| /* |
| * Copyright 2004 Freescale Semiconductor. |
| * (C) Copyright 2003 Motorola Inc. |
| * Xianghua Xiao (X.Xiao@motorola.com) |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/processor.h> |
| #include <i2c.h> |
| #include <spd.h> |
| #include <asm/mmu.h> |
| |
| |
| #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| extern void dma_init(void); |
| extern uint dma_check(void); |
| extern int dma_xfer(void *dest, uint count, void *src); |
| #endif |
| |
| #ifdef CONFIG_SPD_EEPROM |
| |
| #ifndef CFG_READ_SPD |
| #define CFG_READ_SPD i2c_read |
| #endif |
| |
| static unsigned int setup_laws_and_tlbs(unsigned int memsize); |
| |
| |
| /* |
| * Convert picoseconds into clock cycles (rounding up if needed). |
| */ |
| |
| int |
| picos_to_clk(int picos) |
| { |
| int clks; |
| |
| clks = picos / (2000000000 / (get_bus_freq(0) / 1000)); |
| if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) { |
| clks++; |
| } |
| |
| return clks; |
| } |
| |
| |
| /* |
| * Calculate the Density of each Physical Rank. |
| * Returned size is in bytes. |
| * |
| * Study these table from Byte 31 of JEDEC SPD Spec. |
| * |
| * DDR I DDR II |
| * Bit Size Size |
| * --- ----- ------ |
| * 7 high 512MB 512MB |
| * 6 256MB 256MB |
| * 5 128MB 128MB |
| * 4 64MB 16GB |
| * 3 32MB 8GB |
| * 2 16MB 4GB |
| * 1 2GB 2GB |
| * 0 low 1GB 1GB |
| * |
| * Reorder Table to be linear by stripping the bottom |
| * 2 or 5 bits off and shifting them up to the top. |
| */ |
| |
| unsigned int |
| compute_banksize(unsigned int mem_type, unsigned char row_dens) |
| { |
| unsigned int bsize; |
| |
| if (mem_type == SPD_MEMTYPE_DDR) { |
| /* Bottom 2 bits up to the top. */ |
| bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; |
| debug("DDR: DDR I rank density = 0x%08x\n", bsize); |
| } else { |
| /* Bottom 5 bits up to the top. */ |
| bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27; |
| debug("DDR: DDR II rank density = 0x%08x\n", bsize); |
| } |
| return bsize; |
| } |
| |
| |
| /* |
| * Convert a two-nibble BCD value into a cycle time. |
| * While the spec calls for nano-seconds, picos are returned. |
| * |
| * This implements the tables for bytes 9, 23 and 25 for both |
| * DDR I and II. No allowance for distinguishing the invalid |
| * fields absent for DDR I yet present in DDR II is made. |
| * (That is, cycle times of .25, .33, .66 and .75 ns are |
| * allowed for both DDR II and I.) |
| */ |
| |
| unsigned int |
| convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) |
| { |
| /* |
| * Table look up the lower nibble, allow DDR I & II. |
| */ |
| unsigned int tenths_ps[16] = { |
| 0, |
| 100, |
| 200, |
| 300, |
| 400, |
| 500, |
| 600, |
| 700, |
| 800, |
| 900, |
| 250, |
| 330, /* FIXME: Is 333 better/valid? */ |
| 660, /* FIXME: Is 667 better/valid? */ |
| 750, |
| 0, /* undefined */ |
| 0 /* undefined */ |
| }; |
| |
| unsigned int whole_ns = (spd_val & 0xF0) >> 4; |
| unsigned int tenth_ns = spd_val & 0x0F; |
| unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; |
| |
| return ps; |
| } |
| |
| |
| long int |
| spd_sdram(void) |
| { |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile ccsr_ddr_t *ddr = &immap->im_ddr; |
| volatile ccsr_gur_t *gur = &immap->im_gur; |
| spd_eeprom_t spd; |
| unsigned int n_ranks; |
| unsigned int rank_density; |
| unsigned int odt_rd_cfg, odt_wr_cfg; |
| unsigned int odt_cfg, mode_odt_enable; |
| unsigned int dqs_cfg; |
| unsigned char twr_clk, twtr_clk, twr_auto_clk; |
| unsigned int tCKmin_ps, tCKmax_ps; |
| unsigned int max_data_rate, effective_data_rate; |
| unsigned int busfreq; |
| unsigned sdram_cfg; |
| unsigned int memsize; |
| unsigned char caslat, caslat_ctrl; |
