_28F640C3B: |
| case FLASH_28F640C3T: |
| *addr = (FPW) INTEL_RESET; /* make sure in read mode */ |
| *addr = (FPW) INTEL_LOCKBIT; /* lock command setup */ |
| |
| if (prot) |
| *addr = (FPW) INTEL_PROTECT; /* lock sector */ |
| else |
| *addr = (FPW) INTEL_CONFIRM; /* unlock sector */ |
| |
| /* now see if it really is locked/unlocked as requested */ |
| *addr = (FPW) INTEL_READID; |
| |
| /* read sector protection at sector address, (A7 .. A0) = 0x02. |
| * D0 = 1 for each device if protected. |
| * If at least one device is protected the sector is marked |
| * protected, but return failure. Mixed protected and |
| * unprotected devices within a sector should never happen. |
| */ |
| value = addr[2] & (FPW) INTEL_PROTECT; |
| if (value == 0) |
| info->protect[sector] = 0; |
| else if (value == (FPW) INTEL_PROTECT) |
| info->protect[sector] = 1; |
| else { |
| /* error, mixed protected and unprotected */ |
| rcode = 1; |
| info->protect[sector] = 1; |
| } |
| if (info->protect[sector] != prot) |
| rcode = 1; /* failed to protect/unprotect as requested */ |
| |
| /* reload all protection bits from hardware for now */ |
| flash_sync_real_protect(info); |
| break; |
| |
| default: |
| /* no hardware protect that we support */ |
| info->protect[sector] = prot; |
| break; |
| } |
| |
| return rcode; |
| } |
| #endif |
| #endif |