| /* |
| * (C) Copyright 2003 |
| * Gerry Hamel, geh@ti.com, Texas Instruments |
| * |
| * Based on |
| * linux/drivers/usb/device/bi/omap.c |
| * TI OMAP1510 USB bus interface driver |
| * |
| * Author: MontaVista Software, Inc. |
| * source@mvista.com |
| * (C) Copyright 2002 |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #ifdef CONFIG_OMAP_SX1 |
| #include <i2c.h> |
| #endif |
| #include <usbdevice.h> |
| #include <usb/omap1510_udc.h> |
| #include <usb/udc.h> |
| |
| #include "ep0.h" |
| |
| |
| #define UDC_INIT_MDELAY 80 /* Device settle delay */ |
| #define UDC_MAX_ENDPOINTS 31 /* Number of endpoints on this UDC */ |
| |
| /* Some kind of debugging output... */ |
| #if 1 |
| #define UDCDBG(str) |
| #define UDCDBGA(fmt,args...) |
| #else /* The bugs still exists... */ |
| #define UDCDBG(str) serial_printf("[%s] %s:%d: " str "\n", __FILE__,__FUNCTION__,__LINE__) |
| #define UDCDBGA(fmt,args...) serial_printf("[%s] %s:%d: " fmt "\n", __FILE__,__FUNCTION__,__LINE__, ##args) |
| #endif |
| |
| #if 1 |
| #define UDCREG(name) |
| #define UDCREGL(name) |
| #else /* The bugs still exists... */ |
| #define UDCREG(name) serial_printf("%s():%d: %s[%08x]=%.4x\n",__FUNCTION__,__LINE__, (#name), name, inw(name)) /* For 16-bit regs */ |
| #define UDCREGL(name) serial_printf("%s():%d: %s[%08x]=%.8x\n",__FUNCTION__,__LINE__, (#name), name, inl(name)) /* For 32-bit regs */ |
| #endif |
| |
| |
| static struct urb *ep0_urb = NULL; |
| |
| static struct usb_device_instance *udc_device; /* Used in interrupt handler */ |
| static u16 udc_devstat = 0; /* UDC status (DEVSTAT) */ |
| static u32 udc_interrupts = 0; |
| |
| static void udc_stall_ep (unsigned int ep_addr); |
| |
| |
| static struct usb_endpoint_instance *omap1510_find_ep (int ep) |
| { |
| int i; |
| |
| for (i = 0; i < udc_device->bus->max_endpoints; i++) { |
| if (udc_device->bus->endpoint_array[i].endpoint_address == ep) |
| return &udc_device->bus->endpoint_array[i]; |
| } |
| return NULL; |
| } |
| |
| /* ************************************************************************** */ |
| /* IO |
| */ |
| |
| /* |
| * omap1510_prepare_endpoint_for_rx |
| * |
| * This function implements TRM Figure 14-11. |
| * |
| * The endpoint to prepare for transfer is specified as a physical endpoint |
| * number. For OUT (rx) endpoints 1 through 15, the corresponding endpoint |
| * configuration register is checked to see if the endpoint is ISO or not. |
| * If the OUT endpoint is valid and is non-ISO then its FIFO is enabled. |
| * No action is taken for endpoint 0 or for IN (tx) endpoints 16 through 30. |
| */ |
| static void omap1510_prepare_endpoint_for_rx (int ep_addr) |
| { |
| int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| |
| UDCDBGA ("omap1510_prepare_endpoint %x", ep_addr); |
| if (((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)) { |
| if ((inw (UDC_EP_RX (ep_num)) & |
| (UDC_EPn_RX_Valid | UDC_EPn_RX_Iso)) == |
| UDC_EPn_RX_Valid) { |
| /* rx endpoint is valid, non-ISO, so enable its FIFO */ |
| outw (UDC_EP_Sel | ep_num, UDC_EP_NUM); |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| outw (0, UDC_EP_NUM); |
| } |
| } |
| } |
| |
| /* omap1510_configure_endpoints |
| * |
| * This function implements TRM Figure 14-10. |
| */ |
| static void omap1510_configure_endpoints (struct usb_device_instance *device) |
| { |
| int ep; |
| struct usb_bus_instance *bus; |
| struct usb_endpoint_instance *endpoint; |
| unsigned short ep_ptr; |
| unsigned short ep_size; |
| unsigned short ep_isoc; |
| unsigned short ep_doublebuffer; |