| unsigned int trfc, trfc_clk, trfc_low, trfc_high; |
| unsigned int trcd_clk; |
| unsigned int trtp_clk; |
| unsigned char cke_min_clk; |
| unsigned char add_lat; |
| unsigned char wr_lat; |
| unsigned char wr_data_delay; |
| unsigned char four_act; |
| unsigned char cpo; |
| unsigned char burst_len; |
| unsigned int mode_caslat; |
| unsigned char sdram_type; |
| unsigned char d_init; |
| |
| /* |
| * Read SPD information. |
| */ |
| CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd)); |
| |
| /* |
| * Check for supported memory module types. |
| */ |
| if (spd.mem_type != SPD_MEMTYPE_DDR && |
| spd.mem_type != SPD_MEMTYPE_DDR2) { |
| printf("Unable to locate DDR I or DDR II module.\n" |
| " Fundamental memory type is 0x%0x\n", |
| spd.mem_type); |
| return 0; |
| } |
| |
| /* |
| * These test gloss over DDR I and II differences in interpretation |
| * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks |
| * are not supported on DDR I; and not encoded on DDR II. |
| * |
| * Also note that the 8548 controller can support: |
| * 12 <= nrow <= 16 |
| * and |
| * 8 <= ncol <= 11 (still, for DDR) |
| * 6 <= ncol <= 9 (for FCRAM) |
| */ |
| if (spd.nrow_addr < 12 || spd.nrow_addr > 14) { |
| printf("DDR: Unsupported number of Row Addr lines: %d.\n", |
| spd.nrow_addr); |
| return 0; |
| } |
| if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { |
| printf("DDR: Unsupported number of Column Addr lines: %d.\n", |
| spd.ncol_addr); |
| return 0; |
| } |
| |
| /* |
| * Determine the number of physical banks controlled by |
| * different Chip Select signals. This is not quite the |
| * same as the number of DIMM modules on the board. Feh. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| n_ranks = spd.nrows; |
| } else { |
| n_ranks = (spd.nrows & 0x7) + 1; |
| } |
| |
| debug("DDR: number of ranks = %d\n", n_ranks); |
| |
| if (n_ranks > 2) { |
| printf("DDR: Only 2 chip selects are supported: %d\n", |
| n_ranks); |
| return 0; |
| } |
| |
| /* |
| * Adjust DDR II IO voltage biasing. It just makes it work. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| gur->ddrioovcr = (0 |
| | 0x80000000 /* Enable */ |
| | 0x10000000 /* VSEL to 1.8V */ |
| ); |
| } |
| |
| /* |
| * Determine the size of each Rank in bytes. |
| */ |
| rank_density = compute_banksize(spd.mem_type, spd.row_dens); |
| |
| |
| /* |
| * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg |
| */ |
| ddr->cs0_bnds = (rank_density >> 24) - 1; |
| |
| /* |
| * ODT configuration recommendation from DDR Controller Chapter. |
| */ |
| odt_rd_cfg = 0; /* Never assert ODT */ |
| odt_wr_cfg = 0; /* Never assert ODT */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */ |
| #if 0 |
| /* FIXME: How to determine the number of dimm modules? */ |
| if (n_dimm_modules == 2) { |
| odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */ |
| } |
| #endif |
| } |
| |
| ddr->cs0_config = ( 1 << 31 |
| | (odt_rd_cfg << 20) |
| | (odt_wr_cfg << 16) |
| | (spd.nrow_addr - 12) << 8 |
| | (spd.ncol_addr - 8) ); |
| debug("\n"); |
| debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds); |
| debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); |
| |
| if (n_ranks == 2) { |
| /* |
| * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg |
| */ |
| ddr->cs1_bnds = ( (rank_density >> 8) |
| | ((rank_density >> (24 - 1)) - 1) ); |
| ddr->cs1_config = ( 1<<31 |
| | (odt_rd_cfg << 20) |
| | (odt_wr_cfg << 16) |
| | (spd.nrow_addr - 12) << 8 |
| | (spd.ncol_addr - 8) ); |
| debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds); |
| debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config); |
| } |
| |
| |
| /* |
| * Find the largest CAS by locating the highest 1 bit |
