| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2013 |
| * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc |
| */ |
| |
| /* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */ |
| |
| #ifdef CCDM_ID_DEBUG |
| #define DEBUG |
| #endif |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <malloc.h> |
| #include <fs.h> |
| #include <i2c.h> |
| #include <mmc.h> |
| #include <tpm-v1.h> |
| #include <u-boot/sha1.h> |
| #include <asm/byteorder.h> |
| #include <asm/unaligned.h> |
| #include <pca9698.h> |
| |
| #undef CCDM_FIRST_STAGE |
| #undef CCDM_SECOND_STAGE |
| #undef CCDM_AUTO_FIRST_STAGE |
| |
| #ifdef CONFIG_DEVELOP |
| #define CCDM_DEVELOP |
| #endif |
| |
| #ifdef CONFIG_TRAILBLAZER |
| #define CCDM_FIRST_STAGE |
| #undef CCDM_SECOND_STAGE |
| #else |
| #undef CCDM_FIRST_STAGE |
| #define CCDM_SECOND_STAGE |
| #endif |
| |
| #if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \ |
| !defined(CCCM_FIRST_STAGE) |
| #define CCDM_AUTO_FIRST_STAGE |
| #endif |
| |
| /* CCDM specific contants */ |
| enum { |
| /* NV indices */ |
| NV_COMMON_DATA_INDEX = 0x40000001, |
| /* magics for key blob chains */ |
| MAGIC_KEY_PROGRAM = 0x68726500, |
| MAGIC_HMAC = 0x68616300, |
| MAGIC_END_OF_CHAIN = 0x00000000, |
| /* sizes */ |
| NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t), |
| }; |
| |
| /* other constants */ |
| enum { |
| ESDHC_BOOT_IMAGE_SIG_OFS = 0x40, |
| ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48, |
| ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50, |
| ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58, |
| ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60, |
| }; |
| |
| enum { |
| I2C_SOC_0 = 0, |
| I2C_SOC_1 = 1, |
| }; |
| |
| struct key_program { |
| uint32_t magic; |
| uint32_t code_crc; |
| uint32_t code_size; |
| uint8_t code[]; |
| }; |
| |
| struct h_reg { |
| bool valid; |
| uint8_t digest[20]; |
| }; |
| |
| |
| enum access_mode { |
| HREG_NONE = 0, |
| HREG_RD = 1, |
| HREG_WR = 2, |
| HREG_RDWR = 3, |
| }; |
| |
| /* register constants */ |
| enum { |
| FIX_HREG_DEVICE_ID_HASH = 0, |
| FIX_HREG_SELF_HASH = 1, |
| FIX_HREG_STAGE2_HASH = 2, |
| FIX_HREG_VENDOR = 3, |
| COUNT_FIX_HREGS |
| }; |
| |
| |
| /* hre opcodes */ |
| enum { |
| /* opcodes w/o data */ |
| HRE_NOP = 0x00, |
| HRE_SYNC = HRE_NOP, |
| HRE_CHECK0 = 0x01, |
| /* opcodes w/o data, w/ sync dst */ |
| /* opcodes w/ data */ |
| HRE_LOAD = 0x81, |
| /* opcodes w/data, w/sync dst */ |
| HRE_XOR = 0xC1, |
| HRE_AND = 0xC2, |
| HRE_OR = 0xC3, |
| HRE_EXTEND = 0xC4, |
| HRE_LOADKEY = 0xC5, |
| }; |
| |
| /* hre errors */ |
| enum { |
| HRE_E_OK = 0, |
| HRE_E_TPM_FAILURE, |
| HRE_E_INVALID_HREG, |
| }; |
| |
| static uint64_t device_id; |
| static uint64_t device_cl; |
| static uint64_t device_type; |
| |
| static uint32_t platform_key_handle; |
| |
| static void(*bl2_entry)(void); |
| |
| static struct h_reg pcr_hregs[24]; |
| static struct h_reg fix_hregs[COUNT_FIX_HREGS]; |
| static struct h_reg var_hregs[8]; |
| static uint32_t hre_tpm_err; |
| static int hre_err = HRE_E_OK; |
| |
| #define IS_PCR_HREG(spec) ((spec) & 0x20) |
| #define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08) |
| #define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10) |
| #define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7)) |
| |
| static int get_tpm(struct udevice **devp) |
| { |
| int rc; |
| |
| rc = uclass_first_device_err(UCLASS_TPM, devp); |
| if (rc) { |
| printf("Could not find TPM (ret=%d)\n", rc); |
| return CMD_RET_FAILURE; |
| } |
| |
| return 0; |
| } |
| |
| static const uint8_t vendor[] = "Guntermann & Drunck"; |
| |
| /** |
| * @brief read a bunch of data from MMC into memory. |
| * |
| * @param mmc pointer to the mmc structure to use. |
| * @param src offset where the data starts on MMC/SD device (in bytes). |
| * @param dst pointer to the location where the read data should be stored. |
| * @param size number of bytes to read from the MMC/SD device. |
| * @return number of bytes read or -1 on error. |
| */ |
