blob: 6b50e8d82909f0534affa9548a5a29a583872cf6 [file] [log] [blame]
/*
* (C) Copyright 2000-2003
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Copyright (C) 2004-2007 Freescale Semiconductor, Inc.
* TsiChung Liew (Tsi-Chung.Liew@freescale.com)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/immap.h>
#ifndef CFG_FLASH_CFI
typedef unsigned char FLASH_PORT_WIDTH;
typedef volatile unsigned char FLASH_PORT_WIDTHV;
#define FPW FLASH_PORT_WIDTH
#define FPWV FLASH_PORT_WIDTHV
#define CFG_FLASH_CFI_WIDTH FLASH_CFI_8BIT
#define CFG_FLASH_NONCFI_WIDTH FLASH_CFI_8BIT
/* Intel-compatible flash commands */
#define INTEL_PROGRAM 0x00100010
#define INTEL_ERASE 0x00200020
#define INTEL_WRSETUP 0x00400040
#define INTEL_CLEAR 0x00500050
#define INTEL_LOCKBIT 0x00600060
#define INTEL_PROTECT 0x00010001
#define INTEL_STATUS 0x00700070
#define INTEL_READID 0x00900090
#define INTEL_CFIQRY 0x00980098
#define INTEL_SUSERASE 0x00B000B0
#define INTEL_PROTPROG 0x00C000C0
#define INTEL_CONFIRM 0x00D000D0
#define INTEL_WRBLK 0x00e800e8
#define INTEL_RESET 0x00FF00FF
/* Intel-compatible flash status bits */
#define INTEL_FINISHED 0x00800080
#define INTEL_OK 0x00800080
#define INTEL_ERASESUS 0x00600060
#define INTEL_WSM_SUS (INTEL_FINISHED | INTEL_ERASESUS)
/* 28F160C3B CFI Data offset - This could vary */
#define INTEL_CFI_MFG 0x00 /* Manufacturer ID */
#define INTEL_CFI_PART 0x01 /* Product ID */
#define INTEL_CFI_LOCK 0x02 /* */
#define INTEL_CFI_TWPRG 0x1F /* Typical Single Word Program Timeout 2^n us */
#define INTEL_CFI_MBUFW 0x20 /* Typical Max Buffer Write Timeout 2^n us */
#define INTEL_CFI_TERB 0x21 /* Typical Block Erase Timeout 2^n ms */
#define INTEL_CFI_MWPRG 0x23 /* Maximum Word program timeout 2^n us */
#define INTEL_CFI_MERB 0x25 /* Maximum Block Erase Timeout 2^n s */
#define INTEL_CFI_SIZE 0x27 /* Device size 2^n bytes */
#define INTEL_CFI_CAP 0x28
#define INTEL_CFI_WRBUF 0x2A
#define INTEL_CFI_BANK 0x2C /* Number of Bank */
#define INTEL_CFI_BLK1A 0x2D /* Number of Blocks */
#define INTEL_CFI_BLK1B 0x2E /* Number of Blocks */
#define INTEL_CFI_SZ1A 0x2F /* Block Region Size */
#define INTEL_CFI_SZ1B 0x30
#define INTEL_CFI_BLK2A 0x31
#define INTEL_CFI_BLK2B 0x32
#define INTEL_CFI_SZ2A 0x33
#define INTEL_CFI_SZ2B 0x34
#define FLASH_CYCLE1 0x0555
#define FLASH_CYCLE2 0x0aaa
#define WR_BLOCK 0x20
/* not in the flash.h yet */
#define FLASH_28F64P30T 0x00B9 /* Intel 28F64P30T ( 64M) */
#define FLASH_28F64P30B 0x00BA /* Intel 28F64P30B ( 64M) */
#define FLASH_28F128P30T 0x00BB /* Intel 28F128P30T ( 128M = 8M x 16 ) */
#define FLASH_28F128P30B 0x00BC /* Intel 28F128P30B ( 128M = 8M x 16 ) */
#define FLASH_28F256P30T 0x00BD /* Intel 28F256P30T ( 256M = 16M x 16 ) */
#define FLASH_28F256P30B 0x00BE /* Intel 28F256P30B ( 256M = 16M x 16 ) */
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
#define STM_ID_M25P16 0x20152015
#define FLASH_M25P16 0x0055
#endif
#define SYNC __asm__("nop")
/*-----------------------------------------------------------------------
* Functions
*/
ulong flash_get_size(FPWV * addr, flash_info_t * info);
int flash_get_offsets(ulong base, flash_info_t * info);
int flash_cmd_rd(volatile u16 * addr, int index);
int write_data(flash_info_t * info, ulong dest, FPW data);
int write_data_block(flash_info_t * info, ulong src, ulong dest);
int write_word_atm(flash_info_t * info, volatile u8 * dest, u16 data);
void inline spin_wheel(void);
void flash_sync_real_protect(flash_info_t * info);
uchar intel_sector_protected(flash_info_t * info, ushort sector);
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
int write_ser_data(flash_info_t * info, ulong dest, uchar * data, ulong cnt);
int serial_flash_read_status(int chipsel);