| * in the spd.cas_lat field. Translate it to a DDR |
| * controller field value: |
| * |
| * CAS Lat DDR I DDR II Ctrl |
| * Clocks SPD Bit SPD Bit Value |
| * ------- ------- ------- ----- |
| * 1.0 0 0001 |
| * 1.5 1 0010 |
| * 2.0 2 2 0011 |
| * 2.5 3 0100 |
| * 3.0 4 3 0101 |
| * 3.5 5 0110 |
| * 4.0 4 0111 |
| * 4.5 1000 |
| * 5.0 5 1001 |
| */ |
| caslat = __ilog2(spd.cas_lat); |
| if ((spd.mem_type == SPD_MEMTYPE_DDR) |
| && (caslat > 5)) { |
| printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); |
| return 0; |
| |
| } else if (spd.mem_type == SPD_MEMTYPE_DDR2 |
| && (caslat < 2 || caslat > 5)) { |
| printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", |
| spd.cas_lat); |
| return 0; |
| } |
| debug("DDR: caslat SPD bit is %d\n", caslat); |
| |
| /* |
| * Calculate the Maximum Data Rate based on the Minimum Cycle time. |
| * The SPD clk_cycle field (tCKmin) is measured in tenths of |
| * nanoseconds and represented as BCD. |
| */ |
| tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle); |
| debug("DDR: tCKmin = %d ps\n", tCKmin_ps); |
| |
| /* |
| * Double-data rate, scaled 1000 to picoseconds, and back down to MHz. |
| */ |
| max_data_rate = 2 * 1000 * 1000 / tCKmin_ps; |
| debug("DDR: Module max data rate = %d Mhz\n", max_data_rate); |
| |
| |
| /* |
| * Adjust the CAS Latency to allow for bus speeds that |
| * are slower than the DDR module. |
| */ |
| busfreq = get_bus_freq(0) / 1000000; /* MHz */ |
| |
| effective_data_rate = max_data_rate; |
| if (busfreq < 90) { |
| /* DDR rate out-of-range */ |
| puts("DDR: platform frequency is not fit for DDR rate\n"); |
| return 0; |
| |
| } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) { |
| /* |
| * busfreq 90~230 range, treated as DDR 200. |
| */ |
| effective_data_rate = 200; |
| if (spd.clk_cycle3 == 0xa0) /* 10 ns */ |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0xa0) |
| caslat--; |
| |
| } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) { |
| /* |
| * busfreq 230~280 range, treated as DDR 266. |
| */ |
| effective_data_rate = 266; |
| if (spd.clk_cycle3 == 0x75) /* 7.5 ns */ |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x75) |
| caslat--; |
| |
| } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) { |
| /* |
| * busfreq 280~350 range, treated as DDR 333. |
| */ |
| effective_data_rate = 333; |
| if (spd.clk_cycle3 == 0x60) /* 6.0 ns */ |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x60) |
| caslat--; |
| |
| } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) { |
| /* |
| * busfreq 350~460 range, treated as DDR 400. |
| */ |
| effective_data_rate = 400; |
| if (spd.clk_cycle3 == 0x50) /* 5.0 ns */ |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x50) |
| caslat--; |
| |
| } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) { |
| /* |
| * busfreq 460~560 range, treated as DDR 533. |
| */ |
| effective_data_rate = 533; |
| if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */ |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x3D) |
| caslat--; |
| |
| } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) { |
| /* |
| * busfreq 560~700 range, treated as DDR 667. |
| */ |
| effective_data_rate = 667; |
| if (spd.clk_cycle3 == 0x30) /* 3.0 ns */ |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x30) |
| caslat--; |
| |
| } else if (700 <= busfreq) { |
| /* |
| * DDR rate out-of-range |
| */ |
| printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n", |
| busfreq, max_data_rate); |
| return 0; |
| } |
| |
| |
| /* |
| * Convert caslat clocks to DDR controller value. |
| * Force caslat_ctrl to be DDR Controller field-sized. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| caslat_ctrl = (caslat + 1) & 0x07; |