| int ep_addr; |
| int packet_size; |
| int buffer_size; |
| int attributes; |
| |
| bus = device->bus; |
| |
| /* There is a dedicated 2048 byte buffer for USB packets that may be |
| * arbitrarily partitioned among the endpoints on 8-byte boundaries. |
| * The first 8 bytes are reserved for receiving setup packets on |
| * endpoint 0. |
| */ |
| ep_ptr = 8; /* reserve the first 8 bytes for the setup fifo */ |
| |
| for (ep = 0; ep < bus->max_endpoints; ep++) { |
| endpoint = bus->endpoint_array + ep; |
| ep_addr = endpoint->endpoint_address; |
| if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| /* IN endpoint */ |
| packet_size = endpoint->tx_packetSize; |
| attributes = endpoint->tx_attributes; |
| } else { |
| /* OUT endpoint */ |
| packet_size = endpoint->rcv_packetSize; |
| attributes = endpoint->rcv_attributes; |
| } |
| |
| switch (packet_size) { |
| case 0: |
| ep_size = 0; |
| break; |
| case 8: |
| ep_size = 0; |
| break; |
| case 16: |
| ep_size = 1; |
| break; |
| case 32: |
| ep_size = 2; |
| break; |
| case 64: |
| ep_size = 3; |
| break; |
| case 128: |
| ep_size = 4; |
| break; |
| case 256: |
| ep_size = 5; |
| break; |
| case 512: |
| ep_size = 6; |
| break; |
| default: |
| UDCDBGA ("ep 0x%02x has bad packet size %d", |
| ep_addr, packet_size); |
| packet_size = 0; |
| ep_size = 0; |
| break; |
| } |
| |
| switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) { |
| case USB_ENDPOINT_XFER_CONTROL: |
| case USB_ENDPOINT_XFER_BULK: |
| case USB_ENDPOINT_XFER_INT: |
| default: |
| /* A non-isochronous endpoint may optionally be |
| * double-buffered. For now we disable |
| * double-buffering. |
| */ |
| ep_doublebuffer = 0; |
| ep_isoc = 0; |
| if (packet_size > 64) |
| packet_size = 0; |
| if (!ep || !ep_doublebuffer) |
| buffer_size = packet_size; |
| else |
| buffer_size = packet_size * 2; |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| /* Isochronous endpoints are always double- |
| * buffered, but the double-buffering bit |
| * in the endpoint configuration register |
| * becomes the msb of the endpoint size so we |
| * set the double-buffering flag to zero. |
| */ |
| ep_doublebuffer = 0; |
| ep_isoc = 1; |
| buffer_size = packet_size * 2; |
| break; |
| } |
| |
| /* check to see if our packet buffer RAM is exhausted */ |
| if ((ep_ptr + buffer_size) > 2048) { |
| UDCDBGA ("out of packet RAM for ep 0x%02x buf size %d", ep_addr, buffer_size); |
| buffer_size = packet_size = 0; |
| } |
| |
| /* force a default configuration for endpoint 0 since it is |
| * always enabled |
| */ |
| if (!ep && ((packet_size < 8) || (packet_size > 64))) { |
| buffer_size = packet_size = 64; |
| ep_size = 3; |
| } |
| |
| if (!ep) { |
| /* configure endpoint 0 */ |
| outw ((ep_size << 12) | (ep_ptr >> 3), UDC_EP0); |
| /*UDCDBGA("ep 0 buffer offset 0x%03x packet size 0x%03x", */ |
| /* ep_ptr, packet_size); */ |
| } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| /* IN endpoint */ |
| if (packet_size) { |
| outw ((1 << 15) | (ep_doublebuffer << 14) | |
| (ep_size << 12) | (ep_isoc << 11) | |
| (ep_ptr >> 3), |
| UDC_EP_TX (ep_addr & |
| USB_ENDPOINT_NUMBER_MASK)); |
| UDCDBGA ("IN ep %d buffer offset 0x%03x" |
| " packet size 0x%03x", |
| ep_addr & USB_ENDPOINT_NUMBER_MASK, |
| ep_ptr, packet_size); |
| } else { |
| outw (0, |
| UDC_EP_TX (ep_addr & |
| USB_ENDPOINT_NUMBER_MASK)); |
| } |
| } else { |
| /* OUT endpoint */ |
| if (packet_size) { |
| outw ((1 << 15) | (ep_doublebuffer << 14) | |
| (ep_size << 12) | (ep_isoc << 11) | |
| (ep_ptr >> 3), |