static int ser_flash_cs = 0;
#endif
flash_info_t flash_info[CFG_MAX_FLASH_BANKS];
ulong flash_init(void)
{
int i;
ulong size = 0;
ulong fbase = 0;
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
dspi_init();
#endif
for (i = 0; i < CFG_MAX_FLASH_BANKS; i++) {
memset(&flash_info[i], 0, sizeof(flash_info_t));
switch (i) {
case 0:
fbase = (ulong) CFG_FLASH0_BASE;
break;
case 1:
fbase = (ulong) CFG_FLASH1_BASE;
break;
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
case 2:
fbase = (ulong) CFG_FLASH2_BASE;
break;
#endif
}
flash_get_size((FPWV *) fbase, &flash_info[i]);
flash_get_offsets((ulong) fbase, &flash_info[i]);
fbase += flash_info[i].size;
size += flash_info[i].size;
/* get the h/w and s/w protection status in sync */
flash_sync_real_protect(&flash_info[i]);
}
/* Protect monitor and environment sectors */
flash_protect(FLAG_PROTECT_SET,
CFG_MONITOR_BASE,
CFG_MONITOR_BASE + monitor_flash_len - 1, &flash_info[0]);
return size;
}
int flash_get_offsets(ulong base, flash_info_t * info)
{
int i, j, k;
int sectors, bs, banks;
if ((info->flash_id & FLASH_VENDMASK) == FLASH_MAN_ATM) {
int sect[] = CFG_ATMEL_SECT;
int sectsz[] = CFG_ATMEL_SECTSZ;
info->start[0] = base;
for (k = 0, i = 0; i < CFG_ATMEL_REGION; i++) {
for (j = 0; j < sect[i]; j++, k++) {
info->start[k + 1] = info->start[k] + sectsz[i];
info->protect[k] = 0;
}
}
}
if ((info->flash_id & FLASH_VENDMASK) == FLASH_MAN_INTEL) {
volatile u16 *addr16 = (volatile u16 *)base;
*addr16 = (FPW) INTEL_RESET; /* restore read mode */
*addr16 = (FPW) INTEL_READID;
banks = addr16[INTEL_CFI_BANK] & 0xff;
sectors = 0;
info->start[0] = base;
for (k = 0, i = 0; i < banks; i++) {
/* Geometry y1 = y1 + 1, y2 = y2 + 1, CFI spec.
* To be exact, Z = [0x2f 0x30] (LE) * 256 bytes * [0x2D 0x2E] block count
* Z = [0x33 0x34] (LE) * 256 bytes * [0x31 0x32] block count
*/
bs = ((((addr16[INTEL_CFI_SZ1B + (i * 4)] & 0xff) << 8)
| (addr16[INTEL_CFI_SZ1A + (i * 4)] & 0xff)) *
0x100);
sectors =
(addr16[INTEL_CFI_BLK1A + (i * 4)] & 0xff) + 1;
for (j = 0; j < sectors; j++, k++) {
info->start[k + 1] = info->start[k] + bs;
}
}
*addr16 = (FPW) INTEL_RESET; /* restore read mode */
}
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
if ((info->flash_id & FLASH_VENDMASK) == FLASH_MAN_STM) {
info->start[0] = CFG_FLASH2_BASE;
for (k = 0, i = 0; i < CFG_STM_SECT; i++, k++) {
info->start[k + 1] = info->start[k] + CFG_STM_SECTSZ;
info->protect[k] = 0;
}
}
#endif
return ERR_OK;
}
void flash_print_info(flash_info_t * info)
{
int i;
switch (info->flash_id & FLASH_VENDMASK) {
case FLASH_MAN_INTEL:
printf("INTEL ");
break;
case FLASH_MAN_ATM:
printf("ATMEL ");
break;
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
case FLASH_MAN_STM:
printf("ST ");
break;
#endif
default:
printf("Unknown Vendor ");
break;
}
switch (info->flash_id & FLASH_TYPEMASK) {
case FLASH_AT040:
printf("AT49BV040A\n");
break;
case FLASH_28F128J3A:
printf("28F128J3A\n");
break;
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
case FLASH_M25P16:
printf("M25P16\n");
break;
#endif
default:
printf("Unknown Chip Type\n");
return;
}
if (info->size > 0x100000) {
int remainder;
printf(" Size: %ld", info->size >> 20);
remainder = (info->size % 0x100000);
if (remainder) {
remainder >>= 10;
remainder = (int)((float)
(((float)remainder / (float)1024) *
10000));
printf(".%d ", remainder);
}
printf("MB in %d Sectors\n", info->sector_count);
} else
printf(" Size: %ld KB in %d Sectors\n",
info->size >> 10, info->sector_count);
printf(" Sector Start Addresses:");
for (i = 0; i < info->sector_count; ++i) {
if ((i % 5) == 0)
printf("\n ");
printf(" %08lX%s",
info->start[i], info->protect[i] ? " (RO)" : " ");
}
printf("\n");
}
/*
* The following code cannot be run from FLASH!