| static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size) |
| { |
| int result = 0; |
| u32 blk_len, ofs; |
| ulong block_no, n, cnt; |
| u8 *tmp_buf = NULL; |
| |
| if (size <= 0) |
| goto end; |
| |
| blk_len = mmc->read_bl_len; |
| tmp_buf = malloc(blk_len); |
| if (!tmp_buf) |
| goto failure; |
| block_no = src / blk_len; |
| ofs = src % blk_len; |
| |
| if (ofs) { |
| n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1, |
| tmp_buf); |
| if (!n) |
| goto failure; |
| result = min(size, (int)(blk_len - ofs)); |
| memcpy(dst, tmp_buf + ofs, result); |
| dst += result; |
| size -= result; |
| } |
| cnt = size / blk_len; |
| if (cnt) { |
| n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt, |
| dst); |
| if (n != cnt) |
| goto failure; |
| size -= cnt * blk_len; |
| result += cnt * blk_len; |
| dst += cnt * blk_len; |
| block_no += cnt; |
| } |
| if (size) { |
| n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1, |
| tmp_buf); |
| if (!n) |
| goto failure; |
| memcpy(dst, tmp_buf, size); |
| result += size; |
| } |
| goto end; |
| failure: |
| result = -1; |
| end: |
| if (tmp_buf) |
| free(tmp_buf); |
| return result; |
| } |
| |
| /** |
| * @brief returns a location where the 2nd stage bootloader can be(/ is) placed. |
| * |
| * @return pointer to the location for/of the 2nd stage bootloader |
| */ |
| static u8 *get_2nd_stage_bl_location(ulong target_addr) |
| { |
| ulong addr; |
| #ifdef CCDM_SECOND_STAGE |
| addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR); |
| #else |
| addr = target_addr; |
| #endif |
| return (u8 *)(addr); |
| } |
| |
| |
| #ifdef CCDM_SECOND_STAGE |
| /** |
| * @brief returns a location where the image can be(/ is) placed. |
| * |
| * @return pointer to the location for/of the image |
| */ |
| static u8 *get_image_location(void) |
| { |
| ulong addr; |
| /* TODO use other area? */ |
| addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR); |
| return (u8 *)(addr); |
| } |
| #endif |
| |
| /** |
| * @brief get the size of a given (TPM) NV area |
| * @param index NV index of the area to get size for |
| * @param size pointer to the size |
| * @return 0 on success, != 0 on error |
| */ |
| static int get_tpm_nv_size(struct udevice *tpm, uint32_t index, uint32_t *size) |
| { |
| uint32_t err; |
| uint8_t info[72]; |
| uint8_t *ptr; |
| uint16_t v16; |
| |
| err = tpm_get_capability(tpm, TPM_CAP_NV_INDEX, index, |
| info, sizeof(info)); |
| if (err) { |
| printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n", |
| index, err); |
| return 1; |
| } |
| |
| /* skip tag and nvIndex */ |
| ptr = info + 6; |
| /* skip 2 pcr info fields */ |
| v16 = get_unaligned_be16(ptr); |
| ptr += 2 + v16 + 1 + 20; |
| v16 = get_unaligned_be16(ptr); |
| ptr += 2 + v16 + 1 + 20; |
| /* skip permission and flags */ |
| ptr += 6 + 3; |
| |
| *size = get_unaligned_be32(ptr); |
| return 0; |
| } |
| |
| /** |
| * @brief search for a key by usage auth and pub key hash. |
| * @param auth usage auth of the key to search for |
| * @param pubkey_digest (SHA1) hash of the pub key structure of the key |
| * @param[out] handle the handle of the key iff found |
| * @return 0 if key was found in TPM; != 0 if not. |
| */ |
| static int find_key(struct udevice *tpm, const uint8_t auth[20], |
| const uint8_t pubkey_digest[20], uint32_t *handle) |
| { |
| uint16_t key_count; |
| uint32_t key_handles[10]; |
| uint8_t buf[288]; |
| uint8_t *ptr; |
| uint32_t err; |
| uint8_t digest[20]; |
| size_t buf_len; |
| unsigned int i; |
| |
| /* fetch list of already loaded keys in the TPM */ |
| err = tpm_get_capability(tpm, TPM_CAP_HANDLE, TPM_RT_KEY, buf, |
| sizeof(buf)); |
| if (err) |
| return -1; |
| key_count = get_unaligned_be16(buf); |
| ptr = buf + 2; |
| for (i = 0; i < key_count; ++i, ptr += 4) |
| key_handles[i] = get_unaligned_be32(ptr); |
| |
| /* now search a(/ the) key which we can access with the given auth */ |
| for (i = 0; i < key_count; ++i) { |
| buf_len = sizeof(buf); |
| err = tpm_get_pub_key_oiap(tpm, key_handles[i], auth, buf, |
| &buf_len); |
| if (err && err != TPM_AUTHFAIL) |
