blob: 99bc48021e6900fdb439fc2b1e8e04de99dfa93e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2011 The Chromium OS Authors.
* (C) Copyright 2010,2011
* Graeme Russ, <graeme.russ@gmail.com>
*
* Portions from Coreboot mainboard/google/link/romstage.c
* Copyright (C) 2007-2010 coresystems GmbH
* Copyright (C) 2011 Google Inc.
*/
#include <common.h>
#include <errno.h>
#include <fdtdec.h>
#include <init.h>
#include <log.h>
#include <malloc.h>
#include <net.h>
#include <rtc.h>
#include <spi.h>
#include <spi_flash.h>
#include <syscon.h>
#include <sysreset.h>
#include <asm/cpu.h>
#include <asm/processor.h>
#include <asm/gpio.h>
#include <asm/global_data.h>
#include <asm/intel_regs.h>
#include <asm/mrccache.h>
#include <asm/mrc_common.h>
#include <asm/mtrr.h>
#include <asm/pci.h>
#include <asm/report_platform.h>
#include <asm/arch/me.h>
#include <asm/arch/pei_data.h>
#include <asm/arch/pch.h>
#include <asm/post.h>
#include <asm/arch/sandybridge.h>
DECLARE_GLOBAL_DATA_PTR;
#define CMOS_OFFSET_MRC_SEED 152
#define CMOS_OFFSET_MRC_SEED_S3 156
#define CMOS_OFFSET_MRC_SEED_CHK 160
ulong board_get_usable_ram_top(ulong total_size)
{
return mrc_common_board_get_usable_ram_top(total_size);
}
int dram_init_banksize(void)
{
mrc_common_dram_init_banksize();
return 0;
}
static int read_seed_from_cmos(struct pei_data *pei_data)
{
u16 c1, c2, checksum, seed_checksum;
struct udevice *dev;
int ret = 0;
ret = uclass_get_device(UCLASS_RTC, 0, &dev);
if (ret) {
debug("Cannot find RTC: err=%d\n", ret);
return -ENODEV;
}
/*
* Read scrambler seeds from CMOS RAM. We don't want to store them in
* SPI flash since they change on every boot and that would wear down
* the flash too much. So we store these in CMOS and the large MRC
* data in SPI flash.
*/
ret = rtc_read32(dev, CMOS_OFFSET_MRC_SEED, &pei_data->scrambler_seed);
if (!ret) {
ret = rtc_read32(dev, CMOS_OFFSET_MRC_SEED_S3,
&pei_data->scrambler_seed_s3);
}
if (ret) {
debug("Failed to read from RTC %s\n", dev->name);
return ret;
}
debug("Read scrambler seed 0x%08x from CMOS 0x%02x\n",
pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
debug("Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n",
pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
/* Compute seed checksum and compare */
c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
sizeof(u32));
c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
sizeof(u32));
checksum = add_ip_checksums(sizeof(u32), c1, c2);
seed_checksum = rtc_read8(dev, CMOS_OFFSET_MRC_SEED_CHK);
seed_checksum |= rtc_read8(dev, CMOS_OFFSET_MRC_SEED_CHK + 1) << 8;
if (checksum != seed_checksum) {
debug("%s: invalid seed checksum\n", __func__);
pei_data->scrambler_seed = 0;
pei_data->scrambler_seed_s3 = 0;
return -EINVAL;
}
return 0;
}
static int prepare_mrc_cache(struct pei_data *pei_data)
{
struct mrc_data_container *mrc_cache;
struct mrc_region entry;
int ret;
ret = read_seed_from_cmos(pei_data);
if (ret)
return ret;
ret = mrccache_get_region(MRC_TYPE_NORMAL, NULL, &entry);
if (ret)