*/
ulong flash_get_size(FPWV * addr, flash_info_t * info)
{
volatile u16 *addr16 = (volatile u16 *)addr;
int intel = 0, banks = 0;
u16 value;
int i;
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
if ((ulong) addr == CFG_FLASH2_BASE) {
int manufactId = 0;
int deviceId = 0;
ser_flash_cs = 1;
dspi_tx(ser_flash_cs, 0x80, SER_RDID);
dspi_tx(ser_flash_cs, 0x80, 0);
dspi_tx(ser_flash_cs, 0x80, 0);
dspi_tx(ser_flash_cs, 0x80, 0);
dspi_rx();
manufactId = dspi_rx();
deviceId = dspi_rx() << 8;
deviceId |= dspi_rx();
dspi_tx(ser_flash_cs, 0x00, 0);
dspi_rx();
switch (manufactId) {
case (u8) STM_MANUFACT:
info->flash_id = FLASH_MAN_STM;
break;
}
switch (deviceId) {
case (u16) STM_ID_M25P16:
info->flash_id += FLASH_M25P16;
break;
}
info->sector_count = CFG_STM_SECT;
info->size = CFG_STM_SECT * CFG_STM_SECTSZ;
return (info->size);
}
#endif
addr[FLASH_CYCLE1] = (FPWV) 0x00AA00AA; /* for Atmel, Intel ignores this */
addr[FLASH_CYCLE2] = (FPWV) 0x00550055; /* for Atmel, Intel ignores this */
addr[FLASH_CYCLE1] = (FPWV) 0x00900090; /* selects Intel or Atmel */
switch (addr[0] & 0xff) {
case (u8) ATM_MANUFACT:
info->flash_id = FLASH_MAN_ATM;
value = addr[1];
break;
case (u8) INTEL_MANUFACT:
/* Terminate Atmel ID read */
addr[0] = (FPWV) 0x00F000F0;
/* Write auto select command: read Manufacturer ID */
/* Write auto select command sequence and test FLASH answer */
*addr16 = (FPW) INTEL_RESET; /* restore read mode */
*addr16 = (FPW) INTEL_READID;
info->flash_id = FLASH_MAN_INTEL;
value = (addr16[INTEL_CFI_MFG] << 8);
value |= addr16[INTEL_CFI_PART] & 0xff;
intel = 1;
break;
default:
printf("Unknown Flash\n");
info->flash_id = FLASH_UNKNOWN;
info->sector_count = 0;
info->size = 0;
*addr = (FPW) 0x00F000F0;
*addr = (FPW) INTEL_RESET; /* restore read mode */
return (0); /* no or unknown flash */
}
switch (value) {
case (u8) ATM_ID_LV040:
info->flash_id += FLASH_AT040;
break;
case (u16) INTEL_ID_28F128J3:
info->flash_id += FLASH_28F128J3A;
break;
case (u16) INTEL_ID_28F64P30T:
info->flash_id += FLASH_28F64P30T;
break;
case (u16) INTEL_ID_28F64P30B:
info->flash_id += FLASH_28F64P30B;
break;
case (u16) INTEL_ID_28F128P30T:
info->flash_id += FLASH_28F128P30T;
break;
case (u16) INTEL_ID_28F128P30B:
info->flash_id += FLASH_28F128P30B;
break;
case (u16) INTEL_ID_28F256P30T:
info->flash_id += FLASH_28F256P30T;
break;
case (u16) INTEL_ID_28F256P30B:
info->flash_id += FLASH_28F256P30B;
break;
default:
info->flash_id = FLASH_UNKNOWN;
break;
}
if (intel) {
/* Intel spec. under CFI section */
u32 sz;
int sectors, bs;
banks = addr16[INTEL_CFI_BANK] & 0xff;
sectors = sz = 0;
for (i = 0; i < banks; i++) {
/* Geometry y1 = y1 + 1, y2 = y2 + 1, CFI spec.
