blob: 86cc324e96e716301e242d0a086a9ebd4469e82a [file] [log] [blame]
/*
* sh_eth.c - Driver for Renesas SH7763's ethernet controler.
*
* Copyright (C) 2008 Renesas Solutions Corp.
* Copyright (c) 2008 Nobuhiro Iwamatsu
* Copyright (c) 2007 Carlos Munoz <carlos@kenati.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <config.h>
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <asm/errno.h>
#include <asm/io.h>
#include "sh_eth.h"
#ifndef CONFIG_SH_ETHER_USE_PORT
# error "Please define CONFIG_SH_ETHER_USE_PORT"
#endif
#ifndef CONFIG_SH_ETHER_PHY_ADDR
# error "Please define CONFIG_SH_ETHER_PHY_ADDR"
#endif
#define SH_ETH_PHY_DELAY 50000
/*
* Bits are written to the PHY serially using the
* PIR register, just like a bit banger.
*/
static void sh_eth_mii_write_phy_bits(int port, u32 val, int len)
{
int i;
u32 pir;
/* Bit positions is 1 less than the number of bits */
for (i = len - 1; i >= 0; i--) {
/* Write direction, bit to write, clock is low */
pir = 2 | ((val & 1 << i) ? 1 << 2 : 0);
outl(pir, PIR(port));
udelay(1);
/* Write direction, bit to write, clock is high */
pir = 3 | ((val & 1 << i) ? 1 << 2 : 0);
outl(pir, PIR(port));
udelay(1);
/* Write direction, bit to write, clock is low */
pir = 2 | ((val & 1 << i) ? 1 << 2 : 0);
outl(pir, PIR(port));
udelay(1);
}
}
static void sh_eth_mii_bus_release(int port)
{
/* Read direction, clock is low */
outl(0, PIR(port));
udelay(1);
/* Read direction, clock is high */
outl(1, PIR(port));
udelay(1);
/* Read direction, clock is low */
outl(0, PIR(port));
udelay(1);
}
static void sh_eth_mii_ind_bus_release(int port)
{
/* Read direction, clock is low */
outl(0, PIR(port));
udelay(1);
}
static void sh_eth_mii_read_phy_bits(int port, u32 *val, int len)
{
int i;
u32 pir;
*val = 0;
for (i = len - 1; i >= 0; i--) {
/* Read direction, clock is high */
outl(1, PIR(port));
udelay(1);
/* Read bit */
pir = inl(PIR(port));
*val |= (pir & 8) ? 1 << i : 0;
/* Read direction, clock is low */
outl(0, PIR(port));
udelay(1);
}
}
#define PHY_INIT 0xFFFFFFFF
#define PHY_READ 0x02
#define PHY_WRITE 0x01
/*
* To read a phy register, mii managements frames are sent to the phy.
* The frames look like this:
* pre (32 bits): 0xffff ffff
* st (2 bits): 01
* op (2bits): 10: read 01: write
* phyad (5 bits): xxxxx
* regad (5 bits): xxxxx
* ta (Bus release):
* data (16 bits): read data
*/
static u32 sh_eth_mii_read_phy_reg(int port, u8 phy_addr, int reg)
{
u32 val;
/* Sent mii management frame */
/* pre */
sh_eth_mii_write_phy_bits(port, PHY_INIT, 32);
/* st (start of frame) */
sh_eth_mii_write_phy_bits(port, 0x1, 2);
/* op (code) */
sh_eth_mii_write_phy_bits(port, PHY_READ, 2);
/* phy address */
sh_eth_mii_write_phy_bits(port, phy_addr, 5);
/* Register to read */
sh_eth_mii_write_phy_bits(port, reg, 5);
/* Bus release */
sh_eth_mii_bus_release(port);
/* Read register */
sh_eth_mii_read_phy_bits(port, &val, 16);
return val;
}
/*
* To write a phy register, mii managements frames are sent to the phy.