| return -1; |
| if (err) |
| continue; |
| sha1_csum(buf, buf_len, digest); |
| if (!memcmp(digest, pubkey_digest, 20)) { |
| *handle = key_handles[i]; |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /** |
| * @brief read CCDM common data from TPM NV |
| * @return 0 if CCDM common data was found and read, !=0 if something failed. |
| */ |
| static int read_common_data(struct udevice *tpm) |
| { |
| uint32_t size; |
| uint32_t err; |
| uint8_t buf[256]; |
| sha1_context ctx; |
| |
| if (get_tpm_nv_size(tpm, NV_COMMON_DATA_INDEX, &size) || |
| size < NV_COMMON_DATA_MIN_SIZE) |
| return 1; |
| err = tpm_nv_read_value(tpm, NV_COMMON_DATA_INDEX, |
| buf, min(sizeof(buf), size)); |
| if (err) { |
| printf("tpm_nv_read_value() failed: %u\n", err); |
| return 1; |
| } |
| |
| device_id = get_unaligned_be64(buf); |
| device_cl = get_unaligned_be64(buf + 8); |
| device_type = get_unaligned_be64(buf + 16); |
| |
| sha1_starts(&ctx); |
| sha1_update(&ctx, buf, 24); |
| sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest); |
| fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true; |
| |
| platform_key_handle = get_unaligned_be32(buf + 24); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief compute hash of bootloader itself. |
| * @param[out] dst hash register where the hash should be stored |
| * @return 0 on success, != 0 on failure. |
| * |
| * @note MUST be called at a time where the boot loader is accessible at the |
| * configured location (; so take care when code is reallocated). |
| */ |
| static int compute_self_hash(struct h_reg *dst) |
| { |
| sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE, |
| CONFIG_SYS_MONITOR_LEN, dst->digest); |
| dst->valid = true; |
| return 0; |
| } |
| |
| int ccdm_compute_self_hash(void) |
| { |
| if (!fix_hregs[FIX_HREG_SELF_HASH].valid) |
| compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]); |
| return 0; |
| } |
| |
| /** |
| * @brief compute the hash of the 2nd stage boot loader (on SD card) |
| * @param[out] dst hash register to store the computed hash |
| * @return 0 on success, != 0 on failure |
| * |
| * Determines the size and location of the 2nd stage boot loader on SD card, |
| * loads the 2nd stage boot loader and computes the (SHA1) hash value. |
| * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at |
| * the desired memory location and the variable @a bl2_entry is set. |
| * |
| * @note This sets the variable @a bl2_entry to the entry point when the |
| * 2nd stage boot loader is loaded at its configured memory location. |
| */ |
| static int compute_second_stage_hash(struct h_reg *dst) |
| { |
| int result = 0; |
| u32 code_len, code_offset, target_addr, exec_entry; |
| struct mmc *mmc; |
| u8 *load_addr = NULL; |
| u8 buf[128]; |
| |
| mmc = find_mmc_device(0); |
| if (!mmc) |
| goto failure; |
| mmc_init(mmc); |
| |
| if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0) |
| goto failure; |
| |
| code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS); |
| code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS); |
| target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS); |
| exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS); |
| |
| load_addr = get_2nd_stage_bl_location(target_addr); |
| if (load_addr == (u8 *)target_addr) |
| bl2_entry = (void(*)(void))exec_entry; |
| |
| if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0) |
| goto failure; |
| |
| sha1_csum(load_addr, code_len, dst->digest); |
| dst->valid = true; |
| |
| goto end; |
| failure: |
| result = 1; |
| bl2_entry = NULL; |
| end: |
| return result; |
| } |
| |
| /** |
| * @brief get pointer to hash register by specification |
| * @param spec specification of a hash register |
| * @return pointer to hash register or NULL if @a spec does not qualify a |
| * valid hash register; NULL else. |
| */ |
| static struct h_reg *get_hreg(uint8_t spec) |
| { |
| uint8_t idx; |
| |
| idx = HREG_IDX(spec); |
| if (IS_FIX_HREG(spec)) { |
| if (idx < ARRAY_SIZE(fix_hregs)) |
| return fix_hregs + idx; |