* To be exact, Z = [0x2f 0x30] (LE) * 256 bytes * [0x2D 0x2E] block count
* Z = [0x33 0x34] (LE) * 256 bytes * [0x31 0x32] block count
*/
bs = ((((addr16[INTEL_CFI_SZ1B + (i * 4)] & 0xff) << 8)
| (addr16[INTEL_CFI_SZ1A + (i * 4)] & 0xff)) *
0x100);
sectors +=
(addr16[INTEL_CFI_BLK1A + (i * 4)] & 0xff) + 1;
sz += (bs * sectors);
}
info->sector_count = sectors;
info->size = sz;
*addr = (FPW) INTEL_RESET; /* restore read mode */
} else {
int sect[] = CFG_ATMEL_SECT;
int sectsz[] = CFG_ATMEL_SECTSZ;
info->sector_count = 0;
info->size = 0;
for (i = 0; i < CFG_ATMEL_REGION; i++) {
info->sector_count += sect[i];
info->size += sect[i] * sectsz[i];
}
/* reset ID mode */
addr[0] = (FPWV) 0x00F000F0;
}
if (info->sector_count > CFG_MAX_FLASH_SECT) {
printf("** ERROR: sector count %d > max (%d) **\n",
info->sector_count, CFG_MAX_FLASH_SECT);
info->sector_count = CFG_MAX_FLASH_SECT;
}
return (info->size);
}
int flash_cmd_rd(volatile u16 * addr, int index)
{
return (int)addr[index];
}
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
int serial_flash_read_status(int chipsel)
{
u16 status;
dspi_tx(chipsel, 0x80, SER_RDSR);
dspi_rx();
dspi_tx(chipsel, 0x00, 0);
status = dspi_rx();
return status;
}
#endif
/*
* This function gets the u-boot flash sector protection status
* (flash_info_t.protect[]) in sync with the sector protection
* status stored in hardware.
*/
void flash_sync_real_protect(flash_info_t * info)
{
int i;
switch (info->flash_id & FLASH_TYPEMASK) {
case FLASH_28F160C3B:
case FLASH_28F160C3T:
case FLASH_28F320C3B:
case FLASH_28F320C3T:
case FLASH_28F640C3B:
case FLASH_28F640C3T:
for (i = 0; i < info->sector_count; ++i) {
info->protect[i] = intel_sector_protected(info, i);
}
break;
default:
/* no h/w protect support */
break;
}
}
/*
* checks if "sector" in bank "info" is protected. Should work on intel
* strata flash chips 28FxxxJ3x in 8-bit mode.
* Returns 1 if sector is protected (or timed-out while trying to read
* protection status), 0 if it is not.
*/
uchar intel_sector_protected(flash_info_t * info, ushort sector)
{
FPWV *addr;
FPWV *lock_conf_addr;
ulong start;
unsigned char ret;
/*
* first, wait for the WSM to be finished. The rationale for
* waiting for the WSM to become idle for at most
* CFG_FLASH_ERASE_TOUT is as follows. The WSM can be busy
* because of: (1) erase, (2) program or (3) lock bit
* configuration. So we just wait for the longest timeout of
* the (1)-(3), i.e. the erase timeout.