| UDC_EP_RX (ep_addr & |
| USB_ENDPOINT_NUMBER_MASK)); |
| UDCDBGA ("OUT ep %d buffer offset 0x%03x" |
| " packet size 0x%03x", |
| ep_addr & USB_ENDPOINT_NUMBER_MASK, |
| ep_ptr, packet_size); |
| } else { |
| outw (0, |
| UDC_EP_RX (ep_addr & |
| USB_ENDPOINT_NUMBER_MASK)); |
| } |
| } |
| ep_ptr += buffer_size; |
| } |
| } |
| |
| /* omap1510_deconfigure_device |
| * |
| * This function balances omap1510_configure_device. |
| */ |
| static void omap1510_deconfigure_device (void) |
| { |
| int epnum; |
| |
| UDCDBG ("clear Cfg_Lock"); |
| outw (inw (UDC_SYSCON1) & ~UDC_Cfg_Lock, UDC_SYSCON1); |
| UDCREG (UDC_SYSCON1); |
| |
| /* deconfigure all endpoints */ |
| for (epnum = 1; epnum <= 15; epnum++) { |
| outw (0, UDC_EP_RX (epnum)); |
| outw (0, UDC_EP_TX (epnum)); |
| } |
| } |
| |
| /* omap1510_configure_device |
| * |
| * This function implements TRM Figure 14-9. |
| */ |
| static void omap1510_configure_device (struct usb_device_instance *device) |
| { |
| omap1510_configure_endpoints (device); |
| |
| |
| /* Figure 14-9 indicates we should enable interrupts here, but we have |
| * other routines (udc_all_interrupts, udc_suspended_interrupts) to |
| * do that. |
| */ |
| |
| UDCDBG ("set Cfg_Lock"); |
| outw (inw (UDC_SYSCON1) | UDC_Cfg_Lock, UDC_SYSCON1); |
| UDCREG (UDC_SYSCON1); |
| } |
| |
| /* omap1510_write_noniso_tx_fifo |
| * |
| * This function implements TRM Figure 14-30. |
| * |
| * If the endpoint has an active tx_urb, then the next packet of data from the |
| * URB is written to the tx FIFO. The total amount of data in the urb is given |
| * by urb->actual_length. The maximum amount of data that can be sent in any |
| * one packet is given by endpoint->tx_packetSize. The number of data bytes |
| * from this URB that have already been transmitted is given by endpoint->sent. |
| * endpoint->last is updated by this routine with the number of data bytes |
| * transmitted in this packet. |
| * |
| * In accordance with Figure 14-30, the EP_NUM register must already have been |
| * written with the value to select the appropriate tx FIFO before this routine |
| * is called. |
| */ |
| static void omap1510_write_noniso_tx_fifo (struct usb_endpoint_instance |
| *endpoint) |
| { |
| struct urb *urb = endpoint->tx_urb; |
| |
| if (urb) { |
| unsigned int last, i; |
| |
| UDCDBGA ("urb->buffer %p, buffer_length %d, actual_length %d", |
| urb->buffer, urb->buffer_length, urb->actual_length); |
| if ((last = |
| MIN (urb->actual_length - endpoint->sent, |
| endpoint->tx_packetSize))) { |
| u8 *cp = urb->buffer + endpoint->sent; |
| |
| UDCDBGA ("endpoint->sent %d, tx_packetSize %d, last %d", endpoint->sent, endpoint->tx_packetSize, last); |
| |
| if (((u32) cp & 1) == 0) { /* word aligned? */ |
| outsw (UDC_DATA, cp, last >> 1); |
| } else { /* byte aligned. */ |
| for (i = 0; i < (last >> 1); i++) { |
| u16 w = ((u16) cp[2 * i + 1] << 8) | |
| (u16) cp[2 * i]; |
| outw (w, UDC_DATA); |
| } |
| } |
| if (last & 1) { |
| outb (*(cp + last - 1), UDC_DATA); |
| } |
| } |
| endpoint->last = last; |
| } |
| } |
| |
| /* omap1510_read_noniso_rx_fifo |
| * |
| * This function implements TRM Figure 14-28. |
| * |
| * If the endpoint has an active rcv_urb, then the next packet of data is read |
| * from the rcv FIFO and written to rcv_urb->buffer at offset |
| * rcv_urb->actual_length to append the packet data to the data from any |
| * previous packets for this transfer. We assume that there is sufficient room |
| * left in the buffer to hold an entire packet of data. |
| * |