| } else { |
| caslat_ctrl = (2 * caslat - 1) & 0x0f; |
| } |
| |
| debug("DDR: effective data rate is %d MHz\n", effective_data_rate); |
| debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", |
| caslat, caslat_ctrl); |
| |
| /* |
| * Timing Config 0. |
| * Avoid writing for DDR I. The new PQ38 DDR controller |
| * dreams up non-zero default values to be backwards compatible. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| unsigned char taxpd_clk = 8; /* By the book. */ |
| unsigned char tmrd_clk = 2; /* By the book. */ |
| unsigned char act_pd_exit = 2; /* Empirical? */ |
| unsigned char pre_pd_exit = 6; /* Empirical? */ |
| |
| ddr->timing_cfg_0 = (0 |
| | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */ |
| | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */ |
| | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */ |
| | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */ |
| ); |
| #if 0 |
| ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */ |
| #endif |
| debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); |
| |
| } else { |
| #if 0 |
| /* |
| * Force extra cycles with 0xaa bits. |
| * Incidentally supply the dreamt-up backwards compat value! |
| */ |
| ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */ |
| ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */ |
| debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); |
| #endif |
| } |
| |
| |
| /* |
| * Some Timing Config 1 values now. |
| * Sneak Extended Refresh Recovery in here too. |
| */ |
| |
| /* |
| * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, |
| * use conservative value. |
| * For DDR II, they are bytes 36 and 37, in quarter nanos. |
| */ |
| |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| twr_clk = 3; /* Clocks */ |
| twtr_clk = 1; /* Clocks */ |
| } else { |
| twr_clk = picos_to_clk(spd.twr * 250); |
| twtr_clk = picos_to_clk(spd.twtr * 250); |
| } |
| |
| /* |
| * Calculate Trfc, in picos. |
| * DDR I: Byte 42 straight up in ns. |
| * DDR II: Byte 40 and 42 swizzled some, in ns. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| trfc = spd.trfc * 1000; /* up to ps */ |
| } else { |
| unsigned int byte40_table_ps[8] = { |
| 0, |
| 250, |
| 330, |
| 500, |
| 660, |
| 750, |
| 0, |
| 0 |
| }; |
| |
| trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 |
| + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; |
| } |
| trfc_clk = picos_to_clk(trfc); |
| |
| /* |
| * Trcd, Byte 29, from quarter nanos to ps and clocks. |
| */ |
| trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; |
| |
| /* |
| * Convert trfc_clk to DDR controller fields. DDR I should |
| * fit in the REFREC field (16-19) of TIMING_CFG_1, but the |
| * 8548 controller has an extended REFREC field of three bits. |
| * The controller automatically adds 8 clocks to this value, |
| * so preadjust it down 8 first before splitting it up. |
| */ |
| trfc_low = (trfc_clk - 8) & 0xf; |
| trfc_high = ((trfc_clk - 8) >> 4) & 0x3; |
| |
| /* |
| * Sneak in some Extended Refresh Recovery. |
| */ |
| ddr->ext_refrec = (trfc_high << 16); |
| debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec); |
| |
| ddr->timing_cfg_1 = |
| (0 |
| | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */ |
| | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */ |
| | (trcd_clk << 20) /* ACTTORW */ |
| | (caslat_ctrl << 16) /* CASLAT */ |
| | (trfc_low << 12) /* REFEC */ |
| | ((twr_clk & 0x07) << 8) /* WRRREC */ |
| | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */ |
| | ((twtr_clk & 0x07) << 0) /* WRTORD */ |
| ); |
| |
| debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1); |