| hre_err = HRE_E_INVALID_HREG; |
| } else if (IS_PCR_HREG(spec)) { |
| if (idx < ARRAY_SIZE(pcr_hregs)) |
| return pcr_hregs + idx; |
| hre_err = HRE_E_INVALID_HREG; |
| } else if (IS_VAR_HREG(spec)) { |
| if (idx < ARRAY_SIZE(var_hregs)) |
| return var_hregs + idx; |
| hre_err = HRE_E_INVALID_HREG; |
| } |
| return NULL; |
| } |
| |
| /** |
| * @brief get pointer of a hash register by specification and usage. |
| * @param spec specification of a hash register |
| * @param mode access mode (read or write or read/write) |
| * @return pointer to hash register if found and valid; NULL else. |
| * |
| * This func uses @a get_reg() to determine the hash register for a given spec. |
| * If a register is found it is validated according to the desired access mode. |
| * The value of automatic registers (PCR register and fixed registers) is |
| * loaded or computed on read access. |
| */ |
| static struct h_reg *access_hreg(struct udevice *tpm, uint8_t spec, |
| enum access_mode mode) |
| { |
| struct h_reg *result; |
| |
| result = get_hreg(spec); |
| if (!result) |
| return NULL; |
| |
| if (mode & HREG_WR) { |
| if (IS_FIX_HREG(spec)) { |
| hre_err = HRE_E_INVALID_HREG; |
| return NULL; |
| } |
| } |
| if (mode & HREG_RD) { |
| if (!result->valid) { |
| if (IS_PCR_HREG(spec)) { |
| hre_tpm_err = tpm_pcr_read(tpm, HREG_IDX(spec), |
| result->digest, 20); |
| result->valid = (hre_tpm_err == TPM_SUCCESS); |
| } else if (IS_FIX_HREG(spec)) { |
| switch (HREG_IDX(spec)) { |
| case FIX_HREG_DEVICE_ID_HASH: |
| read_common_data(tpm); |
| break; |
| case FIX_HREG_SELF_HASH: |
| ccdm_compute_self_hash(); |
| break; |
| case FIX_HREG_STAGE2_HASH: |
| compute_second_stage_hash(result); |
| break; |
| case FIX_HREG_VENDOR: |
| memcpy(result->digest, vendor, 20); |
| result->valid = true; |
| break; |
| } |
| } else { |
| result->valid = true; |
| } |
| } |
| if (!result->valid) { |
| hre_err = HRE_E_INVALID_HREG; |
| return NULL; |
| } |
| } |
| |
| return result; |
| } |
| |
| static void *compute_and(void *_dst, const void *_src, size_t n) |
| { |
| uint8_t *dst = _dst; |
| const uint8_t *src = _src; |
| size_t i; |
| |
| for (i = n; i-- > 0; ) |
| *dst++ &= *src++; |
| |
| return _dst; |
| } |
| |
| static void *compute_or(void *_dst, const void *_src, size_t n) |
| { |
| uint8_t *dst = _dst; |
| const uint8_t *src = _src; |
| size_t i; |
| |
| for (i = n; i-- > 0; ) |
| *dst++ |= *src++; |
| |
| return _dst; |
| } |
| |
| static void *compute_xor(void *_dst, const void *_src, size_t n) |
| { |
| uint8_t *dst = _dst; |
| const uint8_t *src = _src; |
| size_t i; |
| |
| for (i = n; i-- > 0; ) |
| *dst++ ^= *src++; |
| |
| return _dst; |
| } |
| |
| static void *compute_extend(void *_dst, const void *_src, size_t n) |
| { |
| uint8_t digest[20]; |
| sha1_context ctx; |
| |
| sha1_starts(&ctx); |
| sha1_update(&ctx, _dst, n); |
| sha1_update(&ctx, _src, n); |
| sha1_finish(&ctx, digest); |
| memcpy(_dst, digest, min(n, sizeof(digest))); |
| |
| return _dst; |
| } |
| |
| static int hre_op_loadkey(struct udevice *tpm, struct h_reg *src_reg, |
| struct h_reg *dst_reg, const void *key, |
| size_t key_size) |
| { |
| uint32_t parent_handle; |
| uint32_t key_handle; |
| |
| if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid) |
| return -1; |
| if (find_key(tpm, src_reg->digest, dst_reg->digest, &parent_handle)) |
| return -1; |
| hre_tpm_err = tpm_load_key2_oiap(tpm, parent_handle, key, key_size, |
| src_reg->digest, &key_handle); |
| if (hre_tpm_err) { |
| hre_err = HRE_E_TPM_FAILURE; |
| return -1; |
| } |
| /* TODO remember key handle somehow? */ |
| |
| return 0; |
| } |
| |
| /** |
| * @brief executes the next opcode on the hash register engine. |
| * @param[in,out] ip pointer to the opcode (instruction pointer) |
| * @param[in,out] code_size (remaining) size of the code |
| * @return new instruction pointer on success, NULL on error. |
| */ |
| static const uint8_t *hre_execute_op(struct udevice *tpm, const uint8_t **ip, |
| size_t *code_size) |
| { |
| bool dst_modified = false; |
