blob: 25ef9a46c6d4622ba2de1276f3701680d23617af [file] [log] [blame]
/*
* linux/include/asm-nds/io.h
*
* Copyright (C) 1996-2000 Russell King
*
* Copyright (C) 2011 Andes Technology Corporation
* Shawn Lin, Andes Technology Corporation <nobuhiro@andestech.com>
* Macpaul Lin, Andes Technology Corporation <macpaul@andestech.com>
*
* SPDX-License-Identifier: GPL-2.0
*
* Modifications:
* 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
* constant addresses and variable addresses.
* 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
* specific IO header files.
* 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
* 04-Apr-1999 PJB Added check_signature.
* 12-Dec-1999 RMK More cleanups
* 18-Jun-2000 RMK Removed virt_to_* and friends definitions
*/
#ifndef __ASM_NDS_IO_H
#define __ASM_NDS_IO_H
/*
* CAUTION:
* - do not implement for NDS32 Arch yet.
* - cmd_pci.c, cmd_scsi.c, Lynxkdi.c, usb.c, usb_storage.c, etc...
* iinclude asm/io.h
*/
#ifdef __KERNEL__
#include <linux/types.h>
#include <asm/byteorder.h>
static inline void sync(void)
{
}
/*
* Given a physical address and a length, return a virtual address
* that can be used to access the memory range with the caching
* properties specified by "flags".
*/
#define MAP_NOCACHE (0)
#define MAP_WRCOMBINE (0)
#define MAP_WRBACK (0)
#define MAP_WRTHROUGH (0)
#ifdef CONFIG_ARCH_MAP_SYSMEM
static inline void *map_sysmem(phys_addr_t paddr, unsigned long len)
{
if(paddr <PHYS_SDRAM_0_SIZE + PHYS_SDRAM_1_SIZE)
paddr = paddr | 0x40000000;
return (void *)(uintptr_t)paddr;
}
static inline void *unmap_sysmem(const void *vaddr)
{
phys_addr_t paddr = (phys_addr_t)vaddr;
paddr = paddr & ~0x40000000;
return (void *)(uintptr_t)paddr;
}
static inline phys_addr_t map_to_sysmem(const void *ptr)
{
return (phys_addr_t)(uintptr_t)ptr;
}
#endif
static inline void *
map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags)
{
return (void *)paddr;
}
/*
* Take down a mapping set up by map_physmem().
*/
static inline void unmap_physmem(void *vaddr, unsigned long flags)
{
}
static inline phys_addr_t virt_to_phys(void *vaddr)
{
return (phys_addr_t)(vaddr);
}
/*
* Generic virtual read/write. Note that we don't support half-word
* read/writes. We define __arch_*[bl] here, and leave __arch_*w
* to the architecture specific code.
*/
#define __arch_getb(a) (*(unsigned char *)(a))
#define __arch_getw(a) (*(unsigned short *)(a))
#define __arch_getl(a) (*(unsigned int *)(a))
#define __arch_putb(v, a) (*(unsigned char *)(a) = (v))
#define __arch_putw(v, a) (*(unsigned short *)(a) = (v))
#define __arch_putl(v, a) (*(unsigned int *)(a) = (v))
extern void __raw_writesb(unsigned int addr, const void *data, int bytelen);
extern void __raw_writesw(unsigned int addr, const void *data, int wordlen);
extern void __raw_writesl(unsigned int addr, const void *data, int longlen);
extern void __raw_readsb(unsigned int addr, void *data, int bytelen);
extern void __raw_readsw(unsigned int addr, void *data, int wordlen);
extern void __raw_readsl(unsigned int addr, void *data, int longlen);
#define __raw_writeb(v, a) __arch_putb(v, a)
#define __raw_writew(v, a) __arch_putw(v, a)
#define __raw_writel(v, a) __arch_putl(v, a)
#define __raw_readb(a) __arch_getb(a)
#define __raw_readw(a) __arch_getw(a)
#define __raw_readl(a) __arch_getl(a)
/*
* TODO: The kernel offers some more advanced versions of barriers, it might
* have some advantages to use them instead of the simple one here.