*/
/* wait at least 35ns (W12) before issuing Read Status Register */
/*udelay(1); */
addr = (FPWV *) info->start[sector];
*addr = (FPW) INTEL_STATUS;
start = get_timer(0);
while ((*addr & (FPW) INTEL_FINISHED) != (FPW) INTEL_FINISHED) {
if (get_timer(start) > CFG_FLASH_UNLOCK_TOUT) {
*addr = (FPW) INTEL_RESET; /* restore read mode */
printf("WSM busy too long, can't get prot status\n");
return 1;
}
}
/* issue the Read Identifier Codes command */
*addr = (FPW) INTEL_READID;
/* Intel example code uses offset of 4 for 8-bit flash */
lock_conf_addr = (FPWV *) info->start[sector];
ret = (lock_conf_addr[INTEL_CFI_LOCK] & (FPW) INTEL_PROTECT) ? 1 : 0;
/* put flash back in read mode */
*addr = (FPW) INTEL_RESET;
return ret;
}
int flash_erase(flash_info_t * info, int s_first, int s_last)
{
int flag, prot, sect;
ulong type, start, last;
int rcode = 0, flashtype = 0;
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
int count;
u16 status;
#endif
if ((s_first < 0) || (s_first > s_last)) {
if (info->flash_id == FLASH_UNKNOWN)
printf("- missing\n");
else
printf("- no sectors to erase\n");
return 1;
}
type = (info->flash_id & FLASH_VENDMASK);
switch (type) {
case FLASH_MAN_ATM:
flashtype = 1;
break;
case FLASH_MAN_INTEL:
flashtype = 2;
break;
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
case FLASH_MAN_STM:
flashtype = 3;
break;
#endif
default:
type = (info->flash_id & FLASH_VENDMASK);
printf("Can't erase unknown flash type %08lx - aborted\n",
info->flash_id);
return 1;
}
prot = 0;
for (sect = s_first; sect <= s_last; ++sect) {
if (info->protect[sect]) {
prot++;
}
}
if (prot)
printf("- Warning: %d protected sectors will not be erased!\n",
prot);
else
printf("\n");
start = get_timer(0);
last = start;
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
/* Perform bulk erase */
if (flashtype == 3) {
if ((s_last - s_first) == (CFG_STM_SECT - 1)) {
if (prot == 0) {
dspi_tx(ser_flash_cs, 0x00, SER_WREN);
dspi_rx();
status = serial_flash_read_status(ser_flash_cs);
if (((status & 0x9C) != 0)
&& ((status & 0x02) != 0x02)) {
printf("Can't erase flash\n");
return 1;
}
dspi_tx(ser_flash_cs, 0x00, SER_BULK_ERASE);
dspi_rx();
count = 0;
start = get_timer(0);
do {
status =
serial_flash_read_status
(ser_flash_cs);
if (count++ > 0x10000) {
spin_wheel();
count = 0;
}
if (get_timer(start) >
CFG_FLASH_ERASE_TOUT) {
printf("Timeout\n");
return 1;
}
} while (status & 0x01);
printf("\b. done\n");
return 0;
} else if (prot == CFG_STM_SECT) {
return 1;
}
}
}
#endif
/* Start erase on unprotected sectors */
for (sect = s_first; sect <= s_last; sect++) {
if (info->protect[sect] == 0) { /* not protected */
FPWV *addr = (FPWV *) (info->start[sect]);
int min = 0;
printf(".");
/* arm simple, non interrupt dependent timer */
start = get_timer(0);
switch (flashtype) {
case 1:
{
FPWV *base; /* first address in bank */
FPWV *atmeladdr;
flag = disable_interrupts();
atmeladdr = (FPWV *) addr; /* concatenate to 8 bit */
base = (FPWV *) (CFG_ATMEL_BASE); /* First sector */
base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */
base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */
base[FLASH_CYCLE1] = (u8) 0x00800080; /* erase mode */
base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */
base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */
*atmeladdr = (u8) 0x00300030; /* erase sector */
if (flag)
enable_interrupts();
while ((*atmeladdr & (u8) 0x00800080) !=
(u8) 0x00800080) {
if (get_timer(start) >
CFG_FLASH_ERASE_TOUT) {
printf("Timeout\n");
*atmeladdr = (u8) 0x00F000F0; /* reset to read mode */
rcode = 1;
break;
}
}
*atmeladdr = (u8) 0x00F000F0; /* reset to read mode */
break;
}
case 2:
{
*addr = (FPW) INTEL_READID;
min = addr[INTEL_CFI_TERB] & 0xff;
min = 1 << min; /* ms */
min = (min / info->sector_count) * 1000;
/* start erase block */
*addr = (FPW) INTEL_CLEAR; /* clear status register */
*addr = (FPW) INTEL_ERASE; /* erase setup */
*addr = (FPW) INTEL_CONFIRM; /* erase confirm */
while ((*addr & (FPW) INTEL_FINISHED) !=
(FPW) INTEL_FINISHED) {
if (get_timer(start) >
CFG_FLASH_ERASE_TOUT) {
printf("Timeout\n");
*addr = (FPW) INTEL_SUSERASE; /* suspend erase */