| * The return value is the number of bytes read from the FIFO for this packet. |
| * |
| * In accordance with Figure 14-28, the EP_NUM register must already have been |
| * written with the value to select the appropriate rcv FIFO before this routine |
| * is called. |
| */ |
| static int omap1510_read_noniso_rx_fifo (struct usb_endpoint_instance |
| *endpoint) |
| { |
| struct urb *urb = endpoint->rcv_urb; |
| int len = 0; |
| |
| if (urb) { |
| len = inw (UDC_RXFSTAT); |
| |
| if (len) { |
| unsigned char *cp = urb->buffer + urb->actual_length; |
| |
| insw (UDC_DATA, cp, len >> 1); |
| if (len & 1) |
| *(cp + len - 1) = inb (UDC_DATA); |
| } |
| } |
| return len; |
| } |
| |
| /* omap1510_prepare_for_control_write_status |
| * |
| * This function implements TRM Figure 14-17. |
| * |
| * We have to deal here with non-autodecoded control writes that haven't already |
| * been dealt with by ep0_recv_setup. The non-autodecoded standard control |
| * write requests are: set/clear endpoint feature, set configuration, set |
| * interface, and set descriptor. ep0_recv_setup handles set/clear requests for |
| * ENDPOINT_HALT by halting the endpoint for a set request and resetting the |
| * endpoint for a clear request. ep0_recv_setup returns an error for |
| * SET_DESCRIPTOR requests which causes them to be terminated with a stall by |
| * the setup handler. A SET_INTERFACE request is handled by ep0_recv_setup by |
| * generating a DEVICE_SET_INTERFACE event. This leaves only the |
| * SET_CONFIGURATION event for us to deal with here. |
| * |
| */ |
| static void omap1510_prepare_for_control_write_status (struct urb *urb) |
| { |
| struct usb_device_request *request = &urb->device_request;; |
| |
| /* check for a SET_CONFIGURATION request */ |
| if (request->bRequest == USB_REQ_SET_CONFIGURATION) { |
| int configuration = le16_to_cpu (request->wValue) & 0xff; |
| unsigned short devstat = inw (UDC_DEVSTAT); |
| |
| if ((devstat & (UDC_ADD | UDC_CFG)) == UDC_ADD) { |
| /* device is currently in ADDRESSED state */ |
| if (configuration) { |
| /* Assume the specified non-zero configuration |
| * value is valid and switch to the CONFIGURED |
| * state. |
| */ |
| outw (UDC_Dev_Cfg, UDC_SYSCON2); |
| } |
| } else if ((devstat & UDC_CFG) == UDC_CFG) { |
| /* device is currently in CONFIGURED state */ |
| if (!configuration) { |
| /* Switch to ADDRESSED state. */ |
| outw (UDC_Clr_Cfg, UDC_SYSCON2); |
| } |
| } |
| } |
| |
| /* select EP0 tx FIFO */ |
| outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); |
| /* clear endpoint (no data bytes in status stage) */ |
| outw (UDC_Clr_EP, UDC_CTRL); |
| /* enable the EP0 tx FIFO */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| /* deselect the endpoint */ |
| outw (UDC_EP_Dir, UDC_EP_NUM); |
| } |
| |
| /* udc_state_transition_up |
| * udc_state_transition_down |
| * |
| * Helper functions to implement device state changes. The device states and |
| * the events that transition between them are: |
| * |
| * STATE_ATTACHED |
| * || /\ |
| * \/ || |
| * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET |
| * || /\ |
| * \/ || |
| * STATE_POWERED |
| * || /\ |
| * \/ || |
| * DEVICE_RESET DEVICE_POWER_INTERRUPTION |
| * || /\ |
| * \/ || |
| * STATE_DEFAULT |
| * || /\ |
| * \/ || |
| * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET |
| * || /\ |
| * \/ || |
| * STATE_ADDRESSED |
| * || /\ |
| * \/ || |
| * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED |
| * || /\ |
| * \/ || |
| * STATE_CONFIGURED |
| * |
