blob: a9910b11b80dc3e1cd9a5137b3d5abaf25edb631 [file] [log] [blame]
/*
* Atmel SPI DataFlash support
*
* Copyright (C) 2008 Atmel Corporation
* Licensed under the GPL-2 or later.
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
/* AT45-specific commands */
#define CMD_AT45_READ_STATUS 0xd7
#define CMD_AT45_ERASE_PAGE 0x81
#define CMD_AT45_LOAD_PROG_BUF1 0x82
#define CMD_AT45_LOAD_BUF1 0x84
#define CMD_AT45_LOAD_PROG_BUF2 0x85
#define CMD_AT45_LOAD_BUF2 0x87
#define CMD_AT45_PROG_BUF1 0x88
#define CMD_AT45_PROG_BUF2 0x89
/* AT45 status register bits */
#define AT45_STATUS_P2_PAGE_SIZE (1 << 0)
#define AT45_STATUS_READY (1 << 7)
/* DataFlash family IDs, as obtained from the second idcode byte */
#define DF_FAMILY_AT26F 0
#define DF_FAMILY_AT45 1
#define DF_FAMILY_AT26DF 2 /* AT25DF and AT26DF */
struct atmel_spi_flash_params {
u8 idcode1;
/* Log2 of page size in power-of-two mode */
u8 l2_page_size;
u8 pages_per_block;
u8 blocks_per_sector;
u8 nr_sectors;
const char *name;
};
/* spi_flash needs to be first so upper layers can free() it */
struct atmel_spi_flash {
struct spi_flash flash;
const struct atmel_spi_flash_params *params;
};
static inline struct atmel_spi_flash *
to_atmel_spi_flash(struct spi_flash *flash)
{
return container_of(flash, struct atmel_spi_flash, flash);
}
static const struct atmel_spi_flash_params atmel_spi_flash_table[] = {
{
.idcode1 = 0x22,
.l2_page_size = 8,
.pages_per_block = 8,
.blocks_per_sector = 16,
.nr_sectors = 4,
.name = "AT45DB011D",
},
{
.idcode1 = 0x23,
.l2_page_size = 8,
.pages_per_block = 8,
.blocks_per_sector = 16,
.nr_sectors = 8,
.name = "AT45DB021D",
},
{
.idcode1 = 0x24,
.l2_page_size = 8,
.pages_per_block = 8,
.blocks_per_sector = 32,
.nr_sectors = 8,
.name = "AT45DB041D",
},
{
.idcode1 = 0x25,
.l2_page_size = 8,
.pages_per_block = 8,
.blocks_per_sector = 32,
.nr_sectors = 16,
.name = "AT45DB081D",
},
{
.idcode1 = 0x26,
.l2_page_size = 9,
.pages_per_block = 8,
.blocks_per_sector = 32,
.nr_sectors = 16,
.name = "AT45DB161D",
},
{
.idcode1 = 0x27,
.l2_page_size = 9,
.pages_per_block = 8,
.blocks_per_sector = 64,
.nr_sectors = 64,
.name = "AT45DB321D",
},
{
.idcode1 = 0x28,
.l2_page_size = 10,
.pages_per_block = 8,
.blocks_per_sector = 32,
.nr_sectors = 32,
.name = "AT45DB642D",
},
};
static int at45_wait_ready(struct spi_flash *flash, unsigned long timeout)
{
return spi_flash_cmd_poll_bit(flash, timeout,
CMD_AT45_READ_STATUS, AT45_STATUS_READY);
}
/*
* Assemble the address part of a command for AT45 devices in
* non-power-of-two page size mode.
*/
static void at45_build_address(struct atmel_spi_flash *asf, u8 *cmd, u32 offset)
{
unsigned long page_addr;
unsigned long byte_addr;
unsigned long page_size;
unsigned int page_shift;
/*
* The "extra" space per page is the power-of-two page size
* divided by 32.
*/
page_shift = asf->params->l2_page_size;
page_size = (1 << page_shift) + (1 << (page_shift - 5));
page_shift++;
page_addr = offset / page_size;
byte_addr = offset % page_size;
cmd[0] = page_addr >> (16 - page_shift);
cmd[1] = page_addr << (page_shift - 8) | (byte_addr >> 8);
cmd[2] = byte_addr;
}
static int dataflash_read_fast_at45(struct spi_flash *flash,
u32 offset, size_t len, void *buf)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
u8 cmd[5];
cmd[0] = CMD_READ_ARRAY_FAST;
at45_build_address(asf, cmd + 1, offset);
cmd[4] = 0x00;
return spi_flash_read_common(flash, cmd, sizeof(cmd), buf, len);
}
/*
* TODO: the two write funcs (_p2/_at45) should get unified ...