*/
#define dmb() __asm__ __volatile__ ("" : : : "memory")
#define __iormb() dmb()
#define __iowmb() dmb()
static inline void writeb(u8 val, volatile void __iomem *addr)
{
__iowmb();
__arch_putb(val, addr);
}
static inline void writew(u16 val, volatile void __iomem *addr)
{
__iowmb();
__arch_putw(val, addr);
}
static inline void writel(u32 val, volatile void __iomem *addr)
{
__iowmb();
__arch_putl(val, addr);
}
static inline u8 readb(const volatile void __iomem *addr)
{
u8 val;
val = __arch_getb(addr);
__iormb();
return val;
}
static inline u16 readw(const volatile void __iomem *addr)
{
u16 val;
val = __arch_getw(addr);
__iormb();
return val;
}
static inline u32 readl(const volatile void __iomem *addr)
{
u32 val;
val = __arch_getl(addr);
__iormb();
return val;
}
/*
* The compiler seems to be incapable of optimising constants
* properly. Spell it out to the compiler in some cases.
* These are only valid for small values of "off" (< 1<<12)
*/
#define __raw_base_writeb(val, base, off) __arch_base_putb(val, base, off)
#define __raw_base_writew(val, base, off) __arch_base_putw(val, base, off)
#define __raw_base_writel(val, base, off) __arch_base_putl(val, base, off)
#define __raw_base_readb(base, off) __arch_base_getb(base, off)
#define __raw_base_readw(base, off) __arch_base_getw(base, off)
#define __raw_base_readl(base, off) __arch_base_getl(base, off)
#define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a)
#define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a))
#define out_le32(a, v) out_arch(l, le32, a, v)
#define out_le16(a, v) out_arch(w, le16, a, v)
#define in_le32(a) in_arch(l, le32, a)
#define in_le16(a) in_arch(w, le16, a)
#define out_be32(a, v) out_arch(l, be32, a, v)
#define out_be16(a, v) out_arch(w, be16, a, v)
#define in_be32(a) in_arch(l, be32, a)
#define in_be16(a) in_arch(w, be16, a)
#define out_8(a, v) __raw_writeb(v, a)
#define in_8(a) __raw_readb(a)
/*
* Clear and set bits in one shot. These macros can be used to clear and
* set multiple bits in a register using a single call. These macros can
* also be used to set a multiple-bit bit pattern using a mask, by
* specifying the mask in the 'clear' parameter and the new bit pattern
* in the 'set' parameter.
*/
#define clrbits(type, addr, clear) \
out_##type((addr), in_##type(addr) & ~(clear))
#define setbits(type, addr, set) \
out_##type((addr), in_##type(addr) | (set))
#define clrsetbits(type, addr, clear, set) \
out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
#define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
#define setbits_be32(addr, set) setbits(be32, addr, set)
#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
#define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
#define setbits_le32(addr, set) setbits(le32, addr, set)
#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
#define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
#define setbits_be16(addr, set) setbits(be16, addr, set)
#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
#define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
#define setbits_le16(addr, set) setbits(le16, addr, set)
#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
#define clrbits_8(addr, clear) clrbits(8, addr, clear)
#define setbits_8(addr, set) setbits(8, addr, set)
#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
/*
* Now, pick up the machine-defined IO definitions
* #include <asm/arch/io.h>
*/
/*
* IO port access primitives
* -------------------------
*
* The NDS32 doesn't have special IO access instructions just like ARM;
* all IO is memory mapped.
* Note that these are defined to perform little endian accesses
* only. Their primary purpose is to access PCI and ISA peripherals.
*
* Note that for a big endian machine, this implies that the following
* big endian mode connectivity is in place, as described by numerious
* ARM documents:
*
* PCI: D0-D7 D8-D15 D16-D23 D24-D31
* ARM: D24-D31 D16-D23 D8-D15 D0-D7
*
* The machine specific io.h include defines __io to translate an "IO"
* address to a memory address.