| * udc_state_transition_up transitions up (in the direction from STATE_ATTACHED |
| * to STATE_CONFIGURED) from the specified initial state to the specified final |
| * state, passing through each intermediate state on the way. If the initial |
| * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then |
| * no state transitions will take place. |
| * |
| * udc_state_transition_down transitions down (in the direction from |
| * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the |
| * specified final state, passing through each intermediate state on the way. |
| * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final |
| * state, then no state transitions will take place. |
| * |
| * These functions must only be called with interrupts disabled. |
| */ |
| static void udc_state_transition_up (usb_device_state_t initial, |
| usb_device_state_t final) |
| { |
| if (initial < final) { |
| switch (initial) { |
| case STATE_ATTACHED: |
| usbd_device_event_irq (udc_device, |
| DEVICE_HUB_CONFIGURED, 0); |
| if (final == STATE_POWERED) |
| break; |
| case STATE_POWERED: |
| usbd_device_event_irq (udc_device, DEVICE_RESET, 0); |
| if (final == STATE_DEFAULT) |
| break; |
| case STATE_DEFAULT: |
| usbd_device_event_irq (udc_device, |
| DEVICE_ADDRESS_ASSIGNED, 0); |
| if (final == STATE_ADDRESSED) |
| break; |
| case STATE_ADDRESSED: |
| usbd_device_event_irq (udc_device, DEVICE_CONFIGURED, |
| 0); |
| case STATE_CONFIGURED: |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void udc_state_transition_down (usb_device_state_t initial, |
| usb_device_state_t final) |
| { |
| if (initial > final) { |
| switch (initial) { |
| case STATE_CONFIGURED: |
| usbd_device_event_irq (udc_device, DEVICE_DE_CONFIGURED, 0); |
| if (final == STATE_ADDRESSED) |
| break; |
| case STATE_ADDRESSED: |
| usbd_device_event_irq (udc_device, DEVICE_RESET, 0); |
| if (final == STATE_DEFAULT) |
| break; |
| case STATE_DEFAULT: |
| usbd_device_event_irq (udc_device, DEVICE_POWER_INTERRUPTION, 0); |
| if (final == STATE_POWERED) |
| break; |
| case STATE_POWERED: |
| usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, 0); |
| case STATE_ATTACHED: |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| /* Handle all device state changes. |
| * This function implements TRM Figure 14-21. |
| */ |
| static void omap1510_udc_state_changed (void) |
| { |
| u16 bits; |
| u16 devstat = inw (UDC_DEVSTAT); |
| |
| UDCDBGA ("state changed, devstat %x, old %x", devstat, udc_devstat); |
| |
| bits = devstat ^ udc_devstat; |
| if (bits) { |
| if (bits & UDC_ATT) { |
| if (devstat & UDC_ATT) { |
| UDCDBG ("device attached and powered"); |
| udc_state_transition_up (udc_device->device_state, STATE_POWERED); |
| } else { |
| UDCDBG ("device detached or unpowered"); |
| udc_state_transition_down (udc_device->device_state, STATE_ATTACHED); |
| } |
| } |
| if (bits & UDC_USB_Reset) { |
| if (devstat & UDC_USB_Reset) { |
| UDCDBG ("device reset in progess"); |
| udc_state_transition_down (udc_device->device_state, STATE_POWERED); |
| } else { |
| UDCDBG ("device reset completed"); |
| } |
| } |
| if (bits & UDC_DEF) { |
| if (devstat & UDC_DEF) { |
| UDCDBG ("device entering default state"); |
| udc_state_transition_up (udc_device->device_state, STATE_DEFAULT); |
| } else { |
| UDCDBG ("device leaving default state"); |
| udc_state_transition_down (udc_device->device_state, STATE_POWERED); |
| } |
| } |
| if (bits & UDC_SUS) { |
| if (devstat & UDC_SUS) { |
| UDCDBG ("entering suspended state"); |
| usbd_device_event_irq (udc_device, DEVICE_BUS_INACTIVE, 0); |