* The frames look like this:
* pre (32 bits): 0xffff ffff
* st (2 bits): 01
* op (2bits): 10: read 01: write
* phyad (5 bits): xxxxx
* regad (5 bits): xxxxx
* ta (2 bits): 10
* data (16 bits): write data
* idle (Independent bus release)
*/
static void sh_eth_mii_write_phy_reg(int port, u8 phy_addr, int reg, u16 val)
{
/* Sent mii management frame */
/* pre */
sh_eth_mii_write_phy_bits(port, PHY_INIT, 32);
/* st (start of frame) */
sh_eth_mii_write_phy_bits(port, 0x1, 2);
/* op (code) */
sh_eth_mii_write_phy_bits(port, PHY_WRITE, 2);
/* phy address */
sh_eth_mii_write_phy_bits(port, phy_addr, 5);
/* Register to read */
sh_eth_mii_write_phy_bits(port, reg, 5);
/* ta */
sh_eth_mii_write_phy_bits(port, PHY_READ, 2);
/* Write register data */
sh_eth_mii_write_phy_bits(port, val, 16);
/* Independent bus release */
sh_eth_mii_ind_bus_release(port);
}
int sh_eth_send(struct eth_device *dev, volatile void *packet, int len)
{
struct sh_eth_dev *eth = dev->priv;
int port = eth->port, ret = 0, timeout;
struct sh_eth_info *port_info = &eth->port_info[port];
if (!packet || len > 0xffff) {
printf(SHETHER_NAME ": %s: Invalid argument\n", __func__);
ret = -EINVAL;
goto err;
}
/* packet must be a 4 byte boundary */
if ((int)packet & (4 - 1)) {
printf(SHETHER_NAME ": %s: packet not 4 byte alligned\n", __func__);
ret = -EFAULT;
goto err;
}
/* Update tx descriptor */
port_info->tx_desc_cur->td2 = ADDR_TO_PHY(packet);
port_info->tx_desc_cur->td1 = len << 16;
/* Must preserve the end of descriptor list indication */
if (port_info->tx_desc_cur->td0 & TD_TDLE)
port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP | TD_TDLE;
else
port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP;
/* Restart the transmitter if disabled */
if (!(inl(EDTRR(port)) & EDTRR_TRNS))
outl(EDTRR_TRNS, EDTRR(port));
/* Wait until packet is transmitted */
timeout = 1000;
while (port_info->tx_desc_cur->td0 & TD_TACT && timeout--)
udelay(100);
if (timeout < 0) {
printf(SHETHER_NAME ": transmit timeout\n");
ret = -ETIMEDOUT;
goto err;
}
port_info->tx_desc_cur++;
if (port_info->tx_desc_cur >= port_info->tx_desc_base + NUM_TX_DESC)
port_info->tx_desc_cur = port_info->tx_desc_base;
return ret;
err:
return ret;
}
int sh_eth_recv(struct eth_device *dev)
{
struct sh_eth_dev *eth = dev->priv;
int port = eth->port, len = 0;
struct sh_eth_info *port_info = &eth->port_info[port];
volatile u8 *packet;
/* Check if the rx descriptor is ready */
if (!(port_info->rx_desc_cur->rd0 & RD_RACT)) {
/* Check for errors */
if (!(port_info->rx_desc_cur->rd0 & RD_RFE)) {
len = port_info->rx_desc_cur->rd1 & 0xffff;
packet = (volatile u8 *)
ADDR_TO_P2(port_info->rx_desc_cur->rd2);
NetReceive(packet, len);
}
/* Make current descriptor available again */
if (port_info->rx_desc_cur->rd0 & RD_RDLE)
port_info->rx_desc_cur->rd0 = RD_RACT | RD_RDLE;
else
port_info->rx_desc_cur->rd0 = RD_RACT;
/* Point to the next descriptor */
port_info->rx_desc_cur++;
if (port_info->rx_desc_cur >=
port_info->rx_desc_base + NUM_RX_DESC)
port_info->rx_desc_cur = port_info->rx_desc_base;
}
/* Restart the receiver if disabled */