*
* Note that we prevent GCC re-ordering or caching values in expressions
* by introducing sequence points into the in*() definitions. Note that
* __raw_* do not guarantee this behaviour.
*
* The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
*/
#ifdef __io
#define outb(v, p) __raw_writeb(v, __io(p))
#define outw(v, p) __raw_writew(cpu_to_le16(v), __io(p))
#define outl(v, p) __raw_writel(cpu_to_le32(v), __io(p))
#define inb(p) ({ unsigned int __v = __raw_readb(__io(p)); __v; })
#define inw(p) ({ unsigned int __v = le16_to_cpu(__raw_readw(__io(p))); __v; })
#define inl(p) ({ unsigned int __v = le32_to_cpu(__raw_readl(__io(p))); __v; })
#define outsb(p, d, l) writesb(__io(p), d, l)
#define outsw(p, d, l) writesw(__io(p), d, l)
#define outsl(p, d, l) writesl(__io(p), d, l)
#define insb(p, d, l) readsb(__io(p), d, l)
#define insw(p, d, l) readsw(__io(p), d, l)
#define insl(p, d, l) readsl(__io(p), d, l)
static inline void readsb(unsigned int *addr, void * data, int bytelen)
{
unsigned char *ptr = (unsigned char *)addr;
unsigned char *ptr2 = (unsigned char *)data;
while (bytelen) {
*ptr2 = *ptr;
ptr2++;
bytelen--;
}
}
static inline void readsw(unsigned int *addr, void * data, int wordlen)
{
unsigned short *ptr = (unsigned short *)addr;
unsigned short *ptr2 = (unsigned short *)data;
while (wordlen) {
*ptr2 = *ptr;
ptr2++;
wordlen--;
}
}
static inline void readsl(unsigned int *addr, void * data, int longlen)
{
unsigned int *ptr = (unsigned int *)addr;
unsigned int *ptr2 = (unsigned int *)data;
while (longlen) {
*ptr2 = *ptr;
ptr2++;
longlen--;
}
}
static inline void writesb(unsigned int *addr, const void * data, int bytelen)
{
unsigned char *ptr = (unsigned char *)addr;
unsigned char *ptr2 = (unsigned char *)data;
while (bytelen) {
*ptr = *ptr2;
ptr2++;
bytelen--;
}
}
static inline void writesw(unsigned int *addr, const void * data, int wordlen)
{
unsigned short *ptr = (unsigned short *)addr;
unsigned short *ptr2 = (unsigned short *)data;
while (wordlen) {
*ptr = *ptr2;
ptr2++;
wordlen--;
}
}
static inline void writesl(unsigned int *addr, const void * data, int longlen)
{
unsigned int *ptr = (unsigned int *)addr;
unsigned int *ptr2 = (unsigned int *)data;
while (longlen) {
*ptr = *ptr2;
ptr2++;
longlen--;
}
}
#endif
#define outb_p(val, port) outb((val), (port))
#define outw_p(val, port) outw((val), (port))
#define outl_p(val, port) outl((val), (port))
#define inb_p(port) inb((port))
#define inw_p(port) inw((port))
#define inl_p(port) inl((port))
#define outsb_p(port, from, len) outsb(port, from, len)
#define outsw_p(port, from, len) outsw(port, from, len)
#define outsl_p(port, from, len) outsl(port, from, len)
#define insb_p(port, to, len) insb(port, to, len)
#define insw_p(port, to, len) insw(port, to, len)
#define insl_p(port, to, len) insl(port, to, len)
/*
* DMA-consistent mapping functions. These allocate/free a region of
* uncached, unwrite-buffered mapped memory space for use with DMA
* devices. This is the "generic" version. The PCI specific version
* is in pci.h
*/
extern void *consistent_alloc(int gfp, size_t size, dma_addr_t *handle);
extern void consistent_free(void *vaddr, size_t size, dma_addr_t handle);
extern void consistent_sync(void *vaddr, size_t size, int rw);
/*
* String version of IO memory access ops:
*/
extern void _memcpy_fromio(void *, unsigned long, size_t);
extern void _memcpy_toio(unsigned long, const void *, size_t);
extern void _memset_io(unsigned long, int, size_t);
extern void __readwrite_bug(const char *fn);
/*
* If this architecture has PCI memory IO, then define the read/write
* macros. These should only be used with the cookie passed from
* ioremap.