| |
| |
| /* |
| * Timing_Config_2 |
| * Was: 0x00000800; |
| */ |
| |
| /* |
| * Additive Latency |
| * For DDR I, 0. |
| * For DDR II, with ODT enabled, use "a value" less than ACTTORW, |
| * which comes from Trcd, and also note that: |
| * add_lat + caslat must be >= 4 |
| */ |
| add_lat = 0; |
| if (spd.mem_type == SPD_MEMTYPE_DDR2 |
| && (odt_wr_cfg || odt_rd_cfg) |
| && (caslat < 4)) { |
| add_lat = 4 - caslat; |
| if (add_lat > trcd_clk) { |
| add_lat = trcd_clk - 1; |
| } |
| } |
| |
| /* |
| * Write Data Delay |
| * Historically 0x2 == 4/8 clock delay. |
| * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. |
| */ |
| wr_data_delay = 3; |
| |
| /* |
| * Write Latency |
| * Read to Precharge |
| * Minimum CKE Pulse Width. |
| * Four Activate Window |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| /* |
| * This is a lie. It should really be 1, but if it is |
| * set to 1, bits overlap into the old controller's |
| * otherwise unused ACSM field. If we leave it 0, then |
| * the HW will magically treat it as 1 for DDR 1. Oh Yea. |
| */ |
| wr_lat = 0; |
| |
| trtp_clk = 2; /* By the book. */ |
| cke_min_clk = 1; /* By the book. */ |
| four_act = 1; /* By the book. */ |
| |
| } else { |
| wr_lat = caslat - 1; |
| |
| /* Convert SPD value from quarter nanos to picos. */ |
| trtp_clk = picos_to_clk(spd.trtp * 250); |
| |
| cke_min_clk = 3; /* By the book. */ |
| four_act = picos_to_clk(37500); /* By the book. 1k pages? */ |
| } |
| |
| /* |
| * Empirically set ~MCAS-to-preamble override for DDR 2. |
| * Your milage will vary. |
| */ |
| cpo = 0; |
| if (spd.mem_type == SPD_MEMTYPE_DDR2) { |
| if (effective_data_rate == 266 || effective_data_rate == 333) { |
| cpo = 0x7; /* READ_LAT + 5/4 */ |
| } else if (effective_data_rate == 400) { |
| cpo = 0x9; /* READ_LAT + 7/4 */ |
| } else { |
| /* Pure speculation */ |
| cpo = 0xb; |
| } |
| } |
| |
| ddr->timing_cfg_2 = (0 |
| | ((add_lat & 0x7) << 28) /* ADD_LAT */ |
| | ((cpo & 0x1f) << 23) /* CPO */ |
| | ((wr_lat & 0x7) << 19) /* WR_LAT */ |
| | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */ |
| | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */ |
| | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */ |
| | ((four_act & 0x1f) << 0) /* FOUR_ACT */ |
| ); |
| |
| debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2); |
| |
| |
| /* |
| * Determine the Mode Register Set. |
| * |
| * This is nominally part specific, but it appears to be |
| * consistent for all DDR I devices, and for all DDR II devices. |
| * |
| * caslat must be programmed |
| * burst length is always 4 |
| * burst type is sequential |
| * |
| * For DDR I: |
| * operating mode is "normal" |
| * |
| * For DDR II: |
| * other stuff |
| */ |
| |
| mode_caslat = 0; |
| |
| /* |
| * Table lookup from DDR I or II Device Operation Specs. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| if (1 <= caslat && caslat <= 4) { |
| unsigned char mode_caslat_table[4] = { |
| 0x5, /* 1.5 clocks */ |
| 0x2, /* 2.0 clocks */ |
| 0x6, /* 2.5 clocks */ |
| 0x3 /* 3.0 clocks */ |
| }; |
| mode_caslat = mode_caslat_table[caslat - 1]; |
| } else { |
| puts("DDR I: Only CAS Latencies of 1.5, 2.0, " |
| "2.5 and 3.0 clocks are supported.\n"); |
| return 0; |
| } |
| |
| } else { |
| if (2 <= caslat && caslat <= 5) { |
| mode_caslat = caslat; |
| } else { |
| puts("DDR II: Only CAS Latencies of 2.0, 3.0, " |
| "4.0 and 5.0 clocks are supported.\n"); |
| return 0; |
| } |
| } |
| |
| /* |
| * Encoded Burst Lenght of 4. |
| */ |
| burst_len = 2; /* Fiat. */ |
| |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| twr_auto_clk = 0; /* Historical */ |
| } else { |
| /* |