if (!(inl(EDRRR(port)) & EDRRR_R))
outl(EDRRR_R, EDRRR(port));
return len;
}
#define EDMR_INIT_CNT 1000
static int sh_eth_reset(struct sh_eth_dev *eth)
{
int port = eth->port;
int ret = 0, i;
/* Start e-dmac transmitter and receiver */
outl(EDSR_ENALL, EDSR(port));
/* Perform a software reset and wait for it to complete */
outl(EDMR_SRST, EDMR(port));
for (i = 0; i < EDMR_INIT_CNT; i++) {
if (!(inl(EDMR(port)) & EDMR_SRST))
break;
udelay(1000);
}
if (i == EDMR_INIT_CNT) {
printf(SHETHER_NAME ": Software reset timeout\n");
ret = -EIO;
}
return ret;
}
static int sh_eth_tx_desc_init(struct sh_eth_dev *eth)
{
int port = eth->port, i, ret = 0;
u32 tmp_addr;
struct sh_eth_info *port_info = &eth->port_info[port];
struct tx_desc_s *cur_tx_desc;
/*
* Allocate tx descriptors. They must be TX_DESC_SIZE bytes aligned
*/
port_info->tx_desc_malloc = malloc(NUM_TX_DESC *
sizeof(struct tx_desc_s) +
TX_DESC_SIZE - 1);
if (!port_info->tx_desc_malloc) {
printf(SHETHER_NAME ": malloc failed\n");
ret = -ENOMEM;
goto err;
}
tmp_addr = (u32) (((int)port_info->tx_desc_malloc + TX_DESC_SIZE - 1) &
~(TX_DESC_SIZE - 1));
/* Make sure we use a P2 address (non-cacheable) */
port_info->tx_desc_base = (struct tx_desc_s *)ADDR_TO_P2(tmp_addr);
port_info->tx_desc_cur = port_info->tx_desc_base;
/* Initialize all descriptors */
for (cur_tx_desc = port_info->tx_desc_base, i = 0; i < NUM_TX_DESC;
cur_tx_desc++, i++) {
cur_tx_desc->td0 = 0x00;
cur_tx_desc->td1 = 0x00;
cur_tx_desc->td2 = 0x00;
}
/* Mark the end of the descriptors */
cur_tx_desc--;
cur_tx_desc->td0 |= TD_TDLE;
/* Point the controller to the tx descriptor list. Must use physical
addresses */
outl(ADDR_TO_PHY(port_info->tx_desc_base), TDLAR(port));
outl(ADDR_TO_PHY(port_info->tx_desc_base), TDFAR(port));
outl(ADDR_TO_PHY(cur_tx_desc), TDFXR(port));
outl(0x01, TDFFR(port));/* Last discriptor bit */
err:
return ret;
}
static int sh_eth_rx_desc_init(struct sh_eth_dev *eth)
{
int port = eth->port, i , ret = 0;
struct sh_eth_info *port_info = &eth->port_info[port];
struct rx_desc_s *cur_rx_desc;
u32 tmp_addr;
u8 *rx_buf;
/*
* Allocate rx descriptors. They must be RX_DESC_SIZE bytes aligned
*/
port_info->rx_desc_malloc = malloc(NUM_RX_DESC *
sizeof(struct rx_desc_s) +
RX_DESC_SIZE - 1);
if (!port_info->rx_desc_malloc) {
printf(SHETHER_NAME ": malloc failed\n");
ret = -ENOMEM;
goto err;
}
tmp_addr = (u32) (((int)port_info->rx_desc_malloc + RX_DESC_SIZE - 1) &
~(RX_DESC_SIZE - 1));
/* Make sure we use a P2 address (non-cacheable) */
port_info->rx_desc_base = (struct rx_desc_s *)ADDR_TO_P2(tmp_addr);
port_info->rx_desc_cur = port_info->rx_desc_base;
/*
* Allocate rx data buffers. They must be 32 bytes aligned and in
* P2 area
*/
port_info->rx_buf_malloc = malloc(NUM_RX_DESC * MAX_BUF_SIZE + 31);
if (!port_info->rx_buf_malloc) {
printf(SHETHER_NAME ": malloc failed\n");
ret = -ENOMEM;
goto err_buf_malloc;
}
tmp_addr = (u32)(((int)port_info->rx_buf_malloc + (32 - 1)) &
~(32 - 1));
port_info->rx_buf_base = (u8 *)ADDR_TO_P2(tmp_addr);
/* Initialize all descriptors */
for (cur_rx_desc = port_info->rx_desc_base,