*/
static int dataflash_write_p2(struct spi_flash *flash,
u32 offset, size_t len, const void *buf)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
unsigned long page_size;
u32 addr = offset;
size_t chunk_len;
size_t actual;
int ret;
u8 cmd[4];
/*
* TODO: This function currently uses only page buffer #1. We can
* speed this up by using both buffers and loading one buffer while
* the other is being programmed into main memory.
*/
page_size = (1 << asf->params->l2_page_size);
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual += chunk_len) {
chunk_len = min(len - actual, page_size - (addr % page_size));
/* Use the same address bits for both commands */
cmd[0] = CMD_AT45_LOAD_BUF1;
cmd[1] = addr >> 16;
cmd[2] = addr >> 8;
cmd[3] = addr;
ret = spi_flash_cmd_write(flash->spi, cmd, 4,
buf + actual, chunk_len);
if (ret < 0) {
debug("SF: Loading AT45 buffer failed\n");
goto out;
}
cmd[0] = CMD_AT45_PROG_BUF1;
ret = spi_flash_cmd_write(flash->spi, cmd, 4, NULL, 0);
if (ret < 0) {
debug("SF: AT45 page programming failed\n");
goto out;
}
ret = at45_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
if (ret < 0) {
debug("SF: AT45 page programming timed out\n");
goto out;
}
addr += chunk_len;
}
debug("SF: AT45: Successfully programmed %zu bytes @ 0x%x\n",
len, offset);
ret = 0;
out:
spi_release_bus(flash->spi);
return ret;
}
static int dataflash_write_at45(struct spi_flash *flash,
u32 offset, size_t len, const void *buf)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
unsigned long page_addr;
unsigned long byte_addr;
unsigned long page_size;
unsigned int page_shift;
size_t chunk_len;
size_t actual;
int ret;
u8 cmd[4];
/*
* TODO: This function currently uses only page buffer #1. We can
* speed this up by using both buffers and loading one buffer while
* the other is being programmed into main memory.
*/
page_shift = asf->params->l2_page_size;
page_size = (1 << page_shift) + (1 << (page_shift - 5));
page_shift++;
page_addr = offset / page_size;
byte_addr = offset % page_size;
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual += chunk_len) {
chunk_len = min(len - actual, page_size - byte_addr);
/* Use the same address bits for both commands */
cmd[0] = CMD_AT45_LOAD_BUF1;
cmd[1] = page_addr >> (16 - page_shift);
cmd[2] = page_addr << (page_shift - 8) | (byte_addr >> 8);
cmd[3] = byte_addr;
ret = spi_flash_cmd_write(flash->spi, cmd, 4,
buf + actual, chunk_len);
if (ret < 0) {
debug("SF: Loading AT45 buffer failed\n");
goto out;
}
cmd[0] = CMD_AT45_PROG_BUF1;
ret = spi_flash_cmd_write(flash->spi, cmd, 4, NULL, 0);
if (ret < 0) {
debug("SF: AT45 page programming failed\n");
goto out;
}
ret = at45_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
if (ret < 0) {
debug("SF: AT45 page programming timed out\n");
goto out;
}
page_addr++;
byte_addr = 0;
}
debug("SF: AT45: Successfully programmed %zu bytes @ 0x%x\n",
len, offset);
ret = 0;
out:
spi_release_bus(flash->spi);
return ret;
}
/*
* TODO: the two erase funcs (_p2/_at45) should get unified ...
*/
int dataflash_erase_p2(struct spi_flash *flash, u32 offset, size_t len)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
unsigned long page_size;
size_t actual;
int ret;
u8 cmd[4];
/*
* TODO: This function currently uses page erase only. We can
* probably speed things up by using block and/or sector erase
* when possible.