| * Determine tCK max in picos. Grab tWR and convert to picos. |
| * Auto-precharge write recovery is: |
| * WR = roundup(tWR_ns/tCKmax_ns). |
| * |
| * Ponder: Is twr_auto_clk different than twr_clk? |
| */ |
| tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax); |
| twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps; |
| } |
| |
| |
| /* |
| * Mode Reg in bits 16 ~ 31, |
| * Extended Mode Reg 1 in bits 0 ~ 15. |
| */ |
| mode_odt_enable = 0x0; /* Default disabled */ |
| if (odt_wr_cfg || odt_rd_cfg) { |
| /* |
| * Bits 6 and 2 in Extended MRS(1) |
| * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. |
| * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. |
| */ |
| mode_odt_enable = 0x40; /* 150 Ohm */ |
| } |
| |
| ddr->sdram_mode = |
| (0 |
| | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */ |
| | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */ |
| | (twr_auto_clk << 9) /* Write Recovery Autopre */ |
| | (mode_caslat << 4) /* caslat */ |
| | (burst_len << 0) /* Burst length */ |
| ); |
| |
| debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode); |
| |
| |
| /* |
| * Clear EMRS2 and EMRS3. |
| */ |
| ddr->sdram_mode_2 = 0; |
| debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2); |
| |
| |
| /* |
| * Determine Refresh Rate. Ignore self refresh bit on DDR I. |
| * Table from SPD Spec, Byte 12, converted to picoseconds and |
| * filled in with "default" normal values. |
| */ |
| { |
| unsigned int refresh_clk; |
| unsigned int refresh_time_ns[8] = { |
| 15625000, /* 0 Normal 1.00x */ |
| 3900000, /* 1 Reduced .25x */ |
| 7800000, /* 2 Extended .50x */ |
| 31300000, /* 3 Extended 2.00x */ |
| 62500000, /* 4 Extended 4.00x */ |
| 125000000, /* 5 Extended 8.00x */ |
| 15625000, /* 6 Normal 1.00x filler */ |
| 15625000, /* 7 Normal 1.00x filler */ |
| }; |
| |
| refresh_clk = picos_to_clk(refresh_time_ns[spd.refresh & 0x7]); |
| |
| /* |
| * Set BSTOPRE to 0x100 for page mode |
| * If auto-charge is used, set BSTOPRE = 0 |
| */ |
| ddr->sdram_interval = |
| (0 |
| | (refresh_clk & 0x3fff) << 16 |
| | 0x100 |
| ); |
| debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval); |
| } |
| |
| /* |
| * Is this an ECC DDR chip? |
| * But don't mess with it if the DDR controller will init mem. |
| */ |
| #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| if (spd.config == 0x02) { |
| ddr->err_disable = 0x0000000d; |
| ddr->err_sbe = 0x00ff0000; |
| } |
| debug("DDR: err_disable = 0x%08x\n", ddr->err_disable); |
| debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe); |
| #endif |
| |
| asm("sync;isync;msync"); |
| udelay(500); |
| |
| /* |
| * SDRAM Cfg 2 |
| */ |
| |
| /* |
| * When ODT is enabled, Chap 9 suggests asserting ODT to |
| * internal IOs only during reads. |
| */ |
| odt_cfg = 0; |
| if (odt_rd_cfg | odt_wr_cfg) { |
| odt_cfg = 0x2; /* ODT to IOs during reads */ |
| } |
| |
| /* |
| * Try to use differential DQS with DDR II. |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| dqs_cfg = 0; /* No Differential DQS for DDR I */ |
| } else { |
| dqs_cfg = 0x1; /* Differential DQS for DDR II */ |
| } |
| |
| #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| /* |
| * Use the DDR controller to auto initialize memory. |
| */ |
| d_init = 1; |
| ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE; |
| debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init); |
| #else |
| /* |
| * Memory will be initialized via DMA, or not at all. |
| */ |
| d_init = 0; |
| #endif |
| |
| ddr->sdram_cfg_2 = (0 |
| | (dqs_cfg << 26) /* Differential DQS */ |
| | (odt_cfg << 21) /* ODT */ |
| | (d_init << 4) /* D_INIT auto init DDR */ |
| ); |
| |
| debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2); |