rx_buf = port_info->rx_buf_base, i = 0;
i < NUM_RX_DESC; cur_rx_desc++, rx_buf += MAX_BUF_SIZE, i++) {
cur_rx_desc->rd0 = RD_RACT;
cur_rx_desc->rd1 = MAX_BUF_SIZE << 16;
cur_rx_desc->rd2 = (u32) ADDR_TO_PHY(rx_buf);
}
/* Mark the end of the descriptors */
cur_rx_desc--;
cur_rx_desc->rd0 |= RD_RDLE;
/* Point the controller to the rx descriptor list */
outl(ADDR_TO_PHY(port_info->rx_desc_base), RDLAR(port));
outl(ADDR_TO_PHY(port_info->rx_desc_base), RDFAR(port));
outl(ADDR_TO_PHY(cur_rx_desc), RDFXR(port));
outl(RDFFR_RDLF, RDFFR(port));
return ret;
err_buf_malloc:
free(port_info->rx_desc_malloc);
port_info->rx_desc_malloc = NULL;
err:
return ret;
}
static void sh_eth_tx_desc_free(struct sh_eth_dev *eth)
{
int port = eth->port;
struct sh_eth_info *port_info = &eth->port_info[port];
if (port_info->tx_desc_malloc) {
free(port_info->tx_desc_malloc);
port_info->tx_desc_malloc = NULL;
}
}
static void sh_eth_rx_desc_free(struct sh_eth_dev *eth)
{
int port = eth->port;
struct sh_eth_info *port_info = &eth->port_info[port];
if (port_info->rx_desc_malloc) {
free(port_info->rx_desc_malloc);
port_info->rx_desc_malloc = NULL;
}
if (port_info->rx_buf_malloc) {
free(port_info->rx_buf_malloc);
port_info->rx_buf_malloc = NULL;
}
}
static int sh_eth_desc_init(struct sh_eth_dev *eth)
{
int ret = 0;
ret = sh_eth_tx_desc_init(eth);
if (ret)
goto err_tx_init;
ret = sh_eth_rx_desc_init(eth);
if (ret)
goto err_rx_init;
return ret;
err_rx_init:
sh_eth_tx_desc_free(eth);
err_tx_init:
return ret;
}
static int sh_eth_phy_config(struct sh_eth_dev *eth)
{
int port = eth->port, timeout, ret = 0;
struct sh_eth_info *port_info = &eth->port_info[port];
u32 val;
/* Reset phy */
sh_eth_mii_write_phy_reg
(port, port_info->phy_addr, PHY_CTRL, PHY_C_RESET);
timeout = 10;
while (timeout--) {
val = sh_eth_mii_read_phy_reg(port,
port_info->phy_addr, PHY_CTRL);
if (!(val & PHY_C_RESET))
break;
udelay(SH_ETH_PHY_DELAY);
}
if (timeout < 0) {
printf(SHETHER_NAME ": phy reset timeout\n");
ret = -EIO;
goto err_tout;
}
/* Advertise 100/10 baseT full/half duplex */
sh_eth_mii_write_phy_reg(port, port_info->phy_addr, PHY_ANA,
(PHY_A_FDX|PHY_A_HDX|PHY_A_10FDX|PHY_A_10HDX|PHY_A_EXT));
/* Autonegotiation, normal operation, full duplex, enable tx */
sh_eth_mii_write_phy_reg(port, port_info->phy_addr, PHY_CTRL,
(PHY_C_ANEGEN|PHY_C_RANEG));
/* Wait for autonegotiation to complete */
timeout = 100;
while (timeout--) {
val = sh_eth_mii_read_phy_reg(port, port_info->phy_addr, 1);
if (val & PHY_S_ANEGC)
break;
udelay(SH_ETH_PHY_DELAY);
}
if (timeout < 0) {
printf(SHETHER_NAME ": phy auto-negotiation failed\n");
ret = -ETIMEDOUT;
goto err_tout;
}
return ret;
err_tout:
return ret;
}
static int sh_eth_config(struct sh_eth_dev *eth, bd_t *bd)
{
int port = eth->port, ret = 0;
u32 val, phy_status;
struct sh_eth_info *port_info = &eth->port_info[port];
struct eth_device *dev = port_info->dev;
/* Configure e-dmac registers */
outl((inl(EDMR(port)) & ~EMDR_DESC_R) | EDMR_EL, EDMR(port));
outl(0, EESIPR(port));
outl(0, TRSCER(port));
outl(0, TFTR(port));
outl((FIFO_SIZE_T | FIFO_SIZE_R), FDR(port));