| } else { |
| UDCDBG ("leaving suspended state"); |
| usbd_device_event_irq (udc_device, DEVICE_BUS_ACTIVITY, 0); |
| } |
| } |
| if (bits & UDC_R_WK_OK) { |
| UDCDBGA ("remote wakeup %s", (devstat & UDC_R_WK_OK) |
| ? "enabled" : "disabled"); |
| } |
| if (bits & UDC_ADD) { |
| if (devstat & UDC_ADD) { |
| UDCDBG ("default -> addressed"); |
| udc_state_transition_up (udc_device->device_state, STATE_ADDRESSED); |
| } else { |
| UDCDBG ("addressed -> default"); |
| udc_state_transition_down (udc_device->device_state, STATE_DEFAULT); |
| } |
| } |
| if (bits & UDC_CFG) { |
| if (devstat & UDC_CFG) { |
| UDCDBG ("device configured"); |
| /* The ep0_recv_setup function generates the |
| * DEVICE_CONFIGURED event when a |
| * USB_REQ_SET_CONFIGURATION setup packet is |
| * received, so we should already be in the |
| * state STATE_CONFIGURED. |
| */ |
| udc_state_transition_up (udc_device->device_state, STATE_CONFIGURED); |
| } else { |
| UDCDBG ("device deconfigured"); |
| udc_state_transition_down (udc_device->device_state, STATE_ADDRESSED); |
| } |
| } |
| } |
| |
| /* Clear interrupt source */ |
| outw (UDC_DS_Chg, UDC_IRQ_SRC); |
| |
| /* Save current DEVSTAT */ |
| udc_devstat = devstat; |
| } |
| |
| /* Handle SETUP USB interrupt. |
| * This function implements TRM Figure 14-14. |
| */ |
| static void omap1510_udc_setup (struct usb_endpoint_instance *endpoint) |
| { |
| UDCDBG ("-> Entering device setup"); |
| |
| do { |
| const int setup_pktsize = 8; |
| unsigned char *datap = |
| (unsigned char *) &ep0_urb->device_request; |
| |
| /* Gain access to EP 0 setup FIFO */ |
| outw (UDC_Setup_Sel, UDC_EP_NUM); |
| |
| /* Read control request data */ |
| insb (UDC_DATA, datap, setup_pktsize); |
| |
| UDCDBGA ("EP0 setup read [%x %x %x %x %x %x %x %x]", |
| *(datap + 0), *(datap + 1), *(datap + 2), |
| *(datap + 3), *(datap + 4), *(datap + 5), |
| *(datap + 6), *(datap + 7)); |
| |
| /* Reset EP0 setup FIFO */ |
| outw (0, UDC_EP_NUM); |
| } while (inw (UDC_IRQ_SRC) & UDC_Setup); |
| |
| /* Try to process setup packet */ |
| if (ep0_recv_setup (ep0_urb)) { |
| /* Not a setup packet, stall next EP0 transaction */ |
| udc_stall_ep (0); |
| UDCDBG ("can't parse setup packet, still waiting for setup"); |
| return; |
| } |
| |
| /* Check direction */ |
| if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK) |
| == USB_REQ_HOST2DEVICE) { |
| UDCDBG ("control write on EP0"); |
| if (le16_to_cpu (ep0_urb->device_request.wLength)) { |
| /* We don't support control write data stages. |
| * The only standard control write request with a data |
| * stage is SET_DESCRIPTOR, and ep0_recv_setup doesn't |
| * support that so we just stall those requests. A |
| * function driver might support a non-standard |
| * write request with a data stage, but it isn't |
| * obvious what we would do with the data if we read it |
| * so we'll just stall it. It seems like the API isn't |
| * quite right here. |
| */ |
| #if 0 |
| /* Here is what we would do if we did support control |
| * write data stages. |
| */ |
| ep0_urb->actual_length = 0; |
| outw (0, UDC_EP_NUM); |
| /* enable the EP0 rx FIFO */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| #else |
| /* Stall this request */ |
| UDCDBG ("Stalling unsupported EP0 control write data " |
| "stage."); |
| udc_stall_ep (0); |
| #endif |
| } else { |
| omap1510_prepare_for_control_write_status (ep0_urb); |
| } |
| } else { |
| UDCDBG ("control read on EP0"); |
| /* The ep0_recv_setup function has already placed our response |
| * packet data in ep0_urb->buffer and the packet length in |