*addr = (FPW) INTEL_RESET; /* reset to read mode */
rcode = 1;
break;
}
}
*addr = (FPW) INTEL_RESET; /* resest to read mode */
break;
}
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
case 3:
{
u8 sec = ((ulong) addr >> 16) & 0xFF;
dspi_tx(ser_flash_cs, 0x00, SER_WREN);
dspi_rx();
status =
serial_flash_read_status
(ser_flash_cs);
if (((status & 0x9C) != 0)
&& ((status & 0x02) != 0x02)) {
printf("Error Programming\n");
return 1;
}
dspi_tx(ser_flash_cs, 0x80,
SER_SECT_ERASE);
dspi_tx(ser_flash_cs, 0x80, sec);
dspi_tx(ser_flash_cs, 0x80, 0);
dspi_tx(ser_flash_cs, 0x00, 0);
dspi_rx();
dspi_rx();
dspi_rx();
dspi_rx();
do {
status =
serial_flash_read_status
(ser_flash_cs);
if (get_timer(start) >
CFG_FLASH_ERASE_TOUT) {
printf("Timeout\n");
return 1;
}
} while (status & 0x01);
break;
}
#endif
} /* switch (flashtype) */
}
}
printf(" done\n");
return rcode;
}
int write_buff(flash_info_t * info, uchar * src, ulong addr, ulong cnt)
{
int count;
if (info->flash_id == FLASH_UNKNOWN)
return 4;
switch (info->flash_id & FLASH_VENDMASK) {
case FLASH_MAN_ATM:
{
u16 data = 0;
int bytes; /* number of bytes to program in current word */
int left; /* number of bytes left to program */
int i, res;
for (left = cnt, res = 0;
left > 0 && res == 0;
addr += sizeof(data), left -=
sizeof(data) - bytes) {
bytes = addr & (sizeof(data) - 1);
addr &= ~(sizeof(data) - 1);
/* combine source and destination data so can program
* an entire word of 16 or 32 bits
*/
for (i = 0; i < sizeof(data); i++) {
data <<= 8;
if (i < bytes || i - bytes >= left)
data += *((uchar *) addr + i);
else
data += *src++;
}
data = (data >> 8) | (data << 8);
res = write_word_atm(info, (FPWV *) addr, data);
}
return res;
} /* case FLASH_MAN_ATM */
case FLASH_MAN_INTEL:
{
ulong cp, wp;
u16 data;
int i, l, rc, port_width;
/* get lower word aligned address */
wp = addr;
port_width = sizeof(FPW);
/*
* handle unaligned start bytes
*/
if ((l = addr - wp) != 0) {
data = 0;
for (i = 0, cp = wp; i < l; ++i, ++cp) {
data = (data << 8) | (*(uchar *) cp);
}
for (; i < port_width && cnt > 0; ++i) {
data = (data << 8) | *src++;
--cnt;
++cp;
}
for (; cnt == 0 && i < port_width; ++i, ++cp)
data = (data << 8) | (*(uchar *) cp);
if ((rc = write_data(info, wp, data)) != 0)
return (rc);
wp += port_width;
}
if (cnt > WR_BLOCK) {
/*
* handle word aligned part
*/
count = 0;
while (cnt >= WR_BLOCK) {
if ((rc =
write_data_block(info,
(ulong) src,
wp)) != 0)
return (rc);
wp += WR_BLOCK;
src += WR_BLOCK;
cnt -= WR_BLOCK;
if (count++ > 0x800) {
spin_wheel();
count = 0;
}
}
}
/* handle word aligned part */
if (cnt < WR_BLOCK) {
/*
* handle word aligned part
*/
count = 0;
while (cnt >= port_width) {
data = 0;
for (i = 0; i < port_width; ++i)
data = (data << 8) | *src++;
if ((rc =
write_data(info,
(ulong) ((FPWV *) wp),
(FPW) (data))) != 0)
return (rc);
wp += port_width;
cnt -= port_width;
if (count++ > 0x800) {
spin_wheel();
count = 0;
}
}
}
if (cnt == 0)
return ERR_OK;
/*
* handle unaligned tail bytes
*/
data = 0;
for (i = 0, cp = wp; i < port_width && cnt > 0;
++i, ++cp) {
data = (data << 8) | (*src++);
--cnt;
}
for (; i < port_width; ++i, ++cp) {
data = (data << 8) | (*(uchar *) cp);
}
return write_data(info, (ulong) ((FPWV *) wp),
(FPW) data);
} /* case FLASH_MAN_INTEL */
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
case FLASH_MAN_STM:
{
ulong wp;
u8 *data = (u8 *) src;
int left; /* number of bytes left to program */
wp = addr;
/* page align, each page is 256 bytes */
if ((wp % 0x100) != 0) {
left = (0x100 - (wp & 0xFF));
write_ser_data(info, wp, data, left);
cnt -= left;
wp += left;
data += left;
}
/* page program - 256 bytes at a time */
if (cnt > 255) {
count = 0;
while (cnt >= 0x100) {
write_ser_data(info, wp, data, 0x100);
cnt -= 0x100;
wp += 0x100;
data += 0x100;
if (count++ > 0x400) {
spin_wheel();
count = 0;
}
}
}
/* remainint bytes */
if (cnt && (cnt < 256)) {
write_ser_data(info, wp, data, cnt);
wp += cnt;
data += cnt;
cnt -= cnt;
}
printf("\b.");
}
#endif
} /* switch */
return ERR_OK;
}
/*-----------------------------------------------------------------------
* Write a word or halfword to Flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
