blob: 841fe82428d4c9b5509ee3f6fe63923c02b946a6 [file] [log] [blame]
/*
* Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* CPU specific code for the MPC83xx family.
*
* Derived from the MPC8260 and MPC85xx.
*/
#include <common.h>
#include <watchdog.h>
#include <command.h>
#include <mpc83xx.h>
#include <asm/processor.h>
#if defined(CONFIG_OF_FLAT_TREE)
#include <ft_build.h>
#endif
#if defined(CONFIG_OF_LIBFDT)
#include <libfdt.h>
#include <libfdt_env.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
int checkcpu(void)
{
volatile immap_t *immr;
ulong clock = gd->cpu_clk;
u32 pvr = get_pvr();
u32 spridr;
char buf[32];
immr = (immap_t *)CFG_IMMR;
puts("CPU: ");
switch (pvr & 0xffff0000) {
case PVR_E300C1:
printf("e300c1, ");
break;
case PVR_E300C2:
printf("e300c2, ");
break;
case PVR_E300C3:
printf("e300c3, ");
break;
default:
printf("Unknown core, ");
}
spridr = immr->sysconf.spridr;
switch(spridr) {
case SPR_8349E_REV10:
case SPR_8349E_REV11:
case SPR_8349E_REV31:
puts("MPC8349E, ");
break;
case SPR_8349_REV10:
case SPR_8349_REV11:
case SPR_8349_REV31:
puts("MPC8349, ");
break;
case SPR_8347E_REV10_TBGA:
case SPR_8347E_REV11_TBGA:
case SPR_8347E_REV31_TBGA:
case SPR_8347E_REV10_PBGA:
case SPR_8347E_REV11_PBGA:
case SPR_8347E_REV31_PBGA:
puts("MPC8347E, ");
break;
case SPR_8347_REV10_TBGA:
case SPR_8347_REV11_TBGA:
case SPR_8347_REV31_TBGA:
case SPR_8347_REV10_PBGA:
case SPR_8347_REV11_PBGA:
case SPR_8347_REV31_PBGA:
puts("MPC8347, ");
break;
case SPR_8343E_REV10:
case SPR_8343E_REV11:
case SPR_8343E_REV31:
puts("MPC8343E, ");
break;
case SPR_8343_REV10:
case SPR_8343_REV11:
case SPR_8343_REV31:
puts("MPC8343, ");
break;
case SPR_8360E_REV10:
case SPR_8360E_REV11:
case SPR_8360E_REV12:
case SPR_8360E_REV20:
puts("MPC8360E, ");
break;
case SPR_8360_REV10:
case SPR_8360_REV11:
case SPR_8360_REV12:
case SPR_8360_REV20:
puts("MPC8360, ");
break;
case SPR_8323E_REV10:
case SPR_8323E_REV11:
puts("MPC8323E, ");
break;
case SPR_8323_REV10:
case SPR_8323_REV11:
puts("MPC8323, ");
break;
case SPR_8321E_REV10:
case SPR_8321E_REV11:
puts("MPC8321E, ");
break;
case SPR_8321_REV10:
case SPR_8321_REV11:
puts("MPC8321, ");
break;
case SPR_8311_REV10:
puts("MPC8311, ");
break;
case SPR_8311E_REV10:
puts("MPC8311E, ");
break;
case SPR_8313_REV10:
puts("MPC8313, ");
break;
case SPR_8313E_REV10:
puts("MPC8313E, ");
break;
default:
puts("Rev: Unknown revision number.\nWarning: Unsupported cpu revision!\n");
return 0;
}
#if defined(CONFIG_MPC834X)
/* Multiple revisons of 834x processors may have the same SPRIDR value.
* So use PVR to identify the revision number.