| * ep0_urb->actual_length. |
| */ |
| endpoint->tx_urb = ep0_urb; |
| endpoint->sent = 0; |
| /* select the EP0 tx FIFO */ |
| outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); |
| /* Write packet data to the FIFO. omap1510_write_noniso_tx_fifo |
| * will update endpoint->last with the number of bytes written |
| * to the FIFO. |
| */ |
| omap1510_write_noniso_tx_fifo (endpoint); |
| /* enable the FIFO to start the packet transmission */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| /* deselect the EP0 tx FIFO */ |
| outw (UDC_EP_Dir, UDC_EP_NUM); |
| } |
| |
| UDCDBG ("<- Leaving device setup"); |
| } |
| |
| /* Handle endpoint 0 RX interrupt |
| * This routine implements TRM Figure 14-16. |
| */ |
| static void omap1510_udc_ep0_rx (struct usb_endpoint_instance *endpoint) |
| { |
| unsigned short status; |
| |
| UDCDBG ("RX on EP0"); |
| /* select EP0 rx FIFO */ |
| outw (UDC_EP_Sel, UDC_EP_NUM); |
| |
| status = inw (UDC_STAT_FLG); |
| |
| if (status & UDC_ACK) { |
| /* Check direction */ |
| if ((ep0_urb->device_request.bmRequestType |
| & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) { |
| /* This rx interrupt must be for a control write data |
| * stage packet. |
| * |
| * We don't support control write data stages. |
| * We should never end up here. |
| */ |
| |
| /* clear the EP0 rx FIFO */ |
| outw (UDC_Clr_EP, UDC_CTRL); |
| |
| /* deselect the EP0 rx FIFO */ |
| outw (0, UDC_EP_NUM); |
| |
| UDCDBG ("Stalling unexpected EP0 control write " |
| "data stage packet"); |
| udc_stall_ep (0); |
| } else { |
| /* This rx interrupt must be for a control read status |
| * stage packet. |
| */ |
| UDCDBG ("ACK on EP0 control read status stage packet"); |
| /* deselect EP0 rx FIFO */ |
| outw (0, UDC_EP_NUM); |
| } |
| } else if (status & UDC_STALL) { |
| UDCDBG ("EP0 stall during RX"); |
| /* deselect EP0 rx FIFO */ |
| outw (0, UDC_EP_NUM); |
| } else { |
| /* deselect EP0 rx FIFO */ |
| outw (0, UDC_EP_NUM); |
| } |
| } |
| |
| /* Handle endpoint 0 TX interrupt |
| * This routine implements TRM Figure 14-18. |
| */ |
| static void omap1510_udc_ep0_tx (struct usb_endpoint_instance *endpoint) |
| { |
| unsigned short status; |
| struct usb_device_request *request = &ep0_urb->device_request; |
| |
| UDCDBG ("TX on EP0"); |
| /* select EP0 TX FIFO */ |
| outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); |
| |
| status = inw (UDC_STAT_FLG); |
| if (status & UDC_ACK) { |
| /* Check direction */ |
| if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) == |
| USB_REQ_HOST2DEVICE) { |
| /* This tx interrupt must be for a control write status |
| * stage packet. |
| */ |
| UDCDBG ("ACK on EP0 control write status stage packet"); |
| /* deselect EP0 TX FIFO */ |
| outw (UDC_EP_Dir, UDC_EP_NUM); |
| } else { |
| /* This tx interrupt must be for a control read data |
| * stage packet. |
| */ |
| int wLength = le16_to_cpu (request->wLength); |
| |
| /* Update our count of bytes sent so far in this |
| * transfer. |
| */ |
| endpoint->sent += endpoint->last; |
| |
| /* We are finished with this transfer if we have sent |
| * all of the bytes in our tx urb (urb->actual_length) |
| * unless we need a zero-length terminating packet. We |
| * need a zero-length terminating packet if we returned |
| * fewer bytes than were requested (wLength) by the host, |
| * and the number of bytes we returned is an exact |
| * multiple of the packet size endpoint->tx_packetSize. |
| */ |
| if ((endpoint->sent == ep0_urb->actual_length) |