| uint32_t ins; |
| uint8_t opcode; |
| uint8_t src_spec; |
| uint8_t dst_spec; |
| uint16_t data_size; |
| struct h_reg *src_reg, *dst_reg; |
| uint8_t buf[20]; |
| const uint8_t *src_buf, *data; |
| uint8_t *ptr; |
| int i; |
| void * (*bin_func)(void *, const void *, size_t); |
| |
| if (*code_size < 4) |
| return NULL; |
| |
| ins = get_unaligned_be32(*ip); |
| opcode = **ip; |
| data = *ip + 4; |
| src_spec = (ins >> 18) & 0x3f; |
| dst_spec = (ins >> 12) & 0x3f; |
| data_size = (ins & 0x7ff); |
| |
| debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins, |
| opcode, src_spec, dst_spec, data_size); |
| |
| if ((opcode & 0x80) && (data_size + 4) > *code_size) |
| return NULL; |
| |
| src_reg = access_hreg(tpm, src_spec, HREG_RD); |
| if (hre_err || hre_tpm_err) |
| return NULL; |
| dst_reg = access_hreg(tpm, dst_spec, |
| (opcode & 0x40) ? HREG_RDWR : HREG_WR); |
| if (hre_err || hre_tpm_err) |
| return NULL; |
| |
| switch (opcode) { |
| case HRE_NOP: |
| goto end; |
| case HRE_CHECK0: |
| if (src_reg) { |
| for (i = 0; i < 20; ++i) { |
| if (src_reg->digest[i]) |
| return NULL; |
| } |
| } |
| break; |
| case HRE_LOAD: |
| bin_func = memcpy; |
| goto do_bin_func; |
| case HRE_XOR: |
| bin_func = compute_xor; |
| goto do_bin_func; |
| case HRE_AND: |
| bin_func = compute_and; |
| goto do_bin_func; |
| case HRE_OR: |
| bin_func = compute_or; |
| goto do_bin_func; |
| case HRE_EXTEND: |
| bin_func = compute_extend; |
| do_bin_func: |
| if (!dst_reg) |
| return NULL; |
| if (src_reg) { |
| src_buf = src_reg->digest; |
| } else { |
| if (!data_size) { |
| memset(buf, 0, 20); |
| src_buf = buf; |
| } else if (data_size == 1) { |
| memset(buf, *data, 20); |
| src_buf = buf; |
| } else if (data_size >= 20) { |
| src_buf = data; |
| } else { |
| src_buf = buf; |
| for (ptr = (uint8_t *)src_buf, i = 20; i > 0; |
| i -= data_size, ptr += data_size) |
| memcpy(ptr, data, |
| min_t(size_t, i, data_size)); |
| } |
| } |
| bin_func(dst_reg->digest, src_buf, 20); |
| dst_reg->valid = true; |
| dst_modified = true; |
| break; |
| case HRE_LOADKEY: |
| if (hre_op_loadkey(tpm, src_reg, dst_reg, data, data_size)) |
| return NULL; |
| break; |
| default: |
| return NULL; |
| } |
| |
| if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) { |
| hre_tpm_err = tpm_extend(tpm, HREG_IDX(dst_spec), |
| dst_reg->digest, dst_reg->digest); |
| if (hre_tpm_err) { |
| hre_err = HRE_E_TPM_FAILURE; |
| return NULL; |
| } |
| } |
| end: |
| *ip += 4; |
| *code_size -= 4; |
| if (opcode & 0x80) { |
| *ip += data_size; |
| *code_size -= data_size; |
| } |
| |
| return *ip; |
| } |
| |
| /** |
| * @brief runs a program on the hash register engine. |
| * @param code pointer to the (HRE) code. |
| * @param code_size size of the code (in bytes). |
| * @return 0 on success, != 0 on failure. |
| */ |
| static int hre_run_program(struct udevice *tpm, const uint8_t *code, |
| size_t code_size) |
| { |
| size_t code_left; |
| const uint8_t *ip = code; |
| |
| code_left = code_size; |
| hre_tpm_err = 0; |
| hre_err = HRE_E_OK; |
| while (code_left > 0) |
| if (!hre_execute_op(tpm, &ip, &code_left)) |
| return -1; |
| |
| return hre_err; |
| } |
| |
| static int check_hmac(struct key_program *hmac, |
| const uint8_t *data, size_t data_size) |
| { |
| uint8_t key[20], computed_hmac[20]; |
| uint32_t type; |
| |
| type = get_unaligned_be32(hmac->code); |
| if (type != 0) |
| return 1; |
| memset(key, 0, sizeof(key)); |
| compute_extend(key, pcr_hregs[1].digest, 20); |
| compute_extend(key, pcr_hregs[2].digest, 20); |
| compute_extend(key, pcr_hregs[3].digest, 20); |
| compute_extend(key, pcr_hregs[4].digest, 20); |
| |
| sha1_hmac(key, sizeof(key), data, data_size, computed_hmac); |
| |
| return memcmp(computed_hmac, hmac->code + 4, 20); |
| } |
| |
| static int verify_program(struct key_program *prg) |
| { |
| uint32_t crc; |
| crc = crc32(0, prg->code, prg->code_size); |
| |
| if (crc != prg->code_crc) { |
| printf("HRC crc mismatch: %08x != %08x\n", |
| crc, prg->code_crc); |
| return 1; |
| } |
| return 0; |
| } |
| |