*/
page_size = (1 << asf->params->l2_page_size);
if (offset % page_size || len % page_size) {
debug("SF: Erase offset/length not multiple of page size\n");
return -1;
}
cmd[0] = CMD_AT45_ERASE_PAGE;
cmd[3] = 0x00;
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual += page_size) {
cmd[1] = offset >> 16;
cmd[2] = offset >> 8;
ret = spi_flash_cmd_write(flash->spi, cmd, 4, NULL, 0);
if (ret < 0) {
debug("SF: AT45 page erase failed\n");
goto out;
}
ret = at45_wait_ready(flash, SPI_FLASH_PAGE_ERASE_TIMEOUT);
if (ret < 0) {
debug("SF: AT45 page erase timed out\n");
goto out;
}
offset += page_size;
}
debug("SF: AT45: Successfully erased %zu bytes @ 0x%x\n",
len, offset);
ret = 0;
out:
spi_release_bus(flash->spi);
return ret;
}
int dataflash_erase_at45(struct spi_flash *flash, u32 offset, size_t len)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
unsigned long page_addr;
unsigned long page_size;
unsigned int page_shift;
size_t actual;
int ret;
u8 cmd[4];
/*
* TODO: This function currently uses page erase only. We can
* probably speed things up by using block and/or sector erase
* when possible.
*/
page_shift = asf->params->l2_page_size;
page_size = (1 << page_shift) + (1 << (page_shift - 5));
page_shift++;
page_addr = offset / page_size;
if (offset % page_size || len % page_size) {
debug("SF: Erase offset/length not multiple of page size\n");
return -1;
}
cmd[0] = CMD_AT45_ERASE_PAGE;
cmd[3] = 0x00;
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual += page_size) {
cmd[1] = page_addr >> (16 - page_shift);
cmd[2] = page_addr << (page_shift - 8);
ret = spi_flash_cmd_write(flash->spi, cmd, 4, NULL, 0);
if (ret < 0) {
debug("SF: AT45 page erase failed\n");
goto out;
}
ret = at45_wait_ready(flash, SPI_FLASH_PAGE_ERASE_TIMEOUT);
if (ret < 0) {
debug("SF: AT45 page erase timed out\n");
goto out;
}
page_addr++;
}
debug("SF: AT45: Successfully erased %zu bytes @ 0x%x\n",
len, offset);
ret = 0;
out:
spi_release_bus(flash->spi);
return ret;
}
struct spi_flash *spi_flash_probe_atmel(struct spi_slave *spi, u8 *idcode)
{
const struct atmel_spi_flash_params *params;
unsigned page_size;
unsigned int family;
struct atmel_spi_flash *asf;
unsigned int i;
int ret;
u8 status;
for (i = 0; i < ARRAY_SIZE(atmel_spi_flash_table); i++) {
params = &atmel_spi_flash_table[i];
if (params->idcode1 == idcode[1])
break;
}
if (i == ARRAY_SIZE(atmel_spi_flash_table)) {
debug("SF: Unsupported DataFlash ID %02x\n",
idcode[1]);
return NULL;
}
asf = malloc(sizeof(struct atmel_spi_flash));
if (!asf) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
asf->params = params;
asf->flash.spi = spi;
asf->flash.name = params->name;
/* Assuming power-of-two page size initially. */
page_size = 1 << params->l2_page_size;
family = idcode[1] >> 5;
switch (family) {
case DF_FAMILY_AT45:
/*
* AT45 chips have configurable page size. The status
* register indicates which configuration is active.
*/
ret = spi_flash_cmd(spi, CMD_AT45_READ_STATUS, &status, 1);
if (ret)
goto err;
debug("SF: AT45 status register: %02x\n", status);
if (!(status & AT45_STATUS_P2_PAGE_SIZE)) {
asf->flash.read = dataflash_read_fast_at45;
asf->flash.write = dataflash_write_at45;
asf->flash.erase = dataflash_erase_at45;
page_size += 1 << (params->l2_page_size - 5);
} else {
asf->flash.read = spi_flash_cmd_read_fast;
asf->flash.write = dataflash_write_p2;
asf->flash.erase = dataflash_erase_p2;
}
break;
case DF_FAMILY_AT26F:
case DF_FAMILY_AT26DF:
asf->flash.read = spi_flash_cmd_read_fast;
break;
default:
debug("SF: Unsupported DataFlash family %u\n", family);
goto err;
}
asf->flash.size = page_size * params->pages_per_block
* params->blocks_per_sector
* params->nr_sectors;
printf("SF: Detected %s with page size %u, total ",
params->name, page_size);
print_size(asf->flash.size, "\n");
return &asf->flash;
err:
free(asf);
return NULL;
}