*/
#ifdef __mem_pci
#define readb(c) ({ unsigned int __v = \
__raw_readb(__mem_pci(c)); __v; })
#define readw(c) ({ unsigned int __v = \
le16_to_cpu(__raw_readw(__mem_pci(c))); __v; })
#define readl(c) ({ unsigned int __v = \
le32_to_cpu(__raw_readl(__mem_pci(c))); __v; })
#define writeb(v, c) __raw_writeb(v, __mem_pci(c))
#define writew(v, c) __raw_writew(cpu_to_le16(v), __mem_pci(c))
#define writel(v, c) __raw_writel(cpu_to_le32(v), __mem_pci(c))
#define memset_io(c, v, l) _memset_io(__mem_pci(c), (v), (l))
#define memcpy_fromio(a, c, l) _memcpy_fromio((a), __mem_pci(c), (l))
#define memcpy_toio(c, a, l) _memcpy_toio(__mem_pci(c), (a), (l))
#define eth_io_copy_and_sum(s, c, l, b) \
eth_copy_and_sum((s), __mem_pci(c), (l), (b))
static inline int
check_signature(unsigned long io_addr, const unsigned char *signature,
int length)
{
int retval = 0;
do {
if (readb(io_addr) != *signature)
goto out;
io_addr++;
signature++;
length--;
} while (length);
retval = 1;
out:
return retval;
}
#endif /* __mem_pci */
/*
* If this architecture has ISA IO, then define the isa_read/isa_write
* macros.
*/
#ifdef __mem_isa
#define isa_readb(addr) __raw_readb(__mem_isa(addr))
#define isa_readw(addr) __raw_readw(__mem_isa(addr))
#define isa_readl(addr) __raw_readl(__mem_isa(addr))
#define isa_writeb(val, addr) __raw_writeb(val, __mem_isa(addr))
#define isa_writew(val, addr) __raw_writew(val, __mem_isa(addr))
#define isa_writel(val, addr) __raw_writel(val, __mem_isa(addr))
#define isa_memset_io(a, b, c) _memset_io(__mem_isa(a), (b), (c))
#define isa_memcpy_fromio(a, b, c) _memcpy_fromio((a), __mem_isa(b), (c))
#define isa_memcpy_toio(a, b, c) _memcpy_toio(__mem_isa((a)), (b), (c))
#define isa_eth_io_copy_and_sum(a, b, c, d) \
eth_copy_and_sum((a), __mem_isa(b), (c), (d))
static inline int
isa_check_signature(unsigned long io_addr, const unsigned char *signature,
int length)
{
int retval = 0;
do {
if (isa_readb(io_addr) != *signature)
goto out;
io_addr++;
signature++;
length--;
} while (length);
retval = 1;
out:
return retval;
}
#else /* __mem_isa */
#define isa_readb(addr) (__readwrite_bug("isa_readb"), 0)
#define isa_readw(addr) (__readwrite_bug("isa_readw"), 0)
#define isa_readl(addr) (__readwrite_bug("isa_readl"), 0)
#define isa_writeb(val, addr) __readwrite_bug("isa_writeb")
#define isa_writew(val, addr) __readwrite_bug("isa_writew")
#define isa_writel(val, addr) __readwrite_bug("isa_writel")
#define isa_memset_io(a, b, c) __readwrite_bug("isa_memset_io")
#define isa_memcpy_fromio(a, b, c) __readwrite_bug("isa_memcpy_fromio")
#define isa_memcpy_toio(a, b, c) __readwrite_bug("isa_memcpy_toio")
#define isa_eth_io_copy_and_sum(a, b, c, d) \
__readwrite_bug("isa_eth_io_copy_and_sum")
#define isa_check_signature(io, sig, len) (0)
#endif /* __mem_isa */
#endif /* __KERNEL__ */
#endif /* __ASM_NDS_IO_H */