| #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE) |
| static struct key_program *load_sd_key_program(void) |
| { |
| u32 code_len, code_offset; |
| struct mmc *mmc; |
| u8 buf[128]; |
| struct key_program *result = NULL, *hmac = NULL; |
| struct key_program header; |
| |
| mmc = find_mmc_device(0); |
| if (!mmc) |
| return NULL; |
| mmc_init(mmc); |
| |
| if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0) |
| goto failure; |
| |
| code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS); |
| code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS); |
| |
| code_offset += code_len; |
| /* TODO: the following needs to be the size of the 2nd stage env */ |
| code_offset += CONFIG_ENV_SIZE; |
| |
| if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0) |
| goto failure; |
| |
| header.magic = get_unaligned_be32(buf); |
| header.code_crc = get_unaligned_be32(buf + 4); |
| header.code_size = get_unaligned_be32(buf + 8); |
| |
| if (header.magic != MAGIC_KEY_PROGRAM) |
| goto failure; |
| |
| result = malloc(sizeof(struct key_program) + header.code_size); |
| if (!result) |
| goto failure; |
| *result = header; |
| |
| printf("load key program chunk from SD card (%u bytes) ", |
| header.code_size); |
| code_offset += 12; |
| if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size) |
| < 0) |
| goto failure; |
| code_offset += header.code_size; |
| puts("\n"); |
| |
| if (verify_program(result)) |
| goto failure; |
| |
| if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0) |
| goto failure; |
| |
| header.magic = get_unaligned_be32(buf); |
| header.code_crc = get_unaligned_be32(buf + 4); |
| header.code_size = get_unaligned_be32(buf + 8); |
| |
| if (header.magic == MAGIC_HMAC) { |
| puts("check integrity\n"); |
| hmac = malloc(sizeof(struct key_program) + header.code_size); |
| if (!hmac) |
| goto failure; |
| *hmac = header; |
| code_offset += 12; |
| if (ccdm_mmc_read(mmc, code_offset, hmac->code, |
| hmac->code_size) < 0) |
| goto failure; |
| if (verify_program(hmac)) |
| goto failure; |
| if (check_hmac(hmac, result->code, result->code_size)) { |
| puts("key program integrity could not be verified\n"); |
| goto failure; |
| } |
| puts("key program verified\n"); |
| } |
| |
| goto end; |
| failure: |
| if (result) |
| free(result); |
| result = NULL; |
| end: |
| if (hmac) |
| free(hmac); |
| |
| return result; |
| } |
| #endif |
| |
| #ifdef CCDM_SECOND_STAGE |
| /** |
| * @brief load a key program from file system. |
| * @param ifname interface of the file system |
| * @param dev_part_str device part of the file system |
| * @param fs_type tyep of the file system |
| * @param path path of the file to load. |
| * @return the loaded structure or NULL on failure. |
| */ |
| static struct key_program *load_key_chunk(const char *ifname, |
| const char *dev_part_str, int fs_type, |
| const char *path) |
| { |
| struct key_program *result = NULL; |
| struct key_program header; |
| uint32_t crc; |
| uint8_t buf[12]; |
| loff_t i; |
| |
| if (fs_set_blk_dev(ifname, dev_part_str, fs_type)) |
| goto failure; |
| if (fs_read(path, (ulong)buf, 0, 12, &i) < 0) |
| goto failure; |
| if (i < 12) |
| goto failure; |
| header.magic = get_unaligned_be32(buf); |
| header.code_crc = get_unaligned_be32(buf + 4); |
| header.code_size = get_unaligned_be32(buf + 8); |
| |
| if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM) |
| goto failure; |
| |
| result = malloc(sizeof(struct key_program) + header.code_size); |
| if (!result) |
| goto failure; |
| if (fs_set_blk_dev(ifname, dev_part_str, fs_type)) |
| goto failure; |
| if (fs_read(path, (ulong)result, 0, |
| sizeof(struct key_program) + header.code_size, &i) < 0) |
| goto failure; |
| if (i <= 0) |
| goto failure; |
| *result = header; |
| |
| crc = crc32(0, result->code, result->code_size); |
| |
| if (crc != result->code_crc) { |
| printf("%s: HRC crc mismatch: %08x != %08x\n", |
| path, crc, result->code_crc); |
| goto failure; |
| } |
| goto end; |
| failure: |
| if (result) { |
| free(result); |
| result = NULL; |