outl(RMCR_RST, RMCR(port));
outl(0, RPADIR(port));
outl((FIFO_F_D_RFF | FIFO_F_D_RFD), FCFTR(port));
/* Configure e-mac registers */
outl(0, ECSIPR(port));
/* Set Mac address */
val = dev->enetaddr[0] << 24 | dev->enetaddr[1] << 16 |
dev->enetaddr[2] << 8 | dev->enetaddr[3];
outl(val, MAHR(port));
val = dev->enetaddr[4] << 8 | dev->enetaddr[5];
outl(val, MALR(port));
outl(RFLR_RFL_MIN, RFLR(port));
outl(0, PIPR(port));
outl(APR_AP, APR(port));
outl(MPR_MP, MPR(port));
outl(TPAUSER_TPAUSE, TPAUSER(port));
/* Configure phy */
ret = sh_eth_phy_config(eth);
if (ret) {
printf(SHETHER_NAME ": phy config timeout\n");
goto err_phy_cfg;
}
/* Read phy status to finish configuring the e-mac */
phy_status = sh_eth_mii_read_phy_reg(port, port_info->phy_addr, 1);
/* Set the transfer speed */
if (phy_status & (PHY_S_100X_F|PHY_S_100X_H)) {
printf(SHETHER_NAME ": 100Base/");
outl(GECMR_100B, GECMR(port));
} else {
printf(SHETHER_NAME ": 10Base/");
outl(GECMR_10B, GECMR(port));
}
/* Check if full duplex mode is supported by the phy */
if (phy_status & (PHY_S_100X_F|PHY_S_10T_F)) {
printf("Full\n");
outl((ECMR_CHG_DM|ECMR_RE|ECMR_TE|ECMR_DM), ECMR(port));
} else {
printf("Half\n");
outl((ECMR_CHG_DM|ECMR_RE|ECMR_TE), ECMR(port));
}
return ret;
err_phy_cfg:
return ret;
}
static void sh_eth_start(struct sh_eth_dev *eth)
{
/*
* Enable the e-dmac receiver only. The transmitter will be enabled when
* we have something to transmit
*/
outl(EDRRR_R, EDRRR(eth->port));
}
static void sh_eth_stop(struct sh_eth_dev *eth)
{
outl(~EDRRR_R, EDRRR(eth->port));
}
int sh_eth_init(struct eth_device *dev, bd_t *bd)
{
int ret = 0;
struct sh_eth_dev *eth = dev->priv;
ret = sh_eth_reset(eth);
if (ret)
goto err;
ret = sh_eth_desc_init(eth);
if (ret)
goto err;
ret = sh_eth_config(eth, bd);
if (ret)
goto err_config;
sh_eth_start(eth);
return ret;
err_config:
sh_eth_tx_desc_free(eth);
sh_eth_rx_desc_free(eth);
err:
return ret;
}
void sh_eth_halt(struct eth_device *dev)
{
struct sh_eth_dev *eth = dev->priv;
sh_eth_stop(eth);
}
int sh_eth_initialize(bd_t *bd)
{
int ret = 0;
struct sh_eth_dev *eth = NULL;
struct eth_device *dev = NULL;
eth = (struct sh_eth_dev *)malloc(sizeof(struct sh_eth_dev));
if (!eth) {
printf(SHETHER_NAME ": %s: malloc failed\n", __func__);
ret = -ENOMEM;
goto err;
}
dev = (struct eth_device *)malloc(sizeof(struct eth_device));
if (!dev) {
printf(SHETHER_NAME ": %s: malloc failed\n", __func__);
ret = -ENOMEM;
goto err;
}
memset(dev, 0, sizeof(struct eth_device));
memset(eth, 0, sizeof(struct sh_eth_dev));
eth->port = CONFIG_SH_ETHER_USE_PORT;
eth->port_info[eth->port].phy_addr = CONFIG_SH_ETHER_PHY_ADDR;
dev->priv = (void *)eth;
dev->iobase = 0;
dev->init = sh_eth_init;
dev->halt = sh_eth_halt;
dev->send = sh_eth_send;
dev->recv = sh_eth_recv;
eth->port_info[eth->port].dev = dev;
sprintf(dev->name, SHETHER_NAME);
/* Register Device to EtherNet subsystem */
eth_register(dev);
if (!eth_getenv_enetaddr("ethaddr", dev->enetaddr))
puts("Please set MAC address\n");
return ret;
err:
if (dev)
free(dev);
if (eth)
free(eth);
printf(SHETHER_NAME ": Failed\n");
return ret;
}