| |
| |
| #ifdef MPC85xx_DDR_SDRAM_CLK_CNTL |
| { |
| unsigned char clk_adjust; |
| |
| /* |
| * Setup the clock control. |
| * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 |
| * SDRAM_CLK_CNTL[5-7] = Clock Adjust |
| * 0110 3/4 cycle late |
| * 0111 7/8 cycle late |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR) { |
| clk_adjust = 0x6; |
| } else { |
| clk_adjust = 0x7; |
| } |
| |
| ddr->sdram_clk_cntl = (0 |
| | 0x80000000 |
| | (clk_adjust << 23) |
| ); |
| debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl); |
| } |
| #endif |
| |
| /* |
| * Figure out the settings for the sdram_cfg register. |
| * Build up the entire register in 'sdram_cfg' before writing |
| * since the write into the register will actually enable the |
| * memory controller; all settings must be done before enabling. |
| * |
| * sdram_cfg[0] = 1 (ddr sdram logic enable) |
| * sdram_cfg[1] = 1 (self-refresh-enable) |
| * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) |
| * 010 DDR 1 SDRAM |
| * 011 DDR 2 SDRAM |
| */ |
| sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3; |
| sdram_cfg = (0 |
| | (1 << 31) /* Enable */ |
| | (1 << 30) /* Self refresh */ |
| | (sdram_type << 24) /* SDRAM type */ |
| ); |
| |
| /* |
| * sdram_cfg[3] = RD_EN - registered DIMM enable |
| * A value of 0x26 indicates micron registered DIMMS (micron.com) |
| */ |
| if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) { |
| sdram_cfg |= 0x10000000; /* RD_EN */ |
| } |
| |
| #if defined(CONFIG_DDR_ECC) |
| /* |
| * If the user wanted ECC (enabled via sdram_cfg[2]) |
| */ |
| if (spd.config == 0x02) { |
| sdram_cfg |= 0x20000000; /* ECC_EN */ |
| } |
| #endif |
| |
| /* |
| * REV1 uses 1T timing. |
| * REV2 may use 1T or 2T as configured by the user. |
| */ |
| { |
| uint pvr = get_pvr(); |
| |
| if (pvr != PVR_85xx_REV1) { |
| #if defined(CONFIG_DDR_2T_TIMING) |
| /* |
| * Enable 2T timing by setting sdram_cfg[16]. |
| */ |
| sdram_cfg |= 0x8000; /* 2T_EN */ |
| #endif |
| } |
| } |
| |
| /* |
| * 200 painful micro-seconds must elapse between |
| * the DDR clock setup and the DDR config enable. |
| */ |
| udelay(200); |
| |
| /* |
| * Go! |
| */ |
| ddr->sdram_cfg = sdram_cfg; |
| |
| asm("sync;isync;msync"); |
| udelay(500); |
| |
| debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg); |
| |
| |
| #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| /* |
| * Poll until memory is initialized. |
| * 512 Meg at 400 might hit this 200 times or so. |
| */ |
| while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) { |
| udelay(1000); |
| } |
| #endif |
| |
| |
| /* |
| * Figure out memory size in Megabytes. |
| */ |
| memsize = n_ranks * rank_density / 0x100000; |
| |
| /* |
| * Establish Local Access Window and TLB mappings for DDR memory. |
| */ |
| memsize = setup_laws_and_tlbs(memsize); |
| if (memsize == 0) { |
| return 0; |
| } |
| |
| return memsize * 1024 * 1024; |
| } |
| |
| |
| /* |
| * Setup Local Access Window and TLB1 mappings for the requested |
| * amount of memory. Returns the amount of memory actually mapped |
| * (usually the original request size), or 0 on error. |
| */ |
| |
| static unsigned int |
| setup_laws_and_tlbs(unsigned int memsize) |
| { |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm; |
| unsigned int tlb_size; |
| unsigned int law_size; |
| unsigned int ram_tlb_index; |
| unsigned int ram_tlb_address; |
| |
| /* |
| * Determine size of each TLB1 entry. |
| */ |
| switch (memsize) { |
| case 16: |
| case 32: |
| tlb_size = BOOKE_PAGESZ_16M; |
| break; |
| case 64: |
| case 128: |
| tlb_size = BOOKE_PAGESZ_64M; |
| break; |
| case 256: |
| case 512: |
| case 1024: |