| } |
| end: |
| return result; |
| } |
| #endif |
| |
| #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE) |
| static const uint8_t prg_stage1_prepare[] = { |
| 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */ |
| 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */ |
| 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */ |
| 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */ |
| 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */ |
| 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */ |
| 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */ |
| 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */ |
| 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */ |
| 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */ |
| }; |
| |
| static int first_stage_actions(struct udevice *tpm) |
| { |
| int result = 0; |
| struct key_program *sd_prg = NULL; |
| |
| puts("CCDM S1: start actions\n"); |
| #ifndef CCDM_SECOND_STAGE |
| if (tpm_continue_self_test(tpm)) |
| goto failure; |
| #else |
| tpm_continue_self_test(tpm); |
| #endif |
| mdelay(37); |
| |
| if (hre_run_program(tpm, prg_stage1_prepare, |
| sizeof(prg_stage1_prepare))) |
| goto failure; |
| |
| sd_prg = load_sd_key_program(); |
| if (sd_prg) { |
| if (hre_run_program(tpm, sd_prg->code, sd_prg->code_size)) |
| goto failure; |
| puts("SD code run successfully\n"); |
| } else { |
| puts("no key program found on SD\n"); |
| goto failure; |
| } |
| goto end; |
| failure: |
| result = 1; |
| end: |
| if (sd_prg) |
| free(sd_prg); |
| printf("CCDM S1: actions done (%d)\n", result); |
| return result; |
| } |
| #endif |
| |
| #ifdef CCDM_FIRST_STAGE |
| static int first_stage_init(void) |
| { |
| struct udevice *tpm; |
| int ret; |
| |
| puts("CCDM S1\n"); |
| ret = get_tpm(&tpm); |
| if (ret || tpm_init(tpm) || tpm_startup(tpm, TPM_ST_CLEAR)) |
| return 1; |
| ret = first_stage_actions(tpm); |
| #ifndef CCDM_SECOND_STAGE |
| if (!ret) { |
| if (bl2_entry) |
| (*bl2_entry)(); |
| ret = 1; |
| } |
| #endif |
| return ret; |
| } |
| #endif |
| |
| #ifdef CCDM_SECOND_STAGE |
| static const uint8_t prg_stage2_prepare[] = { |
| 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */ |
| 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */ |
| 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */ |
| 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */ |
| 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */ |
| }; |
| |
| static const uint8_t prg_stage2_success[] = { |
| 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */ |
| 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */ |
| 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */ |
| 0xe4, 0xd2, 0x81, 0xe0, /* data */ |
| }; |
| |
| static const uint8_t prg_stage_fail[] = { |
| 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */ |
| 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */ |
| 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */ |
| 0xea, 0xdf, 0x14, 0x4b, /* data */ |
| 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */ |
| 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */ |
| }; |
| |
| static int second_stage_init(void) |
| { |
| static const char mac_suffix[] = ".mac"; |
| bool did_first_stage_run = true; |
| int result = 0; |
| char *cptr, *mmcdev = NULL; |
| struct key_program *hmac_blob = NULL; |
| const char *image_path = "/ccdm.itb"; |
| char *mac_path = NULL; |
| ulong image_addr; |
| loff_t image_size; |
| struct udevice *tpm; |
| uint32_t err; |
| int ret; |
| |
| printf("CCDM S2\n"); |
| ret = get_tpm(&tpm); |
| if (ret || tpm_init(tpm)) |
| return 1; |
| err = tpm_startup(tpm, TPM_ST_CLEAR); |
| if (err != TPM_INVALID_POSTINIT) |
| did_first_stage_run = false; |
| |
| #ifdef CCDM_AUTO_FIRST_STAGE |
| if (!did_first_stage_run && first_stage_actions(tpm)) |
| goto failure; |
| #else |
| if (!did_first_stage_run) |
| goto failure; |
| #endif |
| |
| if (hre_run_program(tpm, prg_stage2_prepare, |
| sizeof(prg_stage2_prepare))) |
| goto failure; |
| |
| /* run "prepboot" from env to get "mmcdev" set */ |