*/
printf("Rev: %02x at %s MHz", PVR_MAJ(pvr)<<4 | PVR_MIN(pvr), strmhz(buf, clock));
#else
printf("Rev: %02x at %s MHz", spridr & 0x0000FFFF, strmhz(buf, clock));
#endif
printf(", CSB: %4d MHz\n", gd->csb_clk / 1000000);
return 0;
}
/*
* Program a UPM with the code supplied in the table.
*
* The 'dummy' variable is used to increment the MAD. 'dummy' is
* supposed to be a pointer to the memory of the device being
* programmed by the UPM. The data in the MDR is written into
* memory and the MAD is incremented every time there's a read
* from 'dummy'. Unfortunately, the current prototype for this
* function doesn't allow for passing the address of this
* device, and changing the prototype will break a number lots
* of other code, so we need to use a round-about way of finding
* the value for 'dummy'.
*
* The value can be extracted from the base address bits of the
* Base Register (BR) associated with the specific UPM. To find
* that BR, we need to scan all 8 BRs until we find the one that
* has its MSEL bits matching the UPM we want. Once we know the
* right BR, we can extract the base address bits from it.
*
* The MxMR and the BR and OR of the chosen bank should all be
* configured before calling this function.
*
* Parameters:
* upm: 0=UPMA, 1=UPMB, 2=UPMC
* table: Pointer to an array of values to program
* size: Number of elements in the array. Must be 64 or less.
*/
void upmconfig (uint upm, uint *table, uint size)
{
#if defined(CONFIG_MPC834X)
volatile immap_t *immap = (immap_t *) CFG_IMMR;
volatile lbus83xx_t *lbus = &immap->lbus;
volatile uchar *dummy = NULL;
const u32 msel = (upm + 4) << BR_MSEL_SHIFT; /* What the MSEL field in BRn should be */
volatile u32 *mxmr = &lbus->mamr + upm; /* Pointer to mamr, mbmr, or mcmr */
uint i;
/* Scan all the banks to determine the base address of the device */
for (i = 0; i < 8; i++) {
if ((lbus->bank[i].br & BR_MSEL) == msel) {
dummy = (uchar *) (lbus->bank[i].br & BR_BA);
break;
}
}
if (!dummy) {
printf("Error: %s() could not find matching BR\n", __FUNCTION__);
hang();
}
/* Set the OP field in the MxMR to "write" and the MAD field to 000000 */
*mxmr = (*mxmr & 0xCFFFFFC0) | 0x10000000;
for (i = 0; i < size; i++) {
lbus->mdr = table[i];
__asm__ __volatile__ ("sync");
*dummy; /* Write the value to memory and increment MAD */
__asm__ __volatile__ ("sync");
}
/* Set the OP field in the MxMR to "normal" and the MAD field to 000000 */
*mxmr &= 0xCFFFFFC0;
#else
printf("Error: %s() not defined for this configuration.\n", __FUNCTION__);
hang();
#endif
}
int
do_reset (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
ulong msr;
#ifndef MPC83xx_RESET
ulong addr;
#endif
volatile immap_t *immap = (immap_t *) CFG_IMMR;
#ifdef MPC83xx_RESET
/* Interrupts and MMU off */
__asm__ __volatile__ ("mfmsr %0":"=r" (msr):);
msr &= ~( MSR_EE | MSR_IR | MSR_DR);
__asm__ __volatile__ ("mtmsr %0"::"r" (msr));
/* enable Reset Control Reg */
immap->reset.rpr = 0x52535445;
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("isync");
/* confirm Reset Control Reg is enabled */
while(!((immap->reset.rcer) & RCER_CRE));
printf("Resetting the board.");
printf("\n");
udelay(200);
/* perform reset, only one bit */
immap->reset.rcr = RCR_SWHR;
#else /* ! MPC83xx_RESET */
immap->reset.rmr = RMR_CSRE; /* Checkstop Reset enable */
/* Interrupts and MMU off */
__asm__ __volatile__ ("mfmsr %0":"=r" (msr):);
msr &= ~(MSR_ME | MSR_EE | MSR_IR | MSR_DR);
__asm__ __volatile__ ("mtmsr %0"::"r" (msr));
/*
* Trying to execute the next instruction at a non-existing address
* should cause a machine check, resulting in reset
*/
addr = CFG_RESET_ADDRESS;
printf("resetting the board.");
printf("\n");
((void (*)(void)) addr) ();
#endif /* MPC83xx_RESET */
return 1;
}
/*
* Get timebase clock frequency (like cpu_clk in Hz)
*/
unsigned long get_tbclk(void)
{
ulong tbclk;
tbclk = (gd->bus_clk + 3L) / 4L;
return tbclk;
}
#if defined(CONFIG_WATCHDOG)
void watchdog_reset (void)
{
int re_enable = disable_interrupts();
/* Reset the 83xx watchdog */
volatile immap_t *immr = (immap_t *) CFG_IMMR;
immr->wdt.swsrr = 0x556c;
immr->wdt.swsrr = 0xaa39;
if (re_enable)
enable_interrupts ();
}
#endif
#if defined(CONFIG_OF_LIBFDT)
/*
* "Setter" functions used to add/modify FDT entries.