return ret;
mrc_cache = mrccache_find_current(&entry);
if (!mrc_cache)
return -ENOENT;
pei_data->mrc_input = mrc_cache->data;
pei_data->mrc_input_len = mrc_cache->data_size;
debug("%s: at %p, size %x checksum %04x\n", __func__,
pei_data->mrc_input, pei_data->mrc_input_len,
mrc_cache->checksum);
return 0;
}
static int write_seeds_to_cmos(struct pei_data *pei_data)
{
u16 c1, c2, checksum;
struct udevice *dev;
int ret = 0;
ret = uclass_get_device(UCLASS_RTC, 0, &dev);
if (ret) {
debug("Cannot find RTC: err=%d\n", ret);
return -ENODEV;
}
/* Save the MRC seed values to CMOS */
rtc_write32(dev, CMOS_OFFSET_MRC_SEED, pei_data->scrambler_seed);
debug("Save scrambler seed 0x%08x to CMOS 0x%02x\n",
pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
rtc_write32(dev, CMOS_OFFSET_MRC_SEED_S3, pei_data->scrambler_seed_s3);
debug("Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n",
pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
/* Save a simple checksum of the seed values */
c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
sizeof(u32));
c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
sizeof(u32));
checksum = add_ip_checksums(sizeof(u32), c1, c2);
rtc_write8(dev, CMOS_OFFSET_MRC_SEED_CHK, checksum & 0xff);
rtc_write8(dev, CMOS_OFFSET_MRC_SEED_CHK + 1, (checksum >> 8) & 0xff);
return 0;
}
/* Use this hook to save our SDRAM parameters */
int misc_init_r(void)
{
int ret;
ret = mrccache_save();
if (ret)
printf("Unable to save MRC data: %d\n", ret);
return 0;
}
static void post_system_agent_init(struct udevice *dev, struct udevice *me_dev,
struct pei_data *pei_data)
{
uint16_t done;
/*
* Send ME init done for SandyBridge here. This is done inside the
* SystemAgent binary on IvyBridge
*/
dm_pci_read_config16(dev, PCI_DEVICE_ID, &done);
done &= BASE_REV_MASK;
if (BASE_REV_SNB == done)
intel_early_me_init_done(dev, me_dev, ME_INIT_STATUS_SUCCESS);
else
intel_me_status(me_dev);
/* If PCIe init is skipped, set the PEG clock gating */
if (!pei_data->pcie_init)
setbits_le32(MCHBAR_REG(0x7010), 1);
}
static int recovery_mode_enabled(void)
{
return false;
}
static int copy_spd(struct udevice *dev, struct pei_data *peid)
{
const void *data;
int ret;
ret = mrc_locate_spd(dev, sizeof(peid->spd_data[0]), &data);
if (ret) {
debug("%s: Could not locate SPD (ret=%d)\n", __func__, ret);
return ret;
}
memcpy(peid->spd_data[0], data, sizeof(peid->spd_data[0]));
return 0;
}
/**
* sdram_find() - Find available memory
*
* This is a bit complicated since on x86 there are system memory holes all
* over the place. We create a list of available memory blocks
*
* @dev: Northbridge device
*/
static int sdram_find(struct udevice *dev)
{
struct memory_info *info = &gd->arch.meminfo;
uint32_t tseg_base, uma_size, tolud;
uint64_t tom, me_base, touud;
uint64_t uma_memory_base = 0;
unsigned long long tomk;
uint16_t ggc;
u32 val;
/* Total Memory 2GB example:
*
* 00000000 0000MB-1992MB 1992MB RAM (writeback)
* 7c800000 1992MB-2000MB 8MB TSEG (SMRR)
* 7d000000 2000MB-2002MB 2MB GFX GTT (uncached)
* 7d200000 2002MB-2034MB 32MB GFX UMA (uncached)
* 7f200000 2034MB TOLUD
* 7f800000 2040MB MEBASE
* 7f800000 2040MB-2048MB 8MB ME UMA (uncached)
* 80000000 2048MB TOM
* 100000000 4096MB-4102MB 6MB RAM (writeback)
*
* Total Memory 4GB example:
*
* 00000000 0000MB-2768MB 2768MB RAM (writeback)
* ad000000 2768MB-2776MB 8MB TSEG (SMRR)
* ad800000 2776MB-2778MB 2MB GFX GTT (uncached)
* ada00000 2778MB-2810MB 32MB GFX UMA (uncached)
* afa00000 2810MB TOLUD
* ff800000 4088MB MEBASE
* ff800000 4088MB-4096MB 8MB ME UMA (uncached)
* 100000000 4096MB TOM
* 100000000 4096MB-5374MB 1278MB RAM (writeback)
* 14fe00000 5368MB TOUUD
*/
/* Top of Upper Usable DRAM, including remap */
dm_pci_read_config32(dev, TOUUD + 4, &val);
touud = (uint64_t)val << 32;
dm_pci_read_config32(dev, TOUUD, &val);
touud |= val;
/* Top of Lower Usable DRAM */
dm_pci_read_config32(dev, TOLUD, &tolud);
/* Top of Memory - does not account for any UMA */
dm_pci_read_config32(dev, 0xa4, &val);
tom = (uint64_t)val << 32;
dm_pci_read_config32(dev, 0xa0, &val);
tom |= val;
debug("TOUUD %llx TOLUD %08x TOM %llx\n", touud, tolud, tom);
/* ME UMA needs excluding if total memory <4GB */
dm_pci_read_config32(dev, 0x74, &val);
me_base = (uint64_t)val << 32;
dm_pci_read_config32(dev, 0x70, &val);
me_base |= val;
debug("MEBASE %llx\n", me_base);
/* TODO: Get rid of all this shifting by 10 bits */
tomk = tolud >> 10;
if (me_base == tolud) {
/* ME is from MEBASE-TOM */
uma_size = (tom - me_base) >> 10;
/* Increment TOLUD to account for ME as RAM */
tolud += uma_size << 10;
/* UMA starts at old TOLUD */
uma_memory_base = tomk * 1024ULL;
debug("ME UMA base %llx size %uM\n", me_base, uma_size >> 10);
}
/* Graphics memory comes next */
dm_pci_read_config16(dev, GGC, &ggc);
if (!(ggc & 2)) {
debug("IGD decoded, subtracting ");
/* Graphics memory */
uma_size = ((ggc >> 3) & 0x1f) * 32 * 1024ULL;
debug("%uM UMA", uma_size >> 10);
tomk -= uma_size;
uma_memory_base = tomk * 1024ULL;
/* GTT Graphics Stolen Memory Size (GGMS) */
uma_size = ((ggc >> 8) & 0x3) * 1024ULL;
tomk -= uma_size;
uma_memory_base = tomk * 1024ULL;
debug(" and %uM GTT\n", uma_size >> 10);
}
/* Calculate TSEG size from its base which must be below GTT */
dm_pci_read_config32(dev, 0xb8, &tseg_base);
uma_size = (uma_memory_base - tseg_base) >> 10;
tomk -= uma_size;
uma_memory_base = tomk * 1024ULL;
debug("TSEG base 0x%08x size %uM\n", tseg_base, uma_size >> 10);
debug("Available memory below 4GB: %lluM\n", tomk >> 10);
/* Report the memory regions */
mrc_add_memory_area(info, 1 << 20, 2 << 28);
mrc_add_memory_area(info, (2 << 28) + (2 << 20), 4 << 28);
mrc_add_memory_area(info, (4 << 28) + (2 << 20), tseg_base);
mrc_add_memory_area(info, 1ULL << 32, touud);
/* Add MTRRs for memory */
mtrr_add_request(MTRR_TYPE_WRBACK, 0, 2ULL << 30);
mtrr_add_request(MTRR_TYPE_WRBACK, 2ULL << 30, 512 << 20);
mtrr_add_request(MTRR_TYPE_WRBACK, 0xaULL << 28, 256 << 20);
mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base, 16 << 20);
mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base + (16 << 20),
32 << 20);
/*
* If >= 4GB installed then memory from TOLUD to 4GB
* is remapped above TOM, TOUUD will account for both
*/
if (touud > (1ULL << 32ULL)) {
debug("Available memory above 4GB: %lluM\n",
(touud >> 20) - 4096);
}
return 0;
}
static void rcba_config(void)
{
/*
* GFX INTA -> PIRQA (MSI)
* D28IP_P3IP WLAN INTA -> PIRQB
* D29IP_E1P EHCI1 INTA -> PIRQD
* D26IP_E2P EHCI2 INTA -> PIRQF
* D31IP_SIP SATA INTA -> PIRQF (MSI)
* D31IP_SMIP SMBUS INTB -> PIRQH
* D31IP_TTIP THRT INTC -> PIRQA
* D27IP_ZIP HDA INTA -> PIRQA (MSI)
*
* TRACKPAD -> PIRQE (Edge Triggered)
* TOUCHSCREEN -> PIRQG (Edge Triggered)
*/
/* Device interrupt pin register (board specific) */
writel((INTC << D31IP_TTIP) | (NOINT << D31IP_SIP2) |
(INTB << D31IP_SMIP) | (INTA << D31IP_SIP), RCB_REG(D31IP));
writel(NOINT << D30IP_PIP, RCB_REG(D30IP));
writel(INTA << D29IP_E1P, RCB_REG(D29IP));
writel(INTA << D28IP_P3IP, RCB_REG(D28IP));
writel(INTA << D27IP_ZIP, RCB_REG(D27IP));
writel(INTA << D26IP_E2P, RCB_REG(D26IP));
writel(NOINT << D25IP_LIP, RCB_REG(D25IP));
writel(NOINT << D22IP_MEI1IP, RCB_REG(D22IP));
/* Device interrupt route registers */
writel(DIR_ROUTE(PIRQB, PIRQH, PIRQA, PIRQC), RCB_REG(D31IR));
writel(DIR_ROUTE(PIRQD, PIRQE, PIRQF, PIRQG), RCB_REG(D29IR));
writel(DIR_ROUTE(PIRQB, PIRQC, PIRQD, PIRQE), RCB_REG(D28IR));
writel(DIR_ROUTE(PIRQA, PIRQH, PIRQA, PIRQB), RCB_REG(D27IR));
writel(DIR_ROUTE(PIRQF, PIRQE, PIRQG, PIRQH), RCB_REG(D26IR));
writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D25IR));
writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D22IR));
/* Enable IOAPIC (generic) */
writew(0x0100, RCB_REG(OIC));
/* PCH BWG says to read back the IOAPIC enable register */
(void)readw(RCB_REG(OIC));
/* Disable unused devices (board specific) */
setbits_le32(RCB_REG(FD), PCH_DISABLE_ALWAYS);
}
int dram_init(void)
{
struct pei_data _pei_data __aligned(8) = {
.pei_version = PEI_VERSION,
.mchbar = MCH_BASE_ADDRESS,
.dmibar = DEFAULT_DMIBAR,
.epbar = DEFAULT_EPBAR,
.pciexbar = CONFIG_PCIE_ECAM_BASE,
.smbusbar = SMBUS_IO_BASE,
.wdbbar = 0x4000000,
.wdbsize = 0x1000,
.hpet_address = CONFIG_HPET_ADDRESS,
.rcba = DEFAULT_RCBABASE,
.pmbase = DEFAULT_PMBASE,
.gpiobase = DEFAULT_GPIOBASE,
.thermalbase = 0xfed08000,
.system_type = 0, /* 0 Mobile, 1 Desktop/Server */
.tseg_size = CONFIG_SMM_TSEG_SIZE,
.ts_addresses = { 0x00, 0x00, 0x00, 0x00 },
.ec_present = 1,
.ddr3lv_support = 1,
/*
* 0 = leave channel enabled
* 1 = disable dimm 0 on channel
* 2 = disable dimm 1 on channel
* 3 = disable dimm 0+1 on channel
*/
.dimm_channel0_disabled = 2,
.dimm_channel1_disabled = 2,
.max_ddr3_freq = 1600,
.usb_port_config = {
/*
* Empty and onboard Ports 0-7, set to un-used pin
* OC3
*/
{ 0, 3, 0x0000 }, /* P0= Empty */
{ 1, 0, 0x0040 }, /* P1= Left USB 1 (OC0) */
{ 1, 1, 0x0040 }, /* P2= Left USB 2 (OC1) */
{ 1, 3, 0x0040 }, /* P3= SDCARD (no OC) */
{ 0, 3, 0x0000 }, /* P4= Empty */
{ 1, 3, 0x0040 }, /* P5= WWAN (no OC) */