| cptr = env_get("prepboot"); |
| if (cptr && !run_command(cptr, 0)) |
| mmcdev = env_get("mmcdev"); |
| if (!mmcdev) |
| goto failure; |
| |
| cptr = env_get("ramdiskimage"); |
| if (cptr) |
| image_path = cptr; |
| |
| mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1); |
| if (mac_path == NULL) |
| goto failure; |
| strcpy(mac_path, image_path); |
| strcat(mac_path, mac_suffix); |
| |
| /* read image from mmcdev (ccdm.itb) */ |
| image_addr = (ulong)get_image_location(); |
| if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT)) |
| goto failure; |
| if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0) |
| goto failure; |
| if (image_size <= 0) |
| goto failure; |
| printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size); |
| |
| hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path); |
| if (!hmac_blob) { |
| puts("failed to load mac file\n"); |
| goto failure; |
| } |
| if (verify_program(hmac_blob)) { |
| puts("corrupted mac file\n"); |
| goto failure; |
| } |
| if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) { |
| puts("image integrity could not be verified\n"); |
| goto failure; |
| } |
| puts("CCDM image OK\n"); |
| |
| hre_run_program(tpm, prg_stage2_success, sizeof(prg_stage2_success)); |
| |
| goto end; |
| failure: |
| result = 1; |
| hre_run_program(tpm, prg_stage_fail, sizeof(prg_stage_fail)); |
| end: |
| if (hmac_blob) |
| free(hmac_blob); |
| if (mac_path) |
| free(mac_path); |
| |
| return result; |
| } |
| #endif |
| |
| int show_self_hash(void) |
| { |
| struct h_reg *hash_ptr; |
| #ifdef CCDM_SECOND_STAGE |
| struct h_reg hash; |
| |
| hash_ptr = &hash; |
| if (compute_self_hash(hash_ptr)) |
| return 1; |
| #else |
| hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH]; |
| #endif |
| puts("self hash: "); |
| if (hash_ptr && hash_ptr->valid) |
| print_buffer(0, hash_ptr->digest, 1, 20, 20); |
| else |
| puts("INVALID\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief let the system hang. |
| * |
| * Called on error. |
| * Will stop the boot process; display a message and signal the error condition |
| * by blinking the "status" and the "finder" LED of the controller board. |
| * |
| * @note the develop version runs the blink cycle 2 times and then returns. |
| * The release version never returns. |
| */ |
| static void ccdm_hang(void) |
| { |
| static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */ |
| static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */ |
| u64 f, s; |
| int i; |
| #ifdef CCDM_DEVELOP |
| int j; |
| #endif |
| |
| I2C_SET_BUS(I2C_SOC_0); |
| pca9698_direction_output(0x22, 0, 0); /* Finder */ |
| pca9698_direction_output(0x22, 4, 0); /* Status */ |
| |
| puts("### ERROR ### Please RESET the board ###\n"); |
| bootstage_error(BOOTSTAGE_ID_NEED_RESET); |
| #ifdef CCDM_DEVELOP |
| puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n"); |
| puts("** but we continue since this is a DEVELOP version **\n"); |
| puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n"); |
| for (j = 2; j-- > 0;) { |
| putc('#'); |
| #else |
| for (;;) { |
| #endif |
| f = f0; |
| s = s0; |
| for (i = 54; i-- > 0;) { |
| pca9698_set_value(0x22, 0, !(f & 1)); |
| pca9698_set_value(0x22, 4, (s & 1)); |
| f >>= 1; |
| s >>= 1; |
| mdelay(120); |
| } |
| } |
| puts("\ncontinue...\n"); |
| } |
| |
| int startup_ccdm_id_module(void) |
| { |
| int result = 0; |
| unsigned int orig_i2c_bus; |
| |
| orig_i2c_bus = i2c_get_bus_num(); |
| i2c_set_bus_num(I2C_SOC_1); |
| |
| /* goto end; */ |
| |
| #ifdef CCDM_DEVELOP |
| show_self_hash(); |
| #endif |
| #ifdef CCDM_FIRST_STAGE |
| result = first_stage_init(); |
| if (result) { |
| puts("1st stage init failed\n"); |
| goto failure; |
| } |
| #endif |
| #ifdef CCDM_SECOND_STAGE |
| result = second_stage_init(); |
| if (result) { |
| puts("2nd stage init failed\n"); |
| goto failure; |
| } |
| #endif |
| |
| goto end; |
| failure: |
| result = 1; |
| end: |
| i2c_set_bus_num(orig_i2c_bus); |
| if (result) |
| ccdm_hang(); |
| |
| return result; |
| } |