int write_data_block(flash_info_t * info, ulong src, ulong dest)
{
FPWV *srcaddr = (FPWV *) src;
FPWV *dstaddr = (FPWV *) dest;
ulong start;
int flag, i;
/* Check if Flash is (sufficiently) erased */
for (i = 0; i < WR_BLOCK; i++)
if ((*dstaddr++ & 0xff) != 0xff) {
printf("not erased at %08lx (%lx)\n",
(ulong) dstaddr, *dstaddr);
return (2);
}
dstaddr = (FPWV *) dest;
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
*dstaddr = (FPW) INTEL_WRBLK; /* write block setup */
if (flag)
enable_interrupts();
/* arm simple, non interrupt dependent timer */
start = get_timer(0);
/* wait while polling the status register */
while ((*dstaddr & (FPW) INTEL_FINISHED) != (FPW) INTEL_OK) {
if (get_timer(start) > CFG_FLASH_WRITE_TOUT) {
*dstaddr = (FPW) INTEL_RESET; /* restore read mode */
return (1);
}
}
*dstaddr = (FPW) WR_BLOCK - 1; /* write 32 to buffer */
for (i = 0; i < WR_BLOCK; i++)
*dstaddr++ = *srcaddr++;
dstaddr -= 1;
*dstaddr = (FPW) INTEL_CONFIRM; /* write 32 to buffer */
/* arm simple, non interrupt dependent timer */
start = get_timer(0);
/* wait while polling the status register */
while ((*dstaddr & (FPW) INTEL_FINISHED) != (FPW) INTEL_OK) {
if (get_timer(start) > CFG_FLASH_WRITE_TOUT) {
*dstaddr = (FPW) INTEL_RESET; /* restore read mode */
return (1);
}
}
*dstaddr = (FPW) INTEL_RESET; /* restore read mode */
return (0);
}
/*-----------------------------------------------------------------------
* Write a word or halfword to Flash, returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
int write_data(flash_info_t * info, ulong dest, FPW data)
{
FPWV *addr = (FPWV *) dest;
ulong start;
int flag;
/* Check if Flash is (sufficiently) erased */
if ((*addr & data) != data) {
printf("not erased at %08lx (%lx)\n", (ulong) addr,
(ulong) * addr);
return (2);
}
/* Disable interrupts which might cause a timeout here */
flag = (int)disable_interrupts();
*addr = (FPW) INTEL_CLEAR;
*addr = (FPW) INTEL_RESET;
*addr = (FPW) INTEL_WRSETUP; /* write setup */
*addr = data;
if (flag)
enable_interrupts();
/* arm simple, non interrupt dependent timer */
start = get_timer(0);
/* wait while polling the status register */
while ((*addr & (FPW) INTEL_OK) != (FPW) INTEL_OK) {
if (get_timer(start) > CFG_FLASH_WRITE_TOUT) {
*addr = (FPW) INTEL_SUSERASE; /* suspend mode */
*addr = (FPW) INTEL_CLEAR; /* clear status */
*addr = (FPW) INTEL_RESET; /* reset */
return (1);
}
}
*addr = (FPW) INTEL_CLEAR; /* clear status */
*addr = (FPW) INTEL_RESET; /* restore read mode */
return (0);
}
#if defined(CONFIG_SERIAL_FLASH) && defined(CONFIG_CF_DSPI)
int write_ser_data(flash_info_t * info, ulong dest, uchar * data, ulong cnt)
{
ulong start;
int status, i;
u8 flashdata;
/* Check if Flash is (sufficiently) erased */
dspi_tx(ser_flash_cs, 0x80, SER_READ);
dspi_tx(ser_flash_cs, 0x80, (dest >> 16) & 0xFF);
dspi_tx(ser_flash_cs, 0x80, (dest >> 8) & 0xFF);
dspi_tx(ser_flash_cs, 0x80, dest & 0xFF);
dspi_rx();
dspi_rx();
dspi_rx();
dspi_rx();
dspi_tx(ser_flash_cs, 0x80, 0);
flashdata = dspi_rx();
dspi_tx(ser_flash_cs, 0x00, 0);
dspi_rx();
if ((flashdata & *data) != *data) {
printf("not erased at %08lx (%lx)\n", (ulong) dest,
(ulong) flashdata);
return (2);
}
dspi_tx(ser_flash_cs, 0x00, SER_WREN);
dspi_rx();
status = serial_flash_read_status(ser_flash_cs);
if (((status & 0x9C) != 0) && ((status & 0x02) != 0x02)) {
printf("Error Programming\n");
return 1;
}
start = get_timer(0);
dspi_tx(ser_flash_cs, 0x80, SER_PAGE_PROG);
dspi_tx(ser_flash_cs, 0x80, ((dest & 0xFF0000) >> 16));
dspi_tx(ser_flash_cs, 0x80, ((dest & 0xFF00) >> 8));
dspi_tx(ser_flash_cs, 0x80, (dest & 0xFF));
dspi_rx();
dspi_rx();
dspi_rx();
dspi_rx();
for (i = 0; i < (cnt - 1); i++) {
dspi_tx(ser_flash_cs, 0x80, *data);
dspi_rx();
data++;
}
dspi_tx(ser_flash_cs, 0x00, *data);
dspi_rx();
do {
status = serial_flash_read_status(ser_flash_cs);
if (get_timer(start) > CFG_FLASH_ERASE_TOUT) {
printf("Timeout\n");
return 1;
}
} while (status & 0x01);
return (0);
}
#endif
/*-----------------------------------------------------------------------
* Write a word to Flash for ATMEL FLASH
* A word is 16 bits, whichever the bus width of the flash bank
* (not an individual chip) is.