| case 2048: |
| tlb_size = BOOKE_PAGESZ_256M; |
| break; |
| default: |
| puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n"); |
| |
| /* |
| * The memory was not able to be mapped. |
| */ |
| return 0; |
| break; |
| } |
| |
| /* |
| * Configure DDR TLB1 entries. |
| * Starting at TLB1 8, use no more than 8 TLB1 entries. |
| */ |
| ram_tlb_index = 8; |
| ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE; |
| while (ram_tlb_address < (memsize * 1024 * 1024) |
| && ram_tlb_index < 16) { |
| mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0)); |
| mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size)); |
| mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), |
| 0, 0, 0, 0, 0, 0, 0, 0)); |
| mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), |
| 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); |
| asm volatile("isync;msync;tlbwe;isync"); |
| |
| debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0)); |
| debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size)); |
| debug("DDR: MAS2=0x%08x\n", |
| TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), |
| 0, 0, 0, 0, 0, 0, 0, 0)); |
| debug("DDR: MAS3=0x%08x\n", |
| TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), |
| 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); |
| |
| ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2)); |
| ram_tlb_index++; |
| } |
| |
| |
| /* |
| * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. |
| */ |
| law_size = 19 + __ilog2(memsize); |
| |
| /* |
| * Set up LAWBAR for all of DDR. |
| */ |
| ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff); |
| ecm->lawar1 = (LAWAR_EN |
| | LAWAR_TRGT_IF_DDR |
| | (LAWAR_SIZE & law_size)); |
| debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1); |
| debug("DDR: LARAR1=0x%08x\n", ecm->lawar1); |
| |
| /* |
| * Confirm that the requested amount of memory was mapped. |
| */ |
| return memsize; |
| } |
| |
| #endif /* CONFIG_SPD_EEPROM */ |
| |
| |
| #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) |
| |
| /* |
| * Initialize all of memory for ECC, then enable errors. |
| */ |
| |
| void |
| ddr_enable_ecc(unsigned int dram_size) |
| { |
| uint *p = 0; |
| uint i = 0; |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile ccsr_ddr_t *ddr= &immap->im_ddr; |
| |
| dma_init(); |
| |
| for (*p = 0; p < (uint *)(8 * 1024); p++) { |
| if (((unsigned int)p & 0x1f) == 0) { |
| ppcDcbz((unsigned long) p); |
| } |
| *p = (unsigned int)CONFIG_MEM_INIT_VALUE; |
| if (((unsigned int)p & 0x1c) == 0x1c) { |
| ppcDcbf((unsigned long) p); |
| } |
| } |
| |
| /* 8K */ |
| dma_xfer((uint *)0x2000, 0x2000, (uint *)0); |
| /* 16K */ |
| dma_xfer((uint *)0x4000, 0x4000, (uint *)0); |
| /* 32K */ |
| dma_xfer((uint *)0x8000, 0x8000, (uint *)0); |
| /* 64K */ |
| dma_xfer((uint *)0x10000, 0x10000, (uint *)0); |
| /* 128k */ |
| dma_xfer((uint *)0x20000, 0x20000, (uint *)0); |
| /* 256k */ |
| dma_xfer((uint *)0x40000, 0x40000, (uint *)0); |
| /* 512k */ |
| dma_xfer((uint *)0x80000, 0x80000, (uint *)0); |
| /* 1M */ |
| dma_xfer((uint *)0x100000, 0x100000, (uint *)0); |
| /* 2M */ |
| dma_xfer((uint *)0x200000, 0x200000, (uint *)0); |
| /* 4M */ |
| dma_xfer((uint *)0x400000, 0x400000, (uint *)0); |
| |
| for (i = 1; i < dram_size / 0x800000; i++) { |
| dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); |
| } |
| |
| /* |
| * Enable errors for ECC. |
| */ |
| debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable); |
| ddr->err_disable = 0x00000000; |
| asm("sync;isync;msync"); |
| debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable); |
| } |
| |
| #endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */ |