| /* |
| * cpu/ppc4xx/44x_spd_ddr2.c |
| * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a |
| * DDR2 controller (non Denali Core). Those currently are: |
| * |
| * 405: 405EX(r) |
| * 440/460: 440SP/440SPe/460EX/460GT |
| * |
| * Copyright (c) 2008 Nuovation System Designs, LLC |
| * Grant Erickson <gerickson@nuovations.com> |
| |
| * (C) Copyright 2007-2008 |
| * Stefan Roese, DENX Software Engineering, sr@denx.de. |
| * |
| * COPYRIGHT AMCC CORPORATION 2004 |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| * |
| */ |
| |
| /* define DEBUG for debugging output (obviously ;-)) */ |
| #if 0 |
| #define DEBUG |
| #endif |
| |
| #include <common.h> |
| #include <command.h> |
| #include <ppc4xx.h> |
| #include <i2c.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/cache.h> |
| |
| #include "ecc.h" |
| |
| #if defined(CONFIG_SPD_EEPROM) && \ |
| (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \ |
| defined(CONFIG_460EX) || defined(CONFIG_460GT)) |
| |
| /*-----------------------------------------------------------------------------+ |
| * Defines |
| *-----------------------------------------------------------------------------*/ |
| #ifndef TRUE |
| #define TRUE 1 |
| #endif |
| #ifndef FALSE |
| #define FALSE 0 |
| #endif |
| |
| #define SDRAM_DDR1 1 |
| #define SDRAM_DDR2 2 |
| #define SDRAM_NONE 0 |
| |
| #define MAXDIMMS 2 |
| #define MAXRANKS 4 |
| #define MAXBXCF 4 |
| #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */ |
| |
| #define ONE_BILLION 1000000000 |
| |
| #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d)) |
| |
| #define CMD_NOP (7 << 19) |
| #define CMD_PRECHARGE (2 << 19) |
| #define CMD_REFRESH (1 << 19) |
| #define CMD_EMR (0 << 19) |
| #define CMD_READ (5 << 19) |
| #define CMD_WRITE (4 << 19) |
| |
| #define SELECT_MR (0 << 16) |
| #define SELECT_EMR (1 << 16) |
| #define SELECT_EMR2 (2 << 16) |
| #define SELECT_EMR3 (3 << 16) |
| |
| /* MR */ |
| #define DLL_RESET 0x00000100 |
| |
| #define WRITE_RECOV_2 (1 << 9) |
| #define WRITE_RECOV_3 (2 << 9) |
| #define WRITE_RECOV_4 (3 << 9) |
| #define WRITE_RECOV_5 (4 << 9) |
| #define WRITE_RECOV_6 (5 << 9) |
| |
| #define BURST_LEN_4 0x00000002 |
| |
| /* EMR */ |
| #define ODT_0_OHM 0x00000000 |
| #define ODT_50_OHM 0x00000044 |
| #define ODT_75_OHM 0x00000004 |
| #define ODT_150_OHM 0x00000040 |
| |
| #define ODS_FULL 0x00000000 |
| #define ODS_REDUCED 0x00000002 |
| |
| /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */ |
| #define ODT_EB0R (0x80000000 >> 8) |
| #define ODT_EB0W (0x80000000 >> 7) |
| #define CALC_ODT_R(n) (ODT_EB0R << (n << 1)) |
| #define CALC_ODT_W(n) (ODT_EB0W << (n << 1)) |
| #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n)) |
| |
| /* Defines for the Read Cycle Delay test */ |
| #define NUMMEMTESTS 8 |
| #define NUMMEMWORDS 8 |
| #define NUMLOOPS 64 /* memory test loops */ |
| |
| /* |
| * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory |
| * region. Right now the cache should still be disabled in U-Boot because of the |
| * EMAC driver, that need it's buffer descriptor to be located in non cached |
| * memory. |
| * |
| * If at some time this restriction doesn't apply anymore, just define |
| * CONFIG_4xx_DCACHE in the board config file and this code should setup |
| * everything correctly. |
| */ |
| #ifdef CONFIG_4xx_DCACHE |
| #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */ |
| #else |
| #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */ |
| #endif |
| |
| /* |
| * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed |
| */ |
| void __spd_ddr_init_hang (void) |
| { |
| hang (); |
| } |
| void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang"))); |
| |
| /* |
| * To provide an interface for board specific config values in this common |
| * DDR setup code, we implement he "weak" default functions here. They return |
| * the default value back to the caller. |
| * |
| * Please see include/configs/yucca.h for an example fora board specific |
| * implementation. |
| */ |
| u32 __ddr_wrdtr(u32 default_val) |
| { |
| return default_val; |
| } |
| u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr"))); |
| |
| u32 __ddr_clktr(u32 default_val) |
| { |
| return default_val; |
| } |
| u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr"))); |
| |
| |
| /* Private Structure Definitions */ |
| |
| /* enum only to ease code for cas latency setting */ |
| typedef enum ddr_cas_id { |
| DDR_CAS_2 = 20, |
| DDR_CAS_2_5 = 25, |
| DDR_CAS_3 = 30, |
| DDR_CAS_4 = 40, |
| DDR_CAS_5 = 50 |
| } ddr_cas_id_t; |
| |
| /*-----------------------------------------------------------------------------+ |
| * Prototypes |
| *-----------------------------------------------------------------------------*/ |
| static unsigned long sdram_memsize(void); |
| static void get_spd_info(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void check_mem_type(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void check_frequency(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void check_rank_number(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void check_voltage_type(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_memory_queue(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_codt(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_mode(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks, |
| ddr_cas_id_t *selected_cas, |
| int *write_recovery); |
| static void program_tr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_rtr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_bxcf(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_copt1(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| static void program_initplr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks, |
| ddr_cas_id_t selected_cas, |
| int write_recovery); |
| static unsigned long is_ecc_enabled(void); |
| #ifdef CONFIG_DDR_ECC |
| static void program_ecc(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks, |
| unsigned long tlb_word2_i_value); |
| static void program_ecc_addr(unsigned long start_address, |
| unsigned long num_bytes, |
| unsigned long tlb_word2_i_value); |
| #endif |
| static void program_DQS_calibration(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| #ifdef HARD_CODED_DQS /* calibration test with hardvalues */ |
| static void test(void); |
| #else |
| static void DQS_calibration_process(void); |
| #endif |
| static void ppc440sp_sdram_register_dump(void); |
| int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); |
| void dcbz_area(u32 start_address, u32 num_bytes); |
| |
| static u32 mfdcr_any(u32 dcr) |
| { |
| u32 val; |
| |
| switch (dcr) { |
| case SDRAM_R0BAS + 0: |
| val = mfdcr(SDRAM_R0BAS + 0); |
| break; |
| case SDRAM_R0BAS + 1: |
| val = mfdcr(SDRAM_R0BAS + 1); |
| break; |
| case SDRAM_R0BAS + 2: |
| val = mfdcr(SDRAM_R0BAS + 2); |
| break; |
| case SDRAM_R0BAS + 3: |
| val = mfdcr(SDRAM_R0BAS + 3); |
| break; |
| default: |
| printf("DCR %d not defined in case statement!!!\n", dcr); |
| val = 0; /* just to satisfy the compiler */ |
| } |
| |
| return val; |
| } |
| |
| static void mtdcr_any(u32 dcr, u32 val) |
| { |
| switch (dcr) { |
| case SDRAM_R0BAS + 0: |
| mtdcr(SDRAM_R0BAS + 0, val); |
| break; |
| case SDRAM_R0BAS + 1: |
| mtdcr(SDRAM_R0BAS + 1, val); |
| break; |
| case SDRAM_R0BAS + 2: |
| mtdcr(SDRAM_R0BAS + 2, val); |
| break; |
| case SDRAM_R0BAS + 3: |
| mtdcr(SDRAM_R0BAS + 3, val); |
| break; |
| default: |
| printf("DCR %d not defined in case statement!!!\n", dcr); |
| } |
| } |
| |
| static unsigned char spd_read(uchar chip, uint addr) |
| { |
| unsigned char data[2]; |
| |
| if (i2c_probe(chip) == 0) |
| if (i2c_read(chip, addr, 1, data, 1) == 0) |
| return data[0]; |
| |
| return 0; |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * sdram_memsize |
| *-----------------------------------------------------------------------------*/ |
| static unsigned long sdram_memsize(void) |
| { |
| unsigned long mem_size; |
| unsigned long mcopt2; |
| unsigned long mcstat; |
| unsigned long mb0cf; |
| unsigned long sdsz; |
| unsigned long i; |
| |
| mem_size = 0; |
| |
| mfsdram(SDRAM_MCOPT2, mcopt2); |
| mfsdram(SDRAM_MCSTAT, mcstat); |
| |
| /* DDR controller must be enabled and not in self-refresh. */ |
| /* Otherwise memsize is zero. */ |
| if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE) |
| && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT) |
| && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK)) |
| == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) { |
| for (i = 0; i < MAXBXCF; i++) { |
| mfsdram(SDRAM_MB0CF + (i << 2), mb0cf); |
| /* Banks enabled */ |
| if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { |
| sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK; |
| |
| switch(sdsz) { |
| case SDRAM_RXBAS_SDSZ_8: |
| mem_size+=8; |
| break; |
| case SDRAM_RXBAS_SDSZ_16: |
| mem_size+=16; |
| break; |
| case SDRAM_RXBAS_SDSZ_32: |
| mem_size+=32; |
| break; |
| case SDRAM_RXBAS_SDSZ_64: |
| mem_size+=64; |
| break; |
| case SDRAM_RXBAS_SDSZ_128: |
| mem_size+=128; |
| break; |
| case SDRAM_RXBAS_SDSZ_256: |
| mem_size+=256; |
| break; |
| case SDRAM_RXBAS_SDSZ_512: |
| mem_size+=512; |
| break; |
| case SDRAM_RXBAS_SDSZ_1024: |
| mem_size+=1024; |
| break; |
| case SDRAM_RXBAS_SDSZ_2048: |
| mem_size+=2048; |
| break; |
| case SDRAM_RXBAS_SDSZ_4096: |
| mem_size+=4096; |
| break; |
| default: |
| mem_size=0; |
| break; |
| } |
| } |
| } |
| } |
| |
| mem_size *= 1024 * 1024; |
| return(mem_size); |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller. |
| * Note: This routine runs from flash with a stack set up in the chip's |
| * sram space. It is important that the routine does not require .sbss, .bss or |
| * .data sections. It also cannot call routines that require these sections. |
| *-----------------------------------------------------------------------------*/ |
| /*----------------------------------------------------------------------------- |
| * Function: initdram |
| * Description: Configures SDRAM memory banks for DDR operation. |
| * Auto Memory Configuration option reads the DDR SDRAM EEPROMs |
| * via the IIC bus and then configures the DDR SDRAM memory |
| * banks appropriately. If Auto Memory Configuration is |
| * not used, it is assumed that no DIMM is plugged |
| *-----------------------------------------------------------------------------*/ |
| phys_size_t initdram(int board_type) |
| { |
| unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; |
| unsigned char spd0[MAX_SPD_BYTES]; |
| unsigned char spd1[MAX_SPD_BYTES]; |
| unsigned char *dimm_spd[MAXDIMMS]; |
| unsigned long dimm_populated[MAXDIMMS]; |
| unsigned long num_dimm_banks; /* on board dimm banks */ |
| unsigned long val; |
| ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */ |
| int write_recovery; |
| unsigned long dram_size = 0; |
| |
| num_dimm_banks = sizeof(iic0_dimm_addr); |
| |
| /*------------------------------------------------------------------ |
| * Set up an array of SPD matrixes. |
| *-----------------------------------------------------------------*/ |
| dimm_spd[0] = spd0; |
| dimm_spd[1] = spd1; |
| |
| /*------------------------------------------------------------------ |
| * Reset the DDR-SDRAM controller. |
| *-----------------------------------------------------------------*/ |
| mtsdr(SDR0_SRST, (0x80000000 >> 10)); |
| mtsdr(SDR0_SRST, 0x00000000); |
| |
| /* |
| * Make sure I2C controller is initialized |
| * before continuing. |
| */ |
| |
| /* switch to correct I2C bus */ |
| I2C_SET_BUS(CFG_SPD_BUS_NUM); |
| i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| |
| /*------------------------------------------------------------------ |
| * Clear out the serial presence detect buffers. |
| * Perform IIC reads from the dimm. Fill in the spds. |
| * Check to see if the dimm slots are populated |
| *-----------------------------------------------------------------*/ |
| get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Check the memory type for the dimms plugged. |
| *-----------------------------------------------------------------*/ |
| check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Check the frequency supported for the dimms plugged. |
| *-----------------------------------------------------------------*/ |
| check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Check the total rank number. |
| *-----------------------------------------------------------------*/ |
| check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Check the voltage type for the dimms plugged. |
| *-----------------------------------------------------------------*/ |
| check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Program SDRAM controller options 2 register |
| * Except Enabling of the memory controller. |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_MCOPT2, val); |
| mtsdram(SDRAM_MCOPT2, |
| (val & |
| ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK | |
| SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK | |
| SDRAM_MCOPT2_ISIE_MASK)) |
| | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE | |
| SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW | |
| SDRAM_MCOPT2_ISIE_ENABLE)); |
| |
| /*------------------------------------------------------------------ |
| * Program SDRAM controller options 1 register |
| * Note: Does not enable the memory controller. |
| *-----------------------------------------------------------------*/ |
| program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM Controller On Die Termination Register |
| *-----------------------------------------------------------------*/ |
| program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Program SDRAM refresh register. |
| *-----------------------------------------------------------------*/ |
| program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Program SDRAM mode register. |
| *-----------------------------------------------------------------*/ |
| program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks, |
| &selected_cas, &write_recovery); |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM Write Data/DM/DQS Clock Timing Reg |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_WRDTR, val); |
| mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) | |
| ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV)); |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM Clock Timing Register |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_CLKTR, val); |
| mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | |
| ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG)); |
| |
| /*------------------------------------------------------------------ |
| * Program the BxCF registers. |
| *-----------------------------------------------------------------*/ |
| program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Program SDRAM timing registers. |
| *-----------------------------------------------------------------*/ |
| program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Set the Extended Mode register |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_MEMODE, val); |
| mtsdram(SDRAM_MEMODE, |
| (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK | |
| SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) | |
| (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE |
| | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE)); |
| |
| /*------------------------------------------------------------------ |
| * Program Initialization preload registers. |
| *-----------------------------------------------------------------*/ |
| program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks, |
| selected_cas, write_recovery); |
| |
| /*------------------------------------------------------------------ |
| * Delay to ensure 200usec have elapsed since reset. |
| *-----------------------------------------------------------------*/ |
| udelay(400); |
| |
| /*------------------------------------------------------------------ |
| * Set the memory queue core base addr. |
| *-----------------------------------------------------------------*/ |
| program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /*------------------------------------------------------------------ |
| * Program SDRAM controller options 2 register |
| * Enable the memory controller. |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_MCOPT2, val); |
| mtsdram(SDRAM_MCOPT2, |
| (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK | |
| SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) | |
| (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE)); |
| |
| /*------------------------------------------------------------------ |
| * Wait for SDRAM_CFG0_DC_EN to complete. |
| *-----------------------------------------------------------------*/ |
| do { |
| mfsdram(SDRAM_MCSTAT, val); |
| } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP); |
| |
| /* get installed memory size */ |
| dram_size = sdram_memsize(); |
| |
| /* and program tlb entries for this size (dynamic) */ |
| |
| /* |
| * Program TLB entries with caches enabled, for best performace |
| * while auto-calibrating and ECC generation |
| */ |
| program_tlb(0, 0, dram_size, 0); |
| |
| /*------------------------------------------------------------------ |
| * DQS calibration. |
| *-----------------------------------------------------------------*/ |
| program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| #ifdef CONFIG_DDR_ECC |
| /*------------------------------------------------------------------ |
| * If ecc is enabled, initialize the parity bits. |
| *-----------------------------------------------------------------*/ |
| program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0); |
| #endif |
| |
| /* |
| * Now after initialization (auto-calibration and ECC generation) |
| * remove the TLB entries with caches enabled and program again with |
| * desired cache functionality |
| */ |
| remove_tlb(0, dram_size); |
| program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE); |
| |
| ppc440sp_sdram_register_dump(); |
| |
| /* |
| * Clear potential errors resulting from auto-calibration. |
| * If not done, then we could get an interrupt later on when |
| * exceptions are enabled. |
| */ |
| set_mcsr(get_mcsr()); |
| |
| return dram_size; |
| } |
| |
| static void get_spd_info(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long dimm_found; |
| unsigned char num_of_bytes; |
| unsigned char total_size; |
| |
| dimm_found = FALSE; |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| num_of_bytes = 0; |
| total_size = 0; |
| |
| num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); |
| debug("\nspd_read(0x%x) returned %d\n", |
| iic0_dimm_addr[dimm_num], num_of_bytes); |
| total_size = spd_read(iic0_dimm_addr[dimm_num], 1); |
| debug("spd_read(0x%x) returned %d\n", |
| iic0_dimm_addr[dimm_num], total_size); |
| |
| if ((num_of_bytes != 0) && (total_size != 0)) { |
| dimm_populated[dimm_num] = TRUE; |
| dimm_found = TRUE; |
| debug("DIMM slot %lu: populated\n", dimm_num); |
| } else { |
| dimm_populated[dimm_num] = FALSE; |
| debug("DIMM slot %lu: Not populated\n", dimm_num); |
| } |
| } |
| |
| if (dimm_found == FALSE) { |
| printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| } |
| |
| void board_add_ram_info(int use_default) |
| { |
| PPC4xx_SYS_INFO board_cfg; |
| u32 val; |
| |
| if (is_ecc_enabled()) |
| puts(" (ECC"); |
| else |
| puts(" (ECC not"); |
| |
| get_sys_info(&board_cfg); |
| |
| mfsdr(SDR0_DDR0, val); |
| val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1); |
| printf(" enabled, %d MHz", (val * 2) / 1000000); |
| |
| mfsdram(SDRAM_MMODE, val); |
| val = (val & SDRAM_MMODE_DCL_MASK) >> 4; |
| printf(", CL%d)", val); |
| } |
| |
| /*------------------------------------------------------------------ |
| * For the memory DIMMs installed, this routine verifies that they |
| * really are DDR specific DIMMs. |
| *-----------------------------------------------------------------*/ |
| static void check_mem_type(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long dimm_type; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == TRUE) { |
| dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); |
| switch (dimm_type) { |
| case 1: |
| printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in " |
| "slot %d.\n", (unsigned int)dimm_num); |
| printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| case 2: |
| printf("ERROR: EDO DIMM detected in slot %d.\n", |
| (unsigned int)dimm_num); |
| printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| case 3: |
| printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n", |
| (unsigned int)dimm_num); |
| printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| case 4: |
| printf("ERROR: SDRAM DIMM detected in slot %d.\n", |
| (unsigned int)dimm_num); |
| printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| case 5: |
| printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n", |
| (unsigned int)dimm_num); |
| printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| case 6: |
| printf("ERROR: SGRAM DIMM detected in slot %d.\n", |
| (unsigned int)dimm_num); |
| printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| case 7: |
| debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num); |
| dimm_populated[dimm_num] = SDRAM_DDR1; |
| break; |
| case 8: |
| debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num); |
| dimm_populated[dimm_num] = SDRAM_DDR2; |
| break; |
| default: |
| printf("ERROR: Unknown DIMM detected in slot %d.\n", |
| (unsigned int)dimm_num); |
| printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| } |
| } |
| } |
| for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) { |
| if ((dimm_populated[dimm_num-1] != SDRAM_NONE) |
| && (dimm_populated[dimm_num] != SDRAM_NONE) |
| && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) { |
| printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n"); |
| spd_ddr_init_hang (); |
| } |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * For the memory DIMMs installed, this routine verifies that |
| * frequency previously calculated is supported. |
| *-----------------------------------------------------------------*/ |
| static void check_frequency(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long tcyc_reg; |
| unsigned long cycle_time; |
| unsigned long calc_cycle_time; |
| unsigned long sdram_freq; |
| unsigned long sdr_ddrpll; |
| PPC4xx_SYS_INFO board_cfg; |
| |
| /*------------------------------------------------------------------ |
| * Get the board configuration info. |
| *-----------------------------------------------------------------*/ |
| get_sys_info(&board_cfg); |
| |
| mfsdr(SDR0_DDR0, sdr_ddrpll); |
| sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); |
| |
| /* |
| * calc_cycle_time is calculated from DDR frequency set by board/chip |
| * and is expressed in multiple of 10 picoseconds |
| * to match the way DIMM cycle time is calculated below. |
| */ |
| calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq); |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); |
| /* |
| * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles: |
| * the higher order nibble (bits 4-7) designates the cycle time |
| * to a granularity of 1ns; |
| * the value presented by the lower order nibble (bits 0-3) |
| * has a granularity of .1ns and is added to the value designated |
| * by the higher nibble. In addition, four lines of the lower order |
| * nibble are assigned to support +.25,+.33, +.66 and +.75. |
| */ |
| /* Convert from hex to decimal */ |
| if ((tcyc_reg & 0x0F) == 0x0D) |
| cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75; |
| else if ((tcyc_reg & 0x0F) == 0x0C) |
| cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66; |
| else if ((tcyc_reg & 0x0F) == 0x0B) |
| cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33; |
| else if ((tcyc_reg & 0x0F) == 0x0A) |
| cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25; |
| else |
| cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + |
| ((tcyc_reg & 0x0F)*10); |
| debug("cycle_time=%d [10 picoseconds]\n", cycle_time); |
| |
| if (cycle_time > (calc_cycle_time + 10)) { |
| /* |
| * the provided sdram cycle_time is too small |
| * for the available DIMM cycle_time. |
| * The additionnal 100ps is here to accept a small incertainty. |
| */ |
| printf("ERROR: DRAM DIMM detected with cycle_time %d ps in " |
| "slot %d \n while calculated cycle time is %d ps.\n", |
| (unsigned int)(cycle_time*10), |
| (unsigned int)dimm_num, |
| (unsigned int)(calc_cycle_time*10)); |
| printf("Replace the DIMM, or change DDR frequency via " |
| "strapping bits.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| } |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * For the memory DIMMs installed, this routine verifies two |
| * ranks/banks maximum are availables. |
| *-----------------------------------------------------------------*/ |
| static void check_rank_number(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long dimm_rank; |
| unsigned long total_rank = 0; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5); |
| if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) |
| dimm_rank = (dimm_rank & 0x0F) +1; |
| else |
| dimm_rank = dimm_rank & 0x0F; |
| |
| |
| if (dimm_rank > MAXRANKS) { |
| printf("ERROR: DRAM DIMM detected with %d ranks in " |
| "slot %d is not supported.\n", dimm_rank, dimm_num); |
| printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| } else |
| total_rank += dimm_rank; |
| } |
| if (total_rank > MAXRANKS) { |
| printf("ERROR: DRAM DIMM detected with a total of %d ranks " |
| "for all slots.\n", (unsigned int)total_rank); |
| printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS); |
| printf("Remove one of the DIMM modules.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * only support 2.5V modules. |
| * This routine verifies this. |
| *-----------------------------------------------------------------*/ |
| static void check_voltage_type(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long voltage_type; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); |
| switch (voltage_type) { |
| case 0x00: |
| printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); |
| printf("This DIMM is 5.0 Volt/TTL.\n"); |
| printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", |
| (unsigned int)dimm_num); |
| spd_ddr_init_hang (); |
| break; |
| case 0x01: |
| printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); |
| printf("This DIMM is LVTTL.\n"); |
| printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", |
| (unsigned int)dimm_num); |
| spd_ddr_init_hang (); |
| break; |
| case 0x02: |
| printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); |
| printf("This DIMM is 1.5 Volt.\n"); |
| printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", |
| (unsigned int)dimm_num); |
| spd_ddr_init_hang (); |
| break; |
| case 0x03: |
| printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); |
| printf("This DIMM is 3.3 Volt/TTL.\n"); |
| printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", |
| (unsigned int)dimm_num); |
| spd_ddr_init_hang (); |
| break; |
| case 0x04: |
| /* 2.5 Voltage only for DDR1 */ |
| break; |
| case 0x05: |
| /* 1.8 Voltage only for DDR2 */ |
| break; |
| default: |
| printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); |
| printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", |
| (unsigned int)dimm_num); |
| spd_ddr_init_hang (); |
| break; |
| } |
| } |
| } |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * program_copt1. |
| *-----------------------------------------------------------------------------*/ |
| static void program_copt1(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long mcopt1; |
| unsigned long ecc_enabled; |
| unsigned long ecc = 0; |
| unsigned long data_width = 0; |
| unsigned long dimm_32bit; |
| unsigned long dimm_64bit; |
| unsigned long registered = 0; |
| unsigned long attribute = 0; |
| unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */ |
| unsigned long bankcount; |
| unsigned long ddrtype; |
| unsigned long val; |
| |
| #ifdef CONFIG_DDR_ECC |
| ecc_enabled = TRUE; |
| #else |
| ecc_enabled = FALSE; |
| #endif |
| dimm_32bit = FALSE; |
| dimm_64bit = FALSE; |
| buf0 = FALSE; |
| buf1 = FALSE; |
| |
| /*------------------------------------------------------------------ |
| * Set memory controller options reg 1, SDRAM_MCOPT1. |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_MCOPT1, val); |
| mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK | |
| SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK | |
| SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK | |
| SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK | |
| SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK | |
| SDRAM_MCOPT1_DREF_MASK); |
| |
| mcopt1 |= SDRAM_MCOPT1_QDEP; |
| mcopt1 |= SDRAM_MCOPT1_PMU_OPEN; |
| mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED; |
| mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED; |
| mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED; |
| mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| /* test ecc support */ |
| ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11); |
| if (ecc != 0x02) /* ecc not supported */ |
| ecc_enabled = FALSE; |
| |
| /* test bank count */ |
| bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17); |
| if (bankcount == 0x04) /* bank count = 4 */ |
| mcopt1 |= SDRAM_MCOPT1_4_BANKS; |
| else /* bank count = 8 */ |
| mcopt1 |= SDRAM_MCOPT1_8_BANKS; |
| |
| /* test DDR type */ |
| ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2); |
| /* test for buffered/unbuffered, registered, differential clocks */ |
| registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20); |
| attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21); |
| |
| /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */ |
| if (dimm_num == 0) { |
| if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */ |
| mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE; |
| if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */ |
| mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE; |
| if (registered == 1) { /* DDR2 always buffered */ |
| /* TODO: what about above comments ? */ |
| mcopt1 |= SDRAM_MCOPT1_RDEN; |
| buf0 = TRUE; |
| } else { |
| /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */ |
| if ((attribute & 0x02) == 0x00) { |
| /* buffered not supported */ |
| buf0 = FALSE; |
| } else { |
| mcopt1 |= SDRAM_MCOPT1_RDEN; |
| buf0 = TRUE; |
| } |
| } |
| } |
| else if (dimm_num == 1) { |
| if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */ |
| mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE; |
| if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */ |
| mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE; |
| if (registered == 1) { |
| /* DDR2 always buffered */ |
| mcopt1 |= SDRAM_MCOPT1_RDEN; |
| buf1 = TRUE; |
| } else { |
| if ((attribute & 0x02) == 0x00) { |
| /* buffered not supported */ |
| buf1 = FALSE; |
| } else { |
| mcopt1 |= SDRAM_MCOPT1_RDEN; |
| buf1 = TRUE; |
| } |
| } |
| } |
| |
| /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */ |
| data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) + |
| (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8); |
| |
| switch (data_width) { |
| case 72: |
| case 64: |
| dimm_64bit = TRUE; |
| break; |
| case 40: |
| case 32: |
| dimm_32bit = TRUE; |
| break; |
| default: |
| printf("WARNING: Detected a DIMM with a data width of %d bits.\n", |
| data_width); |
| printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n"); |
| break; |
| } |
| } |
| } |
| |
| /* verify matching properties */ |
| if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) { |
| if (buf0 != buf1) { |
| printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n"); |
| spd_ddr_init_hang (); |
| } |
| } |
| |
| if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) { |
| printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n"); |
| spd_ddr_init_hang (); |
| } |
| else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) { |
| mcopt1 |= SDRAM_MCOPT1_DMWD_64; |
| } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) { |
| mcopt1 |= SDRAM_MCOPT1_DMWD_32; |
| } else { |
| printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| |
| if (ecc_enabled == TRUE) |
| mcopt1 |= SDRAM_MCOPT1_MCHK_GEN; |
| else |
| mcopt1 |= SDRAM_MCOPT1_MCHK_NON; |
| |
| mtsdram(SDRAM_MCOPT1, mcopt1); |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * program_codt. |
| *-----------------------------------------------------------------------------*/ |
| static void program_codt(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long codt; |
| unsigned long modt0 = 0; |
| unsigned long modt1 = 0; |
| unsigned long modt2 = 0; |
| unsigned long modt3 = 0; |
| unsigned char dimm_num; |
| unsigned char dimm_rank; |
| unsigned char total_rank = 0; |
| unsigned char total_dimm = 0; |
| unsigned char dimm_type = 0; |
| unsigned char firstSlot = 0; |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM Controller On Die Termination Register |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_CODT, codt); |
| codt |= (SDRAM_CODT_IO_NMODE |
| & (~SDRAM_CODT_DQS_SINGLE_END |
| & ~SDRAM_CODT_CKSE_SINGLE_END |
| & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END |
| & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END)); |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5); |
| if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) { |
| dimm_rank = (dimm_rank & 0x0F) + 1; |
| dimm_type = SDRAM_DDR2; |
| } else { |
| dimm_rank = dimm_rank & 0x0F; |
| dimm_type = SDRAM_DDR1; |
| } |
| |
| total_rank += dimm_rank; |
| total_dimm++; |
| if ((dimm_num == 0) && (total_dimm == 1)) |
| firstSlot = TRUE; |
| else |
| firstSlot = FALSE; |
| } |
| } |
| if (dimm_type == SDRAM_DDR2) { |
| codt |= SDRAM_CODT_DQS_1_8_V_DDR2; |
| if ((total_dimm == 1) && (firstSlot == TRUE)) { |
| if (total_rank == 1) { |
| codt |= CALC_ODT_R(0); |
| modt0 = CALC_ODT_W(0); |
| modt1 = 0x00000000; |
| modt2 = 0x00000000; |
| modt3 = 0x00000000; |
| } |
| if (total_rank == 2) { |
| codt |= CALC_ODT_R(0) | CALC_ODT_R(1); |
| modt0 = CALC_ODT_W(0); |
| modt1 = CALC_ODT_W(0); |
| modt2 = 0x00000000; |
| modt3 = 0x00000000; |
| } |
| } else if ((total_dimm == 1) && (firstSlot != TRUE)) { |
| if (total_rank == 1) { |
| codt |= CALC_ODT_R(2); |
| modt0 = 0x00000000; |
| modt1 = 0x00000000; |
| modt2 = CALC_ODT_W(2); |
| modt3 = 0x00000000; |
| } |
| if (total_rank == 2) { |
| codt |= CALC_ODT_R(2) | CALC_ODT_R(3); |
| modt0 = 0x00000000; |
| modt1 = 0x00000000; |
| modt2 = CALC_ODT_W(2); |
| modt3 = CALC_ODT_W(2); |
| } |
| } |
| if (total_dimm == 2) { |
| if (total_rank == 2) { |
| codt |= CALC_ODT_R(0) | CALC_ODT_R(2); |
| modt0 = CALC_ODT_RW(2); |
| modt1 = 0x00000000; |
| modt2 = CALC_ODT_RW(0); |
| modt3 = 0x00000000; |
| } |
| if (total_rank == 4) { |
| codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | |
| CALC_ODT_R(2) | CALC_ODT_R(3); |
| modt0 = CALC_ODT_RW(2); |
| modt1 = 0x00000000; |
| modt2 = CALC_ODT_RW(0); |
| modt3 = 0x00000000; |
| } |
| } |
| } else { |
| codt |= SDRAM_CODT_DQS_2_5_V_DDR1; |
| modt0 = 0x00000000; |
| modt1 = 0x00000000; |
| modt2 = 0x00000000; |
| modt3 = 0x00000000; |
| |
| if (total_dimm == 1) { |
| if (total_rank == 1) |
| codt |= 0x00800000; |
| if (total_rank == 2) |
| codt |= 0x02800000; |
| } |
| if (total_dimm == 2) { |
| if (total_rank == 2) |
| codt |= 0x08800000; |
| if (total_rank == 4) |
| codt |= 0x2a800000; |
| } |
| } |
| |
| debug("nb of dimm %d\n", total_dimm); |
| debug("nb of rank %d\n", total_rank); |
| if (total_dimm == 1) |
| debug("dimm in slot %d\n", firstSlot); |
| |
| mtsdram(SDRAM_CODT, codt); |
| mtsdram(SDRAM_MODT0, modt0); |
| mtsdram(SDRAM_MODT1, modt1); |
| mtsdram(SDRAM_MODT2, modt2); |
| mtsdram(SDRAM_MODT3, modt3); |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * program_initplr. |
| *-----------------------------------------------------------------------------*/ |
| static void program_initplr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks, |
| ddr_cas_id_t selected_cas, |
| int write_recovery) |
| { |
| u32 cas = 0; |
| u32 odt = 0; |
| u32 ods = 0; |
| u32 mr; |
| u32 wr; |
| u32 emr; |
| u32 emr2; |
| u32 emr3; |
| int dimm_num; |
| int total_dimm = 0; |
| |
| /****************************************************** |
| ** Assumption: if more than one DIMM, all DIMMs are the same |
| ** as already checked in check_memory_type |
| ******************************************************/ |
| |
| if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) { |
| mtsdram(SDRAM_INITPLR0, 0x81B80000); |
| mtsdram(SDRAM_INITPLR1, 0x81900400); |
| mtsdram(SDRAM_INITPLR2, 0x81810000); |
| mtsdram(SDRAM_INITPLR3, 0xff800162); |
| mtsdram(SDRAM_INITPLR4, 0x81900400); |
| mtsdram(SDRAM_INITPLR5, 0x86080000); |
| mtsdram(SDRAM_INITPLR6, 0x86080000); |
| mtsdram(SDRAM_INITPLR7, 0x81000062); |
| } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) { |
| switch (selected_cas) { |
| case DDR_CAS_3: |
| cas = 3 << 4; |
| break; |
| case DDR_CAS_4: |
| cas = 4 << 4; |
| break; |
| case DDR_CAS_5: |
| cas = 5 << 4; |
| break; |
| default: |
| printf("ERROR: ucode error on selected_cas value %d", selected_cas); |
| spd_ddr_init_hang (); |
| break; |
| } |
| |
| #if 0 |
| /* |
| * ToDo - Still a problem with the write recovery: |
| * On the Corsair CM2X512-5400C4 module, setting write recovery |
| * in the INITPLR reg to the value calculated in program_mode() |
| * results in not correctly working DDR2 memory (crash after |
| * relocation). |
| * |
| * So for now, set the write recovery to 3. This seems to work |
| * on the Corair module too. |
| * |
| * 2007-03-01, sr |
| */ |
| switch (write_recovery) { |
| case 3: |
| wr = WRITE_RECOV_3; |
| break; |
| case 4: |
| wr = WRITE_RECOV_4; |
| break; |
| case 5: |
| wr = WRITE_RECOV_5; |
| break; |
| case 6: |
| wr = WRITE_RECOV_6; |
| break; |
| default: |
| printf("ERROR: write recovery not support (%d)", write_recovery); |
| spd_ddr_init_hang (); |
| break; |
| } |
| #else |
| wr = WRITE_RECOV_3; /* test-only, see description above */ |
| #endif |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) |
| if (dimm_populated[dimm_num] != SDRAM_NONE) |
| total_dimm++; |
| if (total_dimm == 1) { |
| odt = ODT_150_OHM; |
| ods = ODS_FULL; |
| } else if (total_dimm == 2) { |
| odt = ODT_75_OHM; |
| ods = ODS_REDUCED; |
| } else { |
| printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm); |
| spd_ddr_init_hang (); |
| } |
| |
| mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas; |
| emr = CMD_EMR | SELECT_EMR | odt | ods; |
| emr2 = CMD_EMR | SELECT_EMR2; |
| emr3 = CMD_EMR | SELECT_EMR3; |
| mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */ |
| udelay(1000); |
| mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */ |
| mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */ |
| mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */ |
| mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */ |
| mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */ |
| udelay(1000); |
| mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */ |
| mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */ |
| mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */ |
| mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */ |
| mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */ |
| mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */ |
| mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */ |
| mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */ |
| } else { |
| printf("ERROR: ucode error as unknown DDR type in program_initplr"); |
| spd_ddr_init_hang (); |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * This routine programs the SDRAM_MMODE register. |
| * the selected_cas is an output parameter, that will be passed |
| * by caller to call the above program_initplr( ) |
| *-----------------------------------------------------------------*/ |
| static void program_mode(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks, |
| ddr_cas_id_t *selected_cas, |
| int *write_recovery) |
| { |
| unsigned long dimm_num; |
| unsigned long sdram_ddr1; |
| unsigned long t_wr_ns; |
| unsigned long t_wr_clk; |
| unsigned long cas_bit; |
| unsigned long cas_index; |
| unsigned long sdram_freq; |
| unsigned long ddr_check; |
| unsigned long mmode; |
| unsigned long tcyc_reg; |
| unsigned long cycle_2_0_clk; |
| unsigned long cycle_2_5_clk; |
| unsigned long cycle_3_0_clk; |
| unsigned long cycle_4_0_clk; |
| unsigned long cycle_5_0_clk; |
| unsigned long max_2_0_tcyc_ns_x_100; |
| unsigned long max_2_5_tcyc_ns_x_100; |
| unsigned long max_3_0_tcyc_ns_x_100; |
| unsigned long max_4_0_tcyc_ns_x_100; |
| unsigned long max_5_0_tcyc_ns_x_100; |
| unsigned long cycle_time_ns_x_100[3]; |
| PPC4xx_SYS_INFO board_cfg; |
| unsigned char cas_2_0_available; |
| unsigned char cas_2_5_available; |
| unsigned char cas_3_0_available; |
| unsigned char cas_4_0_available; |
| unsigned char cas_5_0_available; |
| unsigned long sdr_ddrpll; |
| |
| /*------------------------------------------------------------------ |
| * Get the board configuration info. |
| *-----------------------------------------------------------------*/ |
| get_sys_info(&board_cfg); |
| |
| mfsdr(SDR0_DDR0, sdr_ddrpll); |
| sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1); |
| debug("sdram_freq=%d\n", sdram_freq); |
| |
| /*------------------------------------------------------------------ |
| * Handle the timing. We need to find the worst case timing of all |
| * the dimm modules installed. |
| *-----------------------------------------------------------------*/ |
| t_wr_ns = 0; |
| cas_2_0_available = TRUE; |
| cas_2_5_available = TRUE; |
| cas_3_0_available = TRUE; |
| cas_4_0_available = TRUE; |
| cas_5_0_available = TRUE; |
| max_2_0_tcyc_ns_x_100 = 10; |
| max_2_5_tcyc_ns_x_100 = 10; |
| max_3_0_tcyc_ns_x_100 = 10; |
| max_4_0_tcyc_ns_x_100 = 10; |
| max_5_0_tcyc_ns_x_100 = 10; |
| sdram_ddr1 = TRUE; |
| |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| if (dimm_populated[dimm_num] == SDRAM_DDR1) |
| sdram_ddr1 = TRUE; |
| else |
| sdram_ddr1 = FALSE; |
| |
| /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */ |
| cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); |
| debug("cas_bit[SPD byte 18]=%02x\n", cas_bit); |
| |
| /* For a particular DIMM, grab the three CAS values it supports */ |
| for (cas_index = 0; cas_index < 3; cas_index++) { |
| switch (cas_index) { |
| case 0: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); |
| break; |
| case 1: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); |
| break; |
| default: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); |
| break; |
| } |
| |
| if ((tcyc_reg & 0x0F) >= 10) { |
| if ((tcyc_reg & 0x0F) == 0x0D) { |
| /* Convert from hex to decimal */ |
| cycle_time_ns_x_100[cas_index] = |
| (((tcyc_reg & 0xF0) >> 4) * 100) + 75; |
| } else { |
| printf("ERROR: SPD reported Tcyc is incorrect for DIMM " |
| "in slot %d\n", (unsigned int)dimm_num); |
| spd_ddr_init_hang (); |
| } |
| } else { |
| /* Convert from hex to decimal */ |
| cycle_time_ns_x_100[cas_index] = |
| (((tcyc_reg & 0xF0) >> 4) * 100) + |
| ((tcyc_reg & 0x0F)*10); |
| } |
| debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index, |
| cycle_time_ns_x_100[cas_index]); |
| } |
| |
| /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */ |
| /* supported for a particular DIMM. */ |
| cas_index = 0; |
| |
| if (sdram_ddr1) { |
| /* |
| * DDR devices use the following bitmask for CAS latency: |
| * Bit 7 6 5 4 3 2 1 0 |
| * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0 |
| */ |
| if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && |
| (cycle_time_ns_x_100[cas_index] != 0)) { |
| max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, |
| cycle_time_ns_x_100[cas_index]); |
| cas_index++; |
| } else { |
| if (cas_index != 0) |
| cas_index++; |
| cas_4_0_available = FALSE; |
| } |
| |
| if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && |
| (cycle_time_ns_x_100[cas_index] != 0)) { |
| max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, |
| cycle_time_ns_x_100[cas_index]); |
| cas_index++; |
| } else { |
| if (cas_index != 0) |
| cas_index++; |
| cas_3_0_available = FALSE; |
| } |
| |
| if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && |
| (cycle_time_ns_x_100[cas_index] != 0)) { |
| max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, |
| cycle_time_ns_x_100[cas_index]); |
| cas_index++; |
| } else { |
| if (cas_index != 0) |
| cas_index++; |
| cas_2_5_available = FALSE; |
| } |
| |
| if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && |
| (cycle_time_ns_x_100[cas_index] != 0)) { |
| max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, |
| cycle_time_ns_x_100[cas_index]); |
| cas_index++; |
| } else { |
| if (cas_index != 0) |
| cas_index++; |
| cas_2_0_available = FALSE; |
| } |
| } else { |
| /* |
| * DDR2 devices use the following bitmask for CAS latency: |
| * Bit 7 6 5 4 3 2 1 0 |
| * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD |
| */ |
| if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && |
| (cycle_time_ns_x_100[cas_index] != 0)) { |
| max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, |
| cycle_time_ns_x_100[cas_index]); |
| cas_index++; |
| } else { |
| if (cas_index != 0) |
| cas_index++; |
| cas_5_0_available = FALSE; |
| } |
| |
| if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && |
| (cycle_time_ns_x_100[cas_index] != 0)) { |
| max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, |
| cycle_time_ns_x_100[cas_index]); |
| cas_index++; |
| } else { |
| if (cas_index != 0) |
| cas_index++; |
| cas_4_0_available = FALSE; |
| } |
| |
| if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && |
| (cycle_time_ns_x_100[cas_index] != 0)) { |
| max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, |
| cycle_time_ns_x_100[cas_index]); |
| cas_index++; |
| } else { |
| if (cas_index != 0) |
| cas_index++; |
| cas_3_0_available = FALSE; |
| } |
| } |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM mode, SDRAM_MMODE |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_MMODE, mmode); |
| mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK); |
| |
| /* add 10 here because of rounding problems */ |
| cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10; |
| cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10; |
| cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10; |
| cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10; |
| cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10; |
| debug("cycle_3_0_clk=%d\n", cycle_3_0_clk); |
| debug("cycle_4_0_clk=%d\n", cycle_4_0_clk); |
| debug("cycle_5_0_clk=%d\n", cycle_5_0_clk); |
| |
| if (sdram_ddr1 == TRUE) { /* DDR1 */ |
| if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) { |
| mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK; |
| *selected_cas = DDR_CAS_2; |
| } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) { |
| mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK; |
| *selected_cas = DDR_CAS_2_5; |
| } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) { |
| mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK; |
| *selected_cas = DDR_CAS_3; |
| } else { |
| printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n"); |
| printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); |
| printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| } else { /* DDR2 */ |
| debug("cas_3_0_available=%d\n", cas_3_0_available); |
| debug("cas_4_0_available=%d\n", cas_4_0_available); |
| debug("cas_5_0_available=%d\n", cas_5_0_available); |
| if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) { |
| mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK; |
| *selected_cas = DDR_CAS_3; |
| } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) { |
| mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK; |
| *selected_cas = DDR_CAS_4; |
| } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) { |
| mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK; |
| *selected_cas = DDR_CAS_5; |
| } else { |
| printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n"); |
| printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n"); |
| printf("Make sure the PLB speed is within the supported range of the DIMMs.\n"); |
| printf("cas3=%d cas4=%d cas5=%d\n", |
| cas_3_0_available, cas_4_0_available, cas_5_0_available); |
| printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n", |
| sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk); |
| spd_ddr_init_hang (); |
| } |
| } |
| |
| if (sdram_ddr1 == TRUE) |
| mmode |= SDRAM_MMODE_WR_DDR1; |
| else { |
| |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_populated[dimm_num] != SDRAM_NONE) |
| t_wr_ns = max(t_wr_ns, |
| spd_read(iic0_dimm_addr[dimm_num], 36) >> 2); |
| } |
| |
| /* |
| * convert from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns); |
| if (sdram_freq != ddr_check) |
| t_wr_clk++; |
| |
| switch (t_wr_clk) { |
| case 0: |
| case 1: |
| case 2: |
| case 3: |
| mmode |= SDRAM_MMODE_WR_DDR2_3_CYC; |
| break; |
| case 4: |
| mmode |= SDRAM_MMODE_WR_DDR2_4_CYC; |
| break; |
| case 5: |
| mmode |= SDRAM_MMODE_WR_DDR2_5_CYC; |
| break; |
| default: |
| mmode |= SDRAM_MMODE_WR_DDR2_6_CYC; |
| break; |
| } |
| *write_recovery = t_wr_clk; |
| } |
| |
| debug("CAS latency = %d\n", *selected_cas); |
| debug("Write recovery = %d\n", *write_recovery); |
| |
| mtsdram(SDRAM_MMODE, mmode); |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * program_rtr. |
| *-----------------------------------------------------------------------------*/ |
| static void program_rtr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| PPC4xx_SYS_INFO board_cfg; |
| unsigned long max_refresh_rate; |
| unsigned long dimm_num; |
| unsigned long refresh_rate_type; |
| unsigned long refresh_rate; |
| unsigned long rint; |
| unsigned long sdram_freq; |
| unsigned long sdr_ddrpll; |
| unsigned long val; |
| |
| /*------------------------------------------------------------------ |
| * Get the board configuration info. |
| *-----------------------------------------------------------------*/ |
| get_sys_info(&board_cfg); |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM Refresh Timing Register, SDRAM_RTR |
| *-----------------------------------------------------------------*/ |
| mfsdr(SDR0_DDR0, sdr_ddrpll); |
| sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); |
| |
| max_refresh_rate = 0; |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| |
| refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12); |
| refresh_rate_type &= 0x7F; |
| switch (refresh_rate_type) { |
| case 0: |
| refresh_rate = 15625; |
| break; |
| case 1: |
| refresh_rate = 3906; |
| break; |
| case 2: |
| refresh_rate = 7812; |
| break; |
| case 3: |
| refresh_rate = 31250; |
| break; |
| case 4: |
| refresh_rate = 62500; |
| break; |
| case 5: |
| refresh_rate = 125000; |
| break; |
| default: |
| refresh_rate = 0; |
| printf("ERROR: DIMM %d unsupported refresh rate/type.\n", |
| (unsigned int)dimm_num); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| break; |
| } |
| |
| max_refresh_rate = max(max_refresh_rate, refresh_rate); |
| } |
| } |
| |
| rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION); |
| mfsdram(SDRAM_RTR, val); |
| mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) | |
| (SDRAM_RTR_RINT_ENCODE(rint))); |
| } |
| |
| /*------------------------------------------------------------------ |
| * This routine programs the SDRAM_TRx registers. |
| *-----------------------------------------------------------------*/ |
| static void program_tr(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long sdram_ddr1; |
| unsigned long t_rp_ns; |
| unsigned long t_rcd_ns; |
| unsigned long t_rrd_ns; |
| unsigned long t_ras_ns; |
| unsigned long t_rc_ns; |
| unsigned long t_rfc_ns; |
| unsigned long t_wpc_ns; |
| unsigned long t_wtr_ns; |
| unsigned long t_rpc_ns; |
| unsigned long t_rp_clk; |
| unsigned long t_rcd_clk; |
| unsigned long t_rrd_clk; |
| unsigned long t_ras_clk; |
| unsigned long t_rc_clk; |
| unsigned long t_rfc_clk; |
| unsigned long t_wpc_clk; |
| unsigned long t_wtr_clk; |
| unsigned long t_rpc_clk; |
| unsigned long sdtr1, sdtr2, sdtr3; |
| unsigned long ddr_check; |
| unsigned long sdram_freq; |
| unsigned long sdr_ddrpll; |
| |
| PPC4xx_SYS_INFO board_cfg; |
| |
| /*------------------------------------------------------------------ |
| * Get the board configuration info. |
| *-----------------------------------------------------------------*/ |
| get_sys_info(&board_cfg); |
| |
| mfsdr(SDR0_DDR0, sdr_ddrpll); |
| sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); |
| |
| /*------------------------------------------------------------------ |
| * Handle the timing. We need to find the worst case timing of all |
| * the dimm modules installed. |
| *-----------------------------------------------------------------*/ |
| t_rp_ns = 0; |
| t_rrd_ns = 0; |
| t_rcd_ns = 0; |
| t_ras_ns = 0; |
| t_rc_ns = 0; |
| t_rfc_ns = 0; |
| t_wpc_ns = 0; |
| t_wtr_ns = 0; |
| t_rpc_ns = 0; |
| sdram_ddr1 = TRUE; |
| |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| if (dimm_populated[dimm_num] == SDRAM_DDR2) |
| sdram_ddr1 = TRUE; |
| else |
| sdram_ddr1 = FALSE; |
| |
| t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2); |
| t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2); |
| t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2); |
| t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30)); |
| t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41)); |
| t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42)); |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM Timing Reg 1, SDRAM_TR1 |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_SDTR1, sdtr1); |
| sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK | |
| SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK); |
| |
| /* default values */ |
| sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK; |
| sdtr1 |= SDRAM_SDTR1_RTW_2_CLK; |
| |
| /* normal operations */ |
| sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK; |
| sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK; |
| |
| mtsdram(SDRAM_SDTR1, sdtr1); |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM Timing Reg 2, SDRAM_TR2 |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_SDTR2, sdtr2); |
| sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK | |
| SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK | |
| SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK | |
| SDRAM_SDTR2_RRD_MASK); |
| |
| /* |
| * convert t_rcd from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns); |
| if (sdram_freq != ddr_check) |
| t_rcd_clk++; |
| |
| switch (t_rcd_clk) { |
| case 0: |
| case 1: |
| sdtr2 |= SDRAM_SDTR2_RCD_1_CLK; |
| break; |
| case 2: |
| sdtr2 |= SDRAM_SDTR2_RCD_2_CLK; |
| break; |
| case 3: |
| sdtr2 |= SDRAM_SDTR2_RCD_3_CLK; |
| break; |
| case 4: |
| sdtr2 |= SDRAM_SDTR2_RCD_4_CLK; |
| break; |
| default: |
| sdtr2 |= SDRAM_SDTR2_RCD_5_CLK; |
| break; |
| } |
| |
| if (sdram_ddr1 == TRUE) { /* DDR1 */ |
| if (sdram_freq < 200000000) { |
| sdtr2 |= SDRAM_SDTR2_WTR_1_CLK; |
| sdtr2 |= SDRAM_SDTR2_WPC_2_CLK; |
| sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; |
| } else { |
| sdtr2 |= SDRAM_SDTR2_WTR_2_CLK; |
| sdtr2 |= SDRAM_SDTR2_WPC_3_CLK; |
| sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; |
| } |
| } else { /* DDR2 */ |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2); |
| t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2); |
| t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2); |
| } |
| } |
| |
| /* |
| * convert from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns); |
| if (sdram_freq != ddr_check) |
| t_wpc_clk++; |
| |
| switch (t_wpc_clk) { |
| case 0: |
| case 1: |
| case 2: |
| sdtr2 |= SDRAM_SDTR2_WPC_2_CLK; |
| break; |
| case 3: |
| sdtr2 |= SDRAM_SDTR2_WPC_3_CLK; |
| break; |
| case 4: |
| sdtr2 |= SDRAM_SDTR2_WPC_4_CLK; |
| break; |
| case 5: |
| sdtr2 |= SDRAM_SDTR2_WPC_5_CLK; |
| break; |
| default: |
| sdtr2 |= SDRAM_SDTR2_WPC_6_CLK; |
| break; |
| } |
| |
| /* |
| * convert from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns); |
| if (sdram_freq != ddr_check) |
| t_wtr_clk++; |
| |
| switch (t_wtr_clk) { |
| case 0: |
| case 1: |
| sdtr2 |= SDRAM_SDTR2_WTR_1_CLK; |
| break; |
| case 2: |
| sdtr2 |= SDRAM_SDTR2_WTR_2_CLK; |
| break; |
| case 3: |
| sdtr2 |= SDRAM_SDTR2_WTR_3_CLK; |
| break; |
| default: |
| sdtr2 |= SDRAM_SDTR2_WTR_4_CLK; |
| break; |
| } |
| |
| /* |
| * convert from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns); |
| if (sdram_freq != ddr_check) |
| t_rpc_clk++; |
| |
| switch (t_rpc_clk) { |
| case 0: |
| case 1: |
| case 2: |
| sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; |
| break; |
| case 3: |
| sdtr2 |= SDRAM_SDTR2_RPC_3_CLK; |
| break; |
| default: |
| sdtr2 |= SDRAM_SDTR2_RPC_4_CLK; |
| break; |
| } |
| } |
| |
| /* default value */ |
| sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK; |
| |
| /* |
| * convert t_rrd from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns); |
| if (sdram_freq != ddr_check) |
| t_rrd_clk++; |
| |
| if (t_rrd_clk == 3) |
| sdtr2 |= SDRAM_SDTR2_RRD_3_CLK; |
| else |
| sdtr2 |= SDRAM_SDTR2_RRD_2_CLK; |
| |
| /* |
| * convert t_rp from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns); |
| if (sdram_freq != ddr_check) |
| t_rp_clk++; |
| |
| switch (t_rp_clk) { |
| case 0: |
| case 1: |
| case 2: |
| case 3: |
| sdtr2 |= SDRAM_SDTR2_RP_3_CLK; |
| break; |
| case 4: |
| sdtr2 |= SDRAM_SDTR2_RP_4_CLK; |
| break; |
| case 5: |
| sdtr2 |= SDRAM_SDTR2_RP_5_CLK; |
| break; |
| case 6: |
| sdtr2 |= SDRAM_SDTR2_RP_6_CLK; |
| break; |
| default: |
| sdtr2 |= SDRAM_SDTR2_RP_7_CLK; |
| break; |
| } |
| |
| mtsdram(SDRAM_SDTR2, sdtr2); |
| |
| /*------------------------------------------------------------------ |
| * Set the SDRAM Timing Reg 3, SDRAM_TR3 |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_SDTR3, sdtr3); |
| sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK | |
| SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK); |
| |
| /* |
| * convert t_ras from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns); |
| if (sdram_freq != ddr_check) |
| t_ras_clk++; |
| |
| sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk); |
| |
| /* |
| * convert t_rc from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns); |
| if (sdram_freq != ddr_check) |
| t_rc_clk++; |
| |
| sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk); |
| |
| /* default xcs value */ |
| sdtr3 |= SDRAM_SDTR3_XCS; |
| |
| /* |
| * convert t_rfc from nanoseconds to ddr clocks |
| * round up if necessary |
| */ |
| t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION); |
| ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns); |
| if (sdram_freq != ddr_check) |
| t_rfc_clk++; |
| |
| sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk); |
| |
| mtsdram(SDRAM_SDTR3, sdtr3); |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * program_bxcf. |
| *-----------------------------------------------------------------------------*/ |
| static void program_bxcf(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long num_col_addr; |
| unsigned long num_ranks; |
| unsigned long num_banks; |
| unsigned long mode; |
| unsigned long ind_rank; |
| unsigned long ind; |
| unsigned long ind_bank; |
| unsigned long bank_0_populated; |
| |
| /*------------------------------------------------------------------ |
| * Set the BxCF regs. First, wipe out the bank config registers. |
| *-----------------------------------------------------------------*/ |
| mtsdram(SDRAM_MB0CF, 0x00000000); |
| mtsdram(SDRAM_MB1CF, 0x00000000); |
| mtsdram(SDRAM_MB2CF, 0x00000000); |
| mtsdram(SDRAM_MB3CF, 0x00000000); |
| |
| mode = SDRAM_BXCF_M_BE_ENABLE; |
| |
| bank_0_populated = 0; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); |
| num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5); |
| if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) |
| num_ranks = (num_ranks & 0x0F) +1; |
| else |
| num_ranks = num_ranks & 0x0F; |
| |
| num_banks = spd_read(iic0_dimm_addr[dimm_num], 17); |
| |
| for (ind_bank = 0; ind_bank < 2; ind_bank++) { |
| if (num_banks == 4) |
| ind = 0; |
| else |
| ind = 5 << 8; |
| switch (num_col_addr) { |
| case 0x08: |
| mode |= (SDRAM_BXCF_M_AM_0 + ind); |
| break; |
| case 0x09: |
| mode |= (SDRAM_BXCF_M_AM_1 + ind); |
| break; |
| case 0x0A: |
| mode |= (SDRAM_BXCF_M_AM_2 + ind); |
| break; |
| case 0x0B: |
| mode |= (SDRAM_BXCF_M_AM_3 + ind); |
| break; |
| case 0x0C: |
| mode |= (SDRAM_BXCF_M_AM_4 + ind); |
| break; |
| default: |
| printf("DDR-SDRAM: DIMM %d BxCF configuration.\n", |
| (unsigned int)dimm_num); |
| printf("ERROR: Unsupported value for number of " |
| "column addresses: %d.\n", (unsigned int)num_col_addr); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| } |
| |
| if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1)) |
| bank_0_populated = 1; |
| |
| for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) { |
| mtsdram(SDRAM_MB0CF + |
| ((dimm_num + bank_0_populated + ind_rank) << 2), |
| mode); |
| } |
| } |
| } |
| } |
| |
| /*------------------------------------------------------------------ |
| * program memory queue. |
| *-----------------------------------------------------------------*/ |
| static void program_memory_queue(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long rank_base_addr; |
| unsigned long rank_reg; |
| unsigned long rank_size_bytes; |
| unsigned long rank_size_id; |
| unsigned long num_ranks; |
| unsigned long baseadd_size; |
| unsigned long i; |
| unsigned long bank_0_populated = 0; |
| unsigned long total_size = 0; |
| |
| /*------------------------------------------------------------------ |
| * Reset the rank_base_address. |
| *-----------------------------------------------------------------*/ |
| rank_reg = SDRAM_R0BAS; |
| |
| rank_base_addr = 0x00000000; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] != SDRAM_NONE) { |
| num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5); |
| if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) |
| num_ranks = (num_ranks & 0x0F) + 1; |
| else |
| num_ranks = num_ranks & 0x0F; |
| |
| rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); |
| |
| /*------------------------------------------------------------------ |
| * Set the sizes |
| *-----------------------------------------------------------------*/ |
| baseadd_size = 0; |
| switch (rank_size_id) { |
| case 0x01: |
| baseadd_size |= SDRAM_RXBAS_SDSZ_1024; |
| total_size = 1024; |
| break; |
| case 0x02: |
| baseadd_size |= SDRAM_RXBAS_SDSZ_2048; |
| total_size = 2048; |
| break; |
| case 0x04: |
| baseadd_size |= SDRAM_RXBAS_SDSZ_4096; |
| total_size = 4096; |
| break; |
| case 0x08: |
| baseadd_size |= SDRAM_RXBAS_SDSZ_32; |
| total_size = 32; |
| break; |
| case 0x10: |
| baseadd_size |= SDRAM_RXBAS_SDSZ_64; |
| total_size = 64; |
| break; |
| case 0x20: |
| baseadd_size |= SDRAM_RXBAS_SDSZ_128; |
| total_size = 128; |
| break; |
| case 0x40: |
| baseadd_size |= SDRAM_RXBAS_SDSZ_256; |
| total_size = 256; |
| break; |
| case 0x80: |
| baseadd_size |= SDRAM_RXBAS_SDSZ_512; |
| total_size = 512; |
| break; |
| default: |
| printf("DDR-SDRAM: DIMM %d memory queue configuration.\n", |
| (unsigned int)dimm_num); |
| printf("ERROR: Unsupported value for the banksize: %d.\n", |
| (unsigned int)rank_size_id); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| spd_ddr_init_hang (); |
| } |
| rank_size_bytes = total_size << 20; |
| |
| if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1)) |
| bank_0_populated = 1; |
| |
| for (i = 0; i < num_ranks; i++) { |
| mtdcr_any(rank_reg+i+dimm_num+bank_0_populated, |
| (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) | |
| baseadd_size)); |
| rank_base_addr += rank_size_bytes; |
| } |
| } |
| } |
| |
| #if defined(CONFIG_460EX) || defined(CONFIG_460GT) |
| /* |
| * Enable high bandwidth access on 460EX/GT. |
| * This should/could probably be done on other |
| * PPC's too, like 440SPe. |
| * This is currently not used, but with this setup |
| * it is possible to use it later on in e.g. the Linux |
| * EMAC driver for performance gain. |
| */ |
| mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */ |
| mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */ |
| #endif |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * is_ecc_enabled. |
| *-----------------------------------------------------------------------------*/ |
| static unsigned long is_ecc_enabled(void) |
| { |
| unsigned long dimm_num; |
| unsigned long ecc; |
| unsigned long val; |
| |
| ecc = 0; |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { |
| mfsdram(SDRAM_MCOPT1, val); |
| ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val)); |
| } |
| |
| return ecc; |
| } |
| |
| static void blank_string(int size) |
| { |
| int i; |
| |
| for (i=0; i<size; i++) |
| putc('\b'); |
| for (i=0; i<size; i++) |
| putc(' '); |
| for (i=0; i<size; i++) |
| putc('\b'); |
| } |
| |
| #ifdef CONFIG_DDR_ECC |
| /*-----------------------------------------------------------------------------+ |
| * program_ecc. |
| *-----------------------------------------------------------------------------*/ |
| static void program_ecc(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks, |
| unsigned long tlb_word2_i_value) |
| { |
| unsigned long mcopt1; |
| unsigned long mcopt2; |
| unsigned long mcstat; |
| unsigned long dimm_num; |
| unsigned long ecc; |
| |
| ecc = 0; |
| /* loop through all the DIMM slots on the board */ |
| for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { |
| /* If a dimm is installed in a particular slot ... */ |
| if (dimm_populated[dimm_num] != SDRAM_NONE) |
| ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11)); |
| } |
| if (ecc == 0) |
| return; |
| |
| mfsdram(SDRAM_MCOPT1, mcopt1); |
| mfsdram(SDRAM_MCOPT2, mcopt2); |
| |
| if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) { |
| /* DDR controller must be enabled and not in self-refresh. */ |
| mfsdram(SDRAM_MCSTAT, mcstat); |
| if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE) |
| && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT) |
| && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK)) |
| == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) { |
| |
| program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value); |
| } |
| } |
| |
| return; |
| } |
| |
| static void wait_ddr_idle(void) |
| { |
| u32 val; |
| |
| do { |
| mfsdram(SDRAM_MCSTAT, val); |
| } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT); |
| } |
| |
| /*-----------------------------------------------------------------------------+ |
| * program_ecc_addr. |
| *-----------------------------------------------------------------------------*/ |
| static void program_ecc_addr(unsigned long start_address, |
| unsigned long num_bytes, |
| unsigned long tlb_word2_i_value) |
| { |
| unsigned long current_address; |
| unsigned long end_address; |
| unsigned long address_increment; |
| unsigned long mcopt1; |
| char str[] = "ECC generation -"; |
| char slash[] = "\\|/-\\|/-"; |
| int loop = 0; |
| int loopi = 0; |
| |
| current_address = start_address; |
| mfsdram(SDRAM_MCOPT1, mcopt1); |
| if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) { |
| mtsdram(SDRAM_MCOPT1, |
| (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN); |
| sync(); |
| eieio(); |
| wait_ddr_idle(); |
| |
| puts(str); |
| if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) { |
| /* ECC bit set method for non-cached memory */ |
| if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32) |
| address_increment = 4; |
| else |
| address_increment = 8; |
| end_address = current_address + num_bytes; |
| |
| while (current_address < end_address) { |
| *((unsigned long *)current_address) = 0x00000000; |
| current_address += address_increment; |
| |
| if ((loop++ % (2 << 20)) == 0) { |
| putc('\b'); |
| putc(slash[loopi++ % 8]); |
| } |
| } |
| |
| } else { |
| /* ECC bit set method for cached memory */ |
| dcbz_area(start_address, num_bytes); |
| /* Write modified dcache lines back to memory */ |
| clean_dcache_range(start_address, start_address + num_bytes); |
| } |
| |
| blank_string(strlen(str)); |
| |
| sync(); |
| eieio(); |
| wait_ddr_idle(); |
| |
| /* clear ECC error repoting registers */ |
| mtsdram(SDRAM_ECCCR, 0xffffffff); |
| mtdcr(0x4c, 0xffffffff); |
| |
| mtsdram(SDRAM_MCOPT1, |
| (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP); |
| sync(); |
| eieio(); |
| wait_ddr_idle(); |
| } |
| } |
| #endif |
| |
| /*-----------------------------------------------------------------------------+ |
| * program_DQS_calibration. |
| *-----------------------------------------------------------------------------*/ |
| static void program_DQS_calibration(unsigned long *dimm_populated, |
| unsigned char *iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long val; |
| |
| #ifdef HARD_CODED_DQS /* calibration test with hardvalues */ |
| mtsdram(SDRAM_RQDC, 0x80000037); |
| mtsdram(SDRAM_RDCC, 0x40000000); |
| mtsdram(SDRAM_RFDC, 0x000001DF); |
| |
| test(); |
| #else |
| /*------------------------------------------------------------------ |
| * Program RDCC register |
| * Read sample cycle auto-update enable |
| *-----------------------------------------------------------------*/ |
| |
| mfsdram(SDRAM_RDCC, val); |
| mtsdram(SDRAM_RDCC, |
| (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK)) |
| | SDRAM_RDCC_RSAE_ENABLE); |
| |
| /*------------------------------------------------------------------ |
| * Program RQDC register |
| * Internal DQS delay mechanism enable |
| *-----------------------------------------------------------------*/ |
| mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38))); |
| |
| /*------------------------------------------------------------------ |
| * Program RFDC register |
| * Set Feedback Fractional Oversample |
| * Auto-detect read sample cycle enable |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_RFDC, val); |
| mtsdram(SDRAM_RFDC, |
| (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK | |
| SDRAM_RFDC_RFFD_MASK)) |
| | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) | |
| SDRAM_RFDC_RFFD_ENCODE(0))); |
| |
| DQS_calibration_process(); |
| #endif |
| } |
| |
| static int short_mem_test(void) |
| { |
| u32 *membase; |
| u32 bxcr_num; |
| u32 bxcf; |
| int i; |
| int j; |
| u32 test[NUMMEMTESTS][NUMMEMWORDS] = { |
| {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, |
| 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, |
| {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, |
| 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, |
| {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, |
| 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, |
| {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, |
| 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, |
| {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, |
| 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, |
| {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, |
| 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, |
| {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, |
| 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, |
| {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, |
| 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; |
| int l; |
| |
| for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) { |
| mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf); |
| |
| /* Banks enabled */ |
| if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { |
| /* Bank is enabled */ |
| |
| /*------------------------------------------------------------------ |
| * Run the short memory test. |
| *-----------------------------------------------------------------*/ |
| membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num))); |
| |
| for (i = 0; i < NUMMEMTESTS; i++) { |
| for (j = 0; j < NUMMEMWORDS; j++) { |
| membase[j] = test[i][j]; |
| ppcDcbf((u32)&(membase[j])); |
| } |
| sync(); |
| for (l=0; l<NUMLOOPS; l++) { |
| for (j = 0; j < NUMMEMWORDS; j++) { |
| if (membase[j] != test[i][j]) { |
| ppcDcbf((u32)&(membase[j])); |
| return 0; |
| } |
| ppcDcbf((u32)&(membase[j])); |
| } |
| sync(); |
| } |
| } |
| } /* if bank enabled */ |
| } /* for bxcf_num */ |
| |
| return 1; |
| } |
| |
| #ifndef HARD_CODED_DQS |
| /*-----------------------------------------------------------------------------+ |
| * DQS_calibration_process. |
| *-----------------------------------------------------------------------------*/ |
| static void DQS_calibration_process(void) |
| { |
| unsigned long rfdc_reg; |
| unsigned long rffd; |
| unsigned long val; |
| long rffd_average; |
| long max_start; |
| long min_end; |
| unsigned long begin_rqfd[MAXRANKS]; |
| unsigned long begin_rffd[MAXRANKS]; |
| unsigned long end_rqfd[MAXRANKS]; |
| unsigned long end_rffd[MAXRANKS]; |
| char window_found; |
| unsigned long dlycal; |
| unsigned long dly_val; |
| unsigned long max_pass_length; |
| unsigned long current_pass_length; |
| unsigned long current_fail_length; |
| unsigned long current_start; |
| long max_end; |
| unsigned char fail_found; |
| unsigned char pass_found; |
| #if !defined(CONFIG_DDR_RQDC_FIXED) |
| u32 rqdc_reg; |
| u32 rqfd; |
| u32 rqfd_start; |
| u32 rqfd_average; |
| int loopi = 0; |
| char str[] = "Auto calibration -"; |
| char slash[] = "\\|/-\\|/-"; |
| |
| /*------------------------------------------------------------------ |
| * Test to determine the best read clock delay tuning bits. |
| * |
| * Before the DDR controller can be used, the read clock delay needs to be |
| * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD]. |
| * This value cannot be hardcoded into the program because it changes |
| * depending on the board's setup and environment. |
| * To do this, all delay values are tested to see if they |
| * work or not. By doing this, you get groups of fails with groups of |
| * passing values. The idea is to find the start and end of a passing |
| * window and take the center of it to use as the read clock delay. |
| * |
| * A failure has to be seen first so that when we hit a pass, we know |
| * that it is truely the start of the window. If we get passing values |
| * to start off with, we don't know if we are at the start of the window. |
| * |
| * The code assumes that a failure will always be found. |
| * If a failure is not found, there is no easy way to get the middle |
| * of the passing window. I guess we can pretty much pick any value |
| * but some values will be better than others. Since the lowest speed |
| * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed), |
| * from experimentation it is safe to say you will always have a failure. |
| *-----------------------------------------------------------------*/ |
| |
| /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */ |
| rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */ |
| |
| puts(str); |
| |
| calibration_loop: |
| mfsdram(SDRAM_RQDC, rqdc_reg); |
| mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | |
| SDRAM_RQDC_RQFD_ENCODE(rqfd_start)); |
| #else /* CONFIG_DDR_RQDC_FIXED */ |
| /* |
| * On Katmai the complete auto-calibration somehow doesn't seem to |
| * produce the best results, meaning optimal values for RQFD/RFFD. |
| * This was discovered by GDA using a high bandwidth scope, |
| * analyzing the DDR2 signals. GDA provided a fixed value for RQFD, |
| * so now on Katmai "only" RFFD is auto-calibrated. |
| */ |
| mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED); |
| #endif /* CONFIG_DDR_RQDC_FIXED */ |
| |
| max_start = 0; |
| min_end = 0; |
| begin_rqfd[0] = 0; |
| begin_rffd[0] = 0; |
| begin_rqfd[1] = 0; |
| begin_rffd[1] = 0; |
| end_rqfd[0] = 0; |
| end_rffd[0] = 0; |
| end_rqfd[1] = 0; |
| end_rffd[1] = 0; |
| window_found = FALSE; |
| |
| max_pass_length = 0; |
| max_start = 0; |
| max_end = 0; |
| current_pass_length = 0; |
| current_fail_length = 0; |
| current_start = 0; |
| window_found = FALSE; |
| fail_found = FALSE; |
| pass_found = FALSE; |
| |
| /* |
| * get the delay line calibration register value |
| */ |
| mfsdram(SDRAM_DLCR, dlycal); |
| dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2; |
| |
| for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) { |
| mfsdram(SDRAM_RFDC, rfdc_reg); |
| rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK); |
| |
| /*------------------------------------------------------------------ |
| * Set the timing reg for the test. |
| *-----------------------------------------------------------------*/ |
| mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd)); |
| |
| /*------------------------------------------------------------------ |
| * See if the rffd value passed. |
| *-----------------------------------------------------------------*/ |
| if (short_mem_test()) { |
| if (fail_found == TRUE) { |
| pass_found = TRUE; |
| if (current_pass_length == 0) |
| current_start = rffd; |
| |
| current_fail_length = 0; |
| current_pass_length++; |
| |
| if (current_pass_length > max_pass_length) { |
| max_pass_length = current_pass_length; |
| max_start = current_start; |
| max_end = rffd; |
| } |
| } |
| } else { |
| current_pass_length = 0; |
| current_fail_length++; |
| |
| if (current_fail_length >= (dly_val >> 2)) { |
| if (fail_found == FALSE) { |
| fail_found = TRUE; |
| } else if (pass_found == TRUE) { |
| window_found = TRUE; |
| break; |
| } |
| } |
| } |
| } /* for rffd */ |
| |
| /*------------------------------------------------------------------ |
| * Set the average RFFD value |
| *-----------------------------------------------------------------*/ |
| rffd_average = ((max_start + max_end) >> 1); |
| |
| if (rffd_average < 0) |
| rffd_average = 0; |
| |
| if (rffd_average > SDRAM_RFDC_RFFD_MAX) |
| rffd_average = SDRAM_RFDC_RFFD_MAX; |
| /* now fix RFDC[RFFD] found and find RQDC[RQFD] */ |
| mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average)); |
| |
| #if !defined(CONFIG_DDR_RQDC_FIXED) |
| max_pass_length = 0; |
| max_start = 0; |
| max_end = 0; |
| current_pass_length = 0; |
| current_fail_length = 0; |
| current_start = 0; |
| window_found = FALSE; |
| fail_found = FALSE; |
| pass_found = FALSE; |
| |
| for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) { |
| mfsdram(SDRAM_RQDC, rqdc_reg); |
| rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK); |
| |
| /*------------------------------------------------------------------ |
| * Set the timing reg for the test. |
| *-----------------------------------------------------------------*/ |
| mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd)); |
| |
| /*------------------------------------------------------------------ |
| * See if the rffd value passed. |
| *-----------------------------------------------------------------*/ |
| if (short_mem_test()) { |
| if (fail_found == TRUE) { |
| pass_found = TRUE; |
| if (current_pass_length == 0) |
| current_start = rqfd; |
| |
| current_fail_length = 0; |
| current_pass_length++; |
| |
| if (current_pass_length > max_pass_length) { |
| max_pass_length = current_pass_length; |
| max_start = current_start; |
| max_end = rqfd; |
| } |
| } |
| } else { |
| current_pass_length = 0; |
| current_fail_length++; |
| |
| if (fail_found == FALSE) { |
| fail_found = TRUE; |
| } else if (pass_found == TRUE) { |
| window_found = TRUE; |
| break; |
| } |
| } |
| } |
| |
| rqfd_average = ((max_start + max_end) >> 1); |
| |
| /*------------------------------------------------------------------ |
| * Make sure we found the valid read passing window. Halt if not |
| *-----------------------------------------------------------------*/ |
| if (window_found == FALSE) { |
| if (rqfd_start < SDRAM_RQDC_RQFD_MAX) { |
| putc('\b'); |
| putc(slash[loopi++ % 8]); |
| |
| /* try again from with a different RQFD start value */ |
| rqfd_start++; |
| goto calibration_loop; |
| } |
| |
| printf("\nERROR: Cannot determine a common read delay for the " |
| "DIMM(s) installed.\n"); |
| debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__); |
| ppc440sp_sdram_register_dump(); |
| spd_ddr_init_hang (); |
| } |
| |
| if (rqfd_average < 0) |
| rqfd_average = 0; |
| |
| if (rqfd_average > SDRAM_RQDC_RQFD_MAX) |
| rqfd_average = SDRAM_RQDC_RQFD_MAX; |
| |
| mtsdram(SDRAM_RQDC, |
| (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | |
| SDRAM_RQDC_RQFD_ENCODE(rqfd_average)); |
| |
| blank_string(strlen(str)); |
| #endif /* CONFIG_DDR_RQDC_FIXED */ |
| |
| /* |
| * Now complete RDSS configuration as mentioned on page 7 of the AMCC |
| * PowerPC440SP/SPe DDR2 application note: |
| * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning" |
| */ |
| mfsdram(SDRAM_RTSR, val); |
| if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) { |
| mfsdram(SDRAM_RDCC, val); |
| if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) { |
| val += 0x40000000; |
| mtsdram(SDRAM_RDCC, val); |
| } |
| } |
| |
| mfsdram(SDRAM_DLCR, val); |
| debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val); |
| mfsdram(SDRAM_RQDC, val); |
| debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val); |
| mfsdram(SDRAM_RFDC, val); |
| debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val); |
| mfsdram(SDRAM_RDCC, val); |
| debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val); |
| } |
| #else /* calibration test with hardvalues */ |
| /*-----------------------------------------------------------------------------+ |
| * DQS_calibration_process. |
| *-----------------------------------------------------------------------------*/ |
| static void test(void) |
| { |
| unsigned long dimm_num; |
| unsigned long ecc_temp; |
| unsigned long i, j; |
| unsigned long *membase; |
| unsigned long bxcf[MAXRANKS]; |
| unsigned long val; |
| char window_found; |
| char begin_found[MAXDIMMS]; |
| char end_found[MAXDIMMS]; |
| char search_end[MAXDIMMS]; |
| unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { |
| {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, |
| 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, |
| {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, |
| 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, |
| {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, |
| 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, |
| {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, |
| 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, |
| {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, |
| 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, |
| {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, |
| 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, |
| {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, |
| 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, |
| {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, |
| 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; |
| |
| /*------------------------------------------------------------------ |
| * Test to determine the best read clock delay tuning bits. |
| * |
| * Before the DDR controller can be used, the read clock delay needs to be |
| * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD]. |
| * This value cannot be hardcoded into the program because it changes |
| * depending on the board's setup and environment. |
| * To do this, all delay values are tested to see if they |
| * work or not. By doing this, you get groups of fails with groups of |
| * passing values. The idea is to find the start and end of a passing |
| * window and take the center of it to use as the read clock delay. |
| * |
| * A failure has to be seen first so that when we hit a pass, we know |
| * that it is truely the start of the window. If we get passing values |
| * to start off with, we don't know if we are at the start of the window. |
| * |
| * The code assumes that a failure will always be found. |
| * If a failure is not found, there is no easy way to get the middle |
| * of the passing window. I guess we can pretty much pick any value |
| * but some values will be better than others. Since the lowest speed |
| * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed), |
| * from experimentation it is safe to say you will always have a failure. |
| *-----------------------------------------------------------------*/ |
| mfsdram(SDRAM_MCOPT1, ecc_temp); |
| ecc_temp &= SDRAM_MCOPT1_MCHK_MASK; |
| mfsdram(SDRAM_MCOPT1, val); |
| mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | |
| SDRAM_MCOPT1_MCHK_NON); |
| |
| window_found = FALSE; |
| begin_found[0] = FALSE; |
| end_found[0] = FALSE; |
| search_end[0] = FALSE; |
| begin_found[1] = FALSE; |
| end_found[1] = FALSE; |
| search_end[1] = FALSE; |
| |
| for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { |
| mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]); |
| |
| /* Banks enabled */ |
| if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { |
| |
| /* Bank is enabled */ |
| membase = |
| (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num))); |
| |
| /*------------------------------------------------------------------ |
| * Run the short memory test. |
| *-----------------------------------------------------------------*/ |
| for (i = 0; i < NUMMEMTESTS; i++) { |
| for (j = 0; j < NUMMEMWORDS; j++) { |
| membase[j] = test[i][j]; |
| ppcDcbf((u32)&(membase[j])); |
| } |
| sync(); |
| for (j = 0; j < NUMMEMWORDS; j++) { |
| if (membase[j] != test[i][j]) { |
| ppcDcbf((u32)&(membase[j])); |
| break; |
| } |
| ppcDcbf((u32)&(membase[j])); |
| } |
| sync(); |
| if (j < NUMMEMWORDS) |
| break; |
| } |
| |
| /*------------------------------------------------------------------ |
| * See if the rffd value passed. |
| *-----------------------------------------------------------------*/ |
| if (i < NUMMEMTESTS) { |
| if ((end_found[dimm_num] == FALSE) && |
| (search_end[dimm_num] == TRUE)) { |
| end_found[dimm_num] = TRUE; |
| } |
| if ((end_found[0] == TRUE) && |
| (end_found[1] == TRUE)) |
| break; |
| } else { |
| if (begin_found[dimm_num] == FALSE) { |
| begin_found[dimm_num] = TRUE; |
| search_end[dimm_num] = TRUE; |
| } |
| } |
| } else { |
| begin_found[dimm_num] = TRUE; |
| end_found[dimm_num] = TRUE; |
| } |
| } |
| |
| if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE)) |
| window_found = TRUE; |
| |
| /*------------------------------------------------------------------ |
| * Make sure we found the valid read passing window. Halt if not |
| *-----------------------------------------------------------------*/ |
| if (window_found == FALSE) { |
| printf("ERROR: Cannot determine a common read delay for the " |
| "DIMM(s) installed.\n"); |
| spd_ddr_init_hang (); |
| } |
| |
| /*------------------------------------------------------------------ |
| * Restore the ECC variable to what it originally was |
| *-----------------------------------------------------------------*/ |
| mtsdram(SDRAM_MCOPT1, |
| (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK) |
| | ecc_temp); |
| } |
| #endif |
| |
| #if defined(DEBUG) |
| static void ppc440sp_sdram_register_dump(void) |
| { |
| unsigned int sdram_reg; |
| unsigned int sdram_data; |
| unsigned int dcr_data; |
| |
| printf("\n Register Dump:\n"); |
| sdram_reg = SDRAM_MCSTAT; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MCSTAT = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_MCOPT1; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_MCOPT2; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_MODT0; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_MODT1; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MODT1 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_MODT2; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_MODT3; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MODT3 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_CODT; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_CODT = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_VVPR; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_VVPR = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_OPARS; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_OPARS = 0x%08X\n", sdram_data); |
| /* |
| * OPAR2 is only used as a trigger register. |
| * No data is contained in this register, and reading or writing |
| * to is can cause bad things to happen (hangs). Just skip it |
| * and report NA |
| * sdram_reg = SDRAM_OPAR2; |
| * mfsdram(sdram_reg, sdram_data); |
| * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data); |
| */ |
| printf(" SDRAM_OPART = N/A "); |
| sdram_reg = SDRAM_RTR; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_RTR = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_MB0CF; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MB0CF = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_MB1CF; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_MB2CF; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MB2CF = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_MB3CF; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_INITPLR0; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_INITPLR1; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_INITPLR2; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_INITPLR3; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_INITPLR4; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_INITPLR5; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_INITPLR6; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_INITPLR7; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_INITPLR8; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_INITPLR9; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_INITPLR10; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_INITPLR11; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_INITPLR12; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_INITPLR13; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_INITPLR14; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_INITPLR15; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_RQDC; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_RQDC = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_RFDC; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_RFDC = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_RDCC; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_RDCC = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_DLCR; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_DLCR = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_CLKTR; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_CLKTR = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_WRDTR; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_SDTR1; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_SDTR1 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_SDTR2; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_SDTR3; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_SDTR3 = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_MMODE; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MMODE = 0x%08X\n", sdram_data); |
| sdram_reg = SDRAM_MEMODE; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_MEMODE = 0x%08X", sdram_data); |
| sdram_reg = SDRAM_ECCCR; |
| mfsdram(sdram_reg, sdram_data); |
| printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data); |
| |
| dcr_data = mfdcr(SDRAM_R0BAS); |
| printf(" MQ0_B0BAS = 0x%08X", dcr_data); |
| dcr_data = mfdcr(SDRAM_R1BAS); |
| printf(" MQ1_B0BAS = 0x%08X\n", dcr_data); |
| dcr_data = mfdcr(SDRAM_R2BAS); |
| printf(" MQ2_B0BAS = 0x%08X", dcr_data); |
| dcr_data = mfdcr(SDRAM_R3BAS); |
| printf(" MQ3_B0BAS = 0x%08X\n", dcr_data); |
| } |
| #else /* !defined(DEBUG) */ |
| static void ppc440sp_sdram_register_dump(void) |
| { |
| } |
| #endif /* defined(DEBUG) */ |
| #elif defined(CONFIG_405EX) |
| /*----------------------------------------------------------------------------- |
| * Function: initdram |
| * Description: Configures the PPC405EX(r) DDR1/DDR2 SDRAM memory |
| * banks. The configuration is performed using static, compile- |
| * time parameters. |
| *---------------------------------------------------------------------------*/ |
| phys_size_t initdram(int board_type) |
| { |
| /* |
| * Only run this SDRAM init code once. For NAND booting |
| * targets like Kilauea, we call initdram() early from the |
| * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot(). |
| * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT) |
| * which calls initdram() again. This time the controller |
| * mustn't be reconfigured again since we're already running |
| * from SDRAM. |
| */ |
| #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) |
| unsigned long val; |
| |
| /* Set Memory Bank Configuration Registers */ |
| |
| mtsdram(SDRAM_MB0CF, CFG_SDRAM0_MB0CF); |
| mtsdram(SDRAM_MB1CF, CFG_SDRAM0_MB1CF); |
| mtsdram(SDRAM_MB2CF, CFG_SDRAM0_MB2CF); |
| mtsdram(SDRAM_MB3CF, CFG_SDRAM0_MB3CF); |
| |
| /* Set Memory Clock Timing Register */ |
| |
| mtsdram(SDRAM_CLKTR, CFG_SDRAM0_CLKTR); |
| |
| /* Set Refresh Time Register */ |
| |
| mtsdram(SDRAM_RTR, CFG_SDRAM0_RTR); |
| |
| /* Set SDRAM Timing Registers */ |
| |
| mtsdram(SDRAM_SDTR1, CFG_SDRAM0_SDTR1); |
| mtsdram(SDRAM_SDTR2, CFG_SDRAM0_SDTR2); |
| mtsdram(SDRAM_SDTR3, CFG_SDRAM0_SDTR3); |
| |
| /* Set Mode and Extended Mode Registers */ |
| |
| mtsdram(SDRAM_MMODE, CFG_SDRAM0_MMODE); |
| mtsdram(SDRAM_MEMODE, CFG_SDRAM0_MEMODE); |
| |
| /* Set Memory Controller Options 1 Register */ |
| |
| mtsdram(SDRAM_MCOPT1, CFG_SDRAM0_MCOPT1); |
| |
| /* Set Manual Initialization Control Registers */ |
| |
| mtsdram(SDRAM_INITPLR0, CFG_SDRAM0_INITPLR0); |
| mtsdram(SDRAM_INITPLR1, CFG_SDRAM0_INITPLR1); |
| mtsdram(SDRAM_INITPLR2, CFG_SDRAM0_INITPLR2); |
| mtsdram(SDRAM_INITPLR3, CFG_SDRAM0_INITPLR3); |
| mtsdram(SDRAM_INITPLR4, CFG_SDRAM0_INITPLR4); |
| mtsdram(SDRAM_INITPLR5, CFG_SDRAM0_INITPLR5); |
| mtsdram(SDRAM_INITPLR6, CFG_SDRAM0_INITPLR6); |
| mtsdram(SDRAM_INITPLR7, CFG_SDRAM0_INITPLR7); |
| mtsdram(SDRAM_INITPLR8, CFG_SDRAM0_INITPLR8); |
| mtsdram(SDRAM_INITPLR9, CFG_SDRAM0_INITPLR9); |
| mtsdram(SDRAM_INITPLR10, CFG_SDRAM0_INITPLR10); |
| mtsdram(SDRAM_INITPLR11, CFG_SDRAM0_INITPLR11); |
| mtsdram(SDRAM_INITPLR12, CFG_SDRAM0_INITPLR12); |
| mtsdram(SDRAM_INITPLR13, CFG_SDRAM0_INITPLR13); |
| mtsdram(SDRAM_INITPLR14, CFG_SDRAM0_INITPLR14); |
| mtsdram(SDRAM_INITPLR15, CFG_SDRAM0_INITPLR15); |
| |
| /* Set On-Die Termination Registers */ |
| |
| mtsdram(SDRAM_CODT, CFG_SDRAM0_CODT); |
| mtsdram(SDRAM_MODT0, CFG_SDRAM0_MODT0); |
| mtsdram(SDRAM_MODT1, CFG_SDRAM0_MODT1); |
| |
| /* Set Write Timing Register */ |
| |
| mtsdram(SDRAM_WRDTR, CFG_SDRAM0_WRDTR); |
| |
| /* |
| * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and |
| * SDRAM0_MCOPT2[IPTR] = 1 |
| */ |
| |
| mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT | |
| SDRAM_MCOPT2_IPTR_EXECUTE)); |
| |
| /* |
| * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the |
| * completion of initialization. |
| */ |
| |
| do { |
| mfsdram(SDRAM_MCSTAT, val); |
| } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP); |
| |
| /* Set Delay Control Registers */ |
| |
| mtsdram(SDRAM_DLCR, CFG_SDRAM0_DLCR); |
| mtsdram(SDRAM_RDCC, CFG_SDRAM0_RDCC); |
| mtsdram(SDRAM_RQDC, CFG_SDRAM0_RQDC); |
| mtsdram(SDRAM_RFDC, CFG_SDRAM0_RFDC); |
| |
| /* |
| * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1: |
| */ |
| |
| mfsdram(SDRAM_MCOPT2, val); |
| mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE); |
| |
| #if defined(CONFIG_DDR_ECC) |
| ecc_init(CFG_SDRAM_BASE, CFG_MBYTES_SDRAM << 20); |
| #endif /* defined(CONFIG_DDR_ECC) */ |
| #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */ |
| |
| return (CFG_MBYTES_SDRAM << 20); |
| } |
| #endif /* defined(CONFIG_SPD_EEPROM) && defined(CONFIG_440SP) || ... */ |