*
* returns:
* 0 - OK
* 1 - write timeout
* 2 - Flash not erased
*/
int write_word_atm(flash_info_t * info, volatile u8 * dest, u16 data)
{
ulong start;
int flag, i;
int res = 0; /* result, assume success */
FPWV *base; /* first address in flash bank */
/* Check if Flash is (sufficiently) erased */
if ((*((volatile u16 *)dest) & data) != data) {
return (2);
}
base = (FPWV *) (CFG_ATMEL_BASE);
for (i = 0; i < sizeof(u16); i++) {
/* Disable interrupts which might cause a timeout here */
flag = disable_interrupts();
base[FLASH_CYCLE1] = (u8) 0x00AA00AA; /* unlock */
base[FLASH_CYCLE2] = (u8) 0x00550055; /* unlock */
base[FLASH_CYCLE1] = (u8) 0x00A000A0; /* selects program mode */
*dest = data; /* start programming the data */
/* re-enable interrupts if necessary */
if (flag)
enable_interrupts();
start = get_timer(0);
/* data polling for D7 */
while (res == 0
&& (*dest & (u8) 0x00800080) !=
(data & (u8) 0x00800080)) {
if (get_timer(start) > CFG_FLASH_WRITE_TOUT) {
*dest = (u8) 0x00F000F0; /* reset bank */
res = 1;
}
}
*dest++ = (u8) 0x00F000F0; /* reset bank */
data >>= 8;
}
return (res);
}
void inline spin_wheel(void)
{
static int p = 0;
static char w[] = "\\/-";
printf("\010%c", w[p]);
(++p == 3) ? (p = 0) : 0;
}
#ifdef CFG_FLASH_PROTECTION
/*-----------------------------------------------------------------------
*/
int flash_real_protect(flash_info_t * info, long sector, int prot)
{
int rcode = 0; /* assume success */
FPWV *addr; /* address of sector */
FPW value;
addr = (FPWV *) (info->start[sector]);
switch (info->flash_id & FLASH_TYPEMASK) {
case FLASH_28F160C3B:
case FLASH_28F160C3T:
case FLASH_28F320C3B:
case FLASH_28F320C3T:
case FLASH_28F640C3B:
case FLASH_28F640C3T:
*addr = (FPW) INTEL_RESET; /* make sure in read mode */
*addr = (FPW) INTEL_LOCKBIT; /* lock command setup */
if (prot)
*addr = (FPW) INTEL_PROTECT; /* lock sector */
else
*addr = (FPW) INTEL_CONFIRM; /* unlock sector */
/* now see if it really is locked/unlocked as requested */
*addr = (FPW) INTEL_READID;
/* read sector protection at sector address, (A7 .. A0) = 0x02.
* D0 = 1 for each device if protected.
* If at least one device is protected the sector is marked
* protected, but return failure. Mixed protected and
* unprotected devices within a sector should never happen.
*/
value = addr[2] & (FPW) INTEL_PROTECT;
if (value == 0)
info->protect[sector] = 0;
else if (value == (FPW) INTEL_PROTECT)
info->protect[sector] = 1;
else {
/* error, mixed protected and unprotected */
rcode = 1;
info->protect[sector] = 1;
}
if (info->protect[sector] != prot)
rcode = 1; /* failed to protect/unprotect as requested */
/* reload all protection bits from hardware for now */
flash_sync_real_protect(info);
break;
default:
/* no hardware protect that we support */
info->protect[sector] = prot;
break;
}
return rcode;
}
#endif
#endif