*/
static int fdt_set_eth0(void *fdt, int nodeoffset, const char *name, bd_t *bd)
{
/*
* Fix it up if it exists, don't create it if it doesn't exist.
*/
if (fdt_get_property(fdt, nodeoffset, name, 0)) {
return fdt_setprop(fdt, nodeoffset, name, bd->bi_enetaddr, 6);
}
return -FDT_ERR_NOTFOUND;
}
#ifdef CONFIG_HAS_ETH1
/* second onboard ethernet port */
static int fdt_set_eth1(void *fdt, int nodeoffset, const char *name, bd_t *bd)
{
/*
* Fix it up if it exists, don't create it if it doesn't exist.
*/
if (fdt_get_property(fdt, nodeoffset, name, 0)) {
return fdt_setprop(fdt, nodeoffset, name, bd->bi_enet1addr, 6);
}
return -FDT_ERR_NOTFOUND;
}
#endif
#ifdef CONFIG_HAS_ETH2
/* third onboard ethernet port */
static int fdt_set_eth2(void *fdt, int nodeoffset, const char *name, bd_t *bd)
{
/*
* Fix it up if it exists, don't create it if it doesn't exist.
*/
if (fdt_get_property(fdt, nodeoffset, name, 0)) {
return fdt_setprop(fdt, nodeoffset, name, bd->bi_enet2addr, 6);
}
return -FDT_ERR_NOTFOUND;
}
#endif
#ifdef CONFIG_HAS_ETH3
/* fourth onboard ethernet port */
static int fdt_set_eth3(void *fdt, int nodeoffset, const char *name, bd_t *bd)
{
/*
* Fix it up if it exists, don't create it if it doesn't exist.
*/
if (fdt_get_property(fdt, nodeoffset, name, 0)) {
return fdt_setprop(fdt, nodeoffset, name, bd->bi_enet3addr, 6);
}
return -FDT_ERR_NOTFOUND;
}
#endif
static int fdt_set_busfreq(void *fdt, int nodeoffset, const char *name, bd_t *bd)
{
u32 tmp;
/*
* Create or update the property.
*/
tmp = cpu_to_be32(bd->bi_busfreq);
return fdt_setprop(fdt, nodeoffset, name, &tmp, sizeof(tmp));
}
/*
* Fixups to the fdt. If "create" is TRUE, the node is created
* unconditionally. If "create" is FALSE, the node is updated
* only if it already exists.