{ 0, 3, 0x0000 }, /* P6= Empty */
{ 0, 3, 0x0000 }, /* P7= Empty */
/*
* Empty and onboard Ports 8-13, set to un-used pin
* OC4
*/
{ 1, 4, 0x0040 }, /* P8= Camera (no OC) */
{ 1, 4, 0x0040 }, /* P9= Bluetooth (no OC) */
{ 0, 4, 0x0000 }, /* P10= Empty */
{ 0, 4, 0x0000 }, /* P11= Empty */
{ 0, 4, 0x0000 }, /* P12= Empty */
{ 0, 4, 0x0000 }, /* P13= Empty */
},
};
struct pei_data *pei_data = &_pei_data;
struct udevice *dev, *me_dev;
int ret;
/* We need the pinctrl set up early */
ret = syscon_get_by_driver_data(X86_SYSCON_PINCONF, &dev);
if (ret) {
debug("%s: Could not get pinconf (ret=%d)\n", __func__, ret);
return ret;
}
ret = uclass_first_device_err(UCLASS_NORTHBRIDGE, &dev);
if (ret) {
debug("%s: Could not get northbridge (ret=%d)\n", __func__,
ret);
return ret;
}
ret = syscon_get_by_driver_data(X86_SYSCON_ME, &me_dev);
if (ret) {
debug("%s: Could not get ME (ret=%d)\n", __func__, ret);
return ret;
}
ret = copy_spd(dev, pei_data);
if (ret) {
debug("%s: Could not get SPD (ret=%d)\n", __func__, ret);
return ret;
}
pei_data->boot_mode = gd->arch.pei_boot_mode;
debug("Boot mode %d\n", gd->arch.pei_boot_mode);
debug("mrc_input %p\n", pei_data->mrc_input);
/*
* Do not pass MRC data in for recovery mode boot,
* Always pass it in for S3 resume.
*/
if (!recovery_mode_enabled() ||
pei_data->boot_mode == PEI_BOOT_RESUME) {
ret = prepare_mrc_cache(pei_data);
if (ret)
debug("prepare_mrc_cache failed: %d\n", ret);
}
/* If MRC data is not found we cannot continue S3 resume. */
if (pei_data->boot_mode == PEI_BOOT_RESUME && !pei_data->mrc_input) {
debug("Giving up in sdram_initialize: No MRC data\n");
sysreset_walk_halt(SYSRESET_COLD);
}
/* Pass console handler in pei_data */
pei_data->tx_byte = sdram_console_tx_byte;
/* Wait for ME to be ready */
ret = intel_early_me_init(me_dev);
if (ret) {
debug("%s: Could not init ME (ret=%d)\n", __func__, ret);
return ret;
}
ret = intel_early_me_uma_size(me_dev);
if (ret < 0) {
debug("%s: Could not get UMA size (ret=%d)\n", __func__, ret);
return ret;
}
ret = mrc_common_init(dev, pei_data, false);
if (ret) {
debug("%s: mrc_common_init() failed (ret=%d)\n", __func__, ret);
return ret;
}
ret = sdram_find(dev);
if (ret) {
debug("%s: sdram_find() failed (ret=%d)\n", __func__, ret);
return ret;
}
gd->ram_size = gd->arch.meminfo.total_32bit_memory;
debug("MRC output data length %#x at %p\n", pei_data->mrc_output_len,
pei_data->mrc_output);
post_system_agent_init(dev, me_dev, pei_data);
report_memory_config();
/* S3 resume: don't save scrambler seed or MRC data */
if (pei_data->boot_mode != PEI_BOOT_RESUME) {
struct mrc_output *mrc = &gd->arch.mrc[MRC_TYPE_NORMAL];
/*
* This will be copied to SDRAM in reserve_arch(), then written
* to SPI flash in mrccache_save()
*/
mrc->buf = (char *)pei_data->mrc_output;
mrc->len = pei_data->mrc_output_len;
ret = write_seeds_to_cmos(pei_data);
if (ret)
debug("Failed to write seeds to CMOS: %d\n", ret);
}
writew(0xCAFE, MCHBAR_REG(SSKPD));
if (ret)
return ret;
rcba_config();
return 0;
}