*/
static const struct {
char *node;
char *prop;
int (*set_fn)(void *fdt, int nodeoffset, const char *name, bd_t *bd);
} fixup_props[] = {
{ "/cpus/" OF_CPU,
"bus-frequency",
fdt_set_busfreq
},
{ "/cpus/" OF_SOC,
"bus-frequency",
fdt_set_busfreq
},
{ "/" OF_SOC "/serial@4500/",
"clock-frequency",
fdt_set_busfreq
},
{ "/" OF_SOC "/serial@4600/",
"clock-frequency",
fdt_set_busfreq
},
#ifdef CONFIG_TSEC1
{ "/" OF_SOC "/ethernet@24000,
"mac-address",
fdt_set_eth0
},
{ "/" OF_SOC "/ethernet@24000,
"local-mac-address",
fdt_set_eth0
},
#endif
#ifdef CONFIG_TSEC2
{ "/" OF_SOC "/ethernet@25000,
"mac-address",
fdt_set_eth1
},
{ "/" OF_SOC "/ethernet@25000,
"local-mac-address",
fdt_set_eth1
},
#endif
#ifdef CONFIG_UEC_ETH1
#if CFG_UEC1_UCC_NUM == 0 /* UCC1 */
{ "/" OF_QE "/ucc@2000/mac-address",
"mac-address",
fdt_set_eth0
},
{ "/" OF_QE "/ucc@2000/mac-address",
"local-mac-address",
fdt_set_eth0
},
#elif CFG_UEC1_UCC_NUM == 2 /* UCC3 */
{ "/" OF_QE "/ucc@2200/mac-address",
"mac-address",
fdt_set_eth0
},
{ "/" OF_QE "/ucc@2200/mac-address",
"local-mac-address",
fdt_set_eth0
},
#endif
#endif
#ifdef CONFIG_UEC_ETH2
#if CFG_UEC2_UCC_NUM == 1 /* UCC2 */
{ "/" OF_QE "/ucc@3000/mac-address",
"mac-address",
fdt_set_eth1
},
{ "/" OF_QE "/ucc@3000/mac-address",
"local-mac-address",
fdt_set_eth1
},
#elif CFG_UEC1_UCC_NUM == 3 /* UCC4 */
{ "/" OF_QE "/ucc@3200/mac-address",
"mac-address",
fdt_set_eth1
},
{ "/" OF_QE "/ucc@3200/mac-address",
"local-mac-address",
fdt_set_eth1
},
#endif
#endif
};
void
ft_cpu_setup(void *blob, bd_t *bd)
{
int nodeoffset;
int err;
int j;
for (j = 0; j < (sizeof(fixup_props) / sizeof(fixup_props[0])); j++) {
nodeoffset = fdt_path_offset(fdt, fixup_props[j].node);
if (nodeoffset >= 0) {
err = (*fixup_props[j].set_fn)(blob, nodeoffset, fixup_props[j].prop, bd);
if (err < 0)
printf("set_fn/libfdt: %s %s returned %s\n",
fixup_props[j].node,
fixup_props[j].prop,
fdt_strerror(err));
}
}
}
#endif
#if defined(CONFIG_OF_FLAT_TREE)
void
ft_cpu_setup(void *blob, bd_t *bd)
{
u32 *p;
int len;
ulong clock;
clock = bd->bi_busfreq;
p = ft_get_prop(blob, "/cpus/" OF_CPU "/bus-frequency", &len);
if (p != NULL)
*p = cpu_to_be32(clock);
p = ft_get_prop(blob, "/" OF_SOC "/bus-frequency", &len);
if (p != NULL)
*p = cpu_to_be32(clock);
p = ft_get_prop(blob, "/" OF_SOC "/serial@4500/clock-frequency", &len);
if (p != NULL)
*p = cpu_to_be32(clock);
p = ft_get_prop(blob, "/" OF_SOC "/serial@4600/clock-frequency", &len);
if (p != NULL)
*p = cpu_to_be32(clock);
#ifdef CONFIG_TSEC1
p = ft_get_prop(blob, "/" OF_SOC "/ethernet@24000/mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enetaddr, 6);
p = ft_get_prop(blob, "/" OF_SOC "/ethernet@24000/local-mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enetaddr, 6);
#endif
#ifdef CONFIG_TSEC2
p = ft_get_prop(blob, "/" OF_SOC "/ethernet@25000/mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enet1addr, 6);
p = ft_get_prop(blob, "/" OF_SOC "/ethernet@25000/local-mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enet1addr, 6);
#endif
#ifdef CONFIG_UEC_ETH1
#if CFG_UEC1_UCC_NUM == 0 /* UCC1 */
p = ft_get_prop(blob, "/" OF_QE "/ucc@2000/mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enetaddr, 6);
p = ft_get_prop(blob, "/" OF_QE "/ucc@2000/local-mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enetaddr, 6);
#elif CFG_UEC1_UCC_NUM == 2 /* UCC3 */
p = ft_get_prop(blob, "/" OF_QE "/ucc@2200/mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enetaddr, 6);
p = ft_get_prop(blob, "/" OF_QE "/ucc@2200/local-mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enetaddr, 6);
#endif
#endif
#ifdef CONFIG_UEC_ETH2
#if CFG_UEC2_UCC_NUM == 1 /* UCC2 */
p = ft_get_prop(blob, "/" OF_QE "/ucc@3000/mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enet1addr, 6);
p = ft_get_prop(blob, "/" OF_QE "/ucc@3000/local-mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enet1addr, 6);
#elif CFG_UEC2_UCC_NUM == 3 /* UCC4 */
p = ft_get_prop(blob, "/" OF_QE "/ucc@3200/mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enet1addr, 6);
p = ft_get_prop(blob, "/" OF_QE "/ucc@3200/local-mac-address", &len);
if (p != NULL)
memcpy(p, bd->bi_enet1addr, 6);
#endif
#endif
}
#endif
#if defined(CONFIG_DDR_ECC)
void dma_init(void)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile dma83xx_t *dma = &immap->dma;
volatile u32 status = swab32(dma->dmasr0);
volatile u32 dmamr0 = swab32(dma->dmamr0);
debug("DMA-init\n");
/* initialize DMASARn, DMADAR and DMAABCRn */
dma->dmadar0 = (u32)0;
dma->dmasar0 = (u32)0;
dma->dmabcr0 = 0;
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("isync");
/* clear CS bit */
dmamr0 &= ~DMA_CHANNEL_START;
dma->dmamr0 = swab32(dmamr0);
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("isync");
/* while the channel is busy, spin */
while(status & DMA_CHANNEL_BUSY) {
status = swab32(dma->dmasr0);
}
debug("DMA-init end\n");
}
uint dma_check(void)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile dma83xx_t *dma = &immap->dma;
volatile u32 status = swab32(dma->dmasr0);
volatile u32 byte_count = swab32(dma->dmabcr0);
/* while the channel is busy, spin */
while (status & DMA_CHANNEL_BUSY) {
status = swab32(dma->dmasr0);
}
if (status & DMA_CHANNEL_TRANSFER_ERROR) {
printf ("DMA Error: status = %x @ %d\n", status, byte_count);
}
return status;
}
int dma_xfer(void *dest, u32 count, void *src)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile dma83xx_t *dma = &immap->dma;
volatile u32 dmamr0;
/* initialize DMASARn, DMADAR and DMAABCRn */
dma->dmadar0 = swab32((u32)dest);
dma->dmasar0 = swab32((u32)src);
dma->dmabcr0 = swab32(count);
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("isync");
/* init direct transfer, clear CS bit */
dmamr0 = (DMA_CHANNEL_TRANSFER_MODE_DIRECT |
DMA_CHANNEL_SOURCE_ADDRESS_HOLD_8B |
DMA_CHANNEL_SOURCE_ADRESSS_HOLD_EN);
dma->dmamr0 = swab32(dmamr0);
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("isync");
/* set CS to start DMA transfer */
dmamr0 |= DMA_CHANNEL_START;
dma->dmamr0 = swab32(dmamr0);
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("isync");
return ((int)dma_check());
}
#endif /*CONFIG_DDR_ECC*/