| && ((ep0_urb->actual_length == wLength) |
| || (endpoint->last != |
| endpoint->tx_packetSize))) { |
| /* Done with control read data stage. */ |
| UDCDBG ("control read data stage complete"); |
| /* deselect EP0 TX FIFO */ |
| outw (UDC_EP_Dir, UDC_EP_NUM); |
| /* select EP0 RX FIFO to prepare for control |
| * read status stage. |
| */ |
| outw (UDC_EP_Sel, UDC_EP_NUM); |
| /* clear the EP0 RX FIFO */ |
| outw (UDC_Clr_EP, UDC_CTRL); |
| /* enable the EP0 RX FIFO */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| /* deselect the EP0 RX FIFO */ |
| outw (0, UDC_EP_NUM); |
| } else { |
| /* We still have another packet of data to send |
| * in this control read data stage or else we |
| * need a zero-length terminating packet. |
| */ |
| UDCDBG ("ACK control read data stage packet"); |
| omap1510_write_noniso_tx_fifo (endpoint); |
| /* enable the EP0 tx FIFO to start transmission */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| /* deselect EP0 TX FIFO */ |
| outw (UDC_EP_Dir, UDC_EP_NUM); |
| } |
| } |
| } else if (status & UDC_STALL) { |
| UDCDBG ("EP0 stall during TX"); |
| /* deselect EP0 TX FIFO */ |
| outw (UDC_EP_Dir, UDC_EP_NUM); |
| } else { |
| /* deselect EP0 TX FIFO */ |
| outw (UDC_EP_Dir, UDC_EP_NUM); |
| } |
| } |
| |
| /* Handle RX transaction on non-ISO endpoint. |
| * This function implements TRM Figure 14-27. |
| * The ep argument is a physical endpoint number for a non-ISO OUT endpoint |
| * in the range 1 to 15. |
| */ |
| static void omap1510_udc_epn_rx (int ep) |
| { |
| unsigned short status; |
| |
| /* Check endpoint status */ |
| status = inw (UDC_STAT_FLG); |
| |
| if (status & UDC_ACK) { |
| int nbytes; |
| struct usb_endpoint_instance *endpoint = |
| omap1510_find_ep (ep); |
| |
| nbytes = omap1510_read_noniso_rx_fifo (endpoint); |
| usbd_rcv_complete (endpoint, nbytes, 0); |
| |
| /* enable rx FIFO to prepare for next packet */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| } else if (status & UDC_STALL) { |
| UDCDBGA ("STALL on RX endpoint %d", ep); |
| } else if (status & UDC_NAK) { |
| UDCDBGA ("NAK on RX ep %d", ep); |
| } else { |
| serial_printf ("omap-bi: RX on ep %d with status %x", ep, |
| status); |
| } |
| } |
| |
| /* Handle TX transaction on non-ISO endpoint. |
| * This function implements TRM Figure 14-29. |
| * The ep argument is a physical endpoint number for a non-ISO IN endpoint |
| * in the range 16 to 30. |
| */ |
| static void omap1510_udc_epn_tx (int ep) |
| { |
| unsigned short status; |
| |
| /*serial_printf("omap1510_udc_epn_tx( %x )\n",ep); */ |
| |
| /* Check endpoint status */ |
| status = inw (UDC_STAT_FLG); |
| |
| if (status & UDC_ACK) { |
| struct usb_endpoint_instance *endpoint = |
| omap1510_find_ep (ep); |
| |
| /* We need to transmit a terminating zero-length packet now if |
| * we have sent all of the data in this URB and the transfer |
| * size was an exact multiple of the packet size. |
| */ |
| if (endpoint->tx_urb |
| && (endpoint->last == endpoint->tx_packetSize) |
| && (endpoint->tx_urb->actual_length - endpoint->sent - |
| endpoint->last == 0)) { |
| /* Prepare to transmit a zero-length packet. */ |
| endpoint->sent += endpoint->last; |
| /* write 0 bytes of data to FIFO */ |
| omap1510_write_noniso_tx_fifo (endpoint); |
| /* enable tx FIFO to start transmission */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| } else if (endpoint->tx_urb |
| && endpoint->tx_urb->actual_length) { |
| /* retire the data that was just sent */ |
| usbd_tx_complete (endpoint); |
| /* Check to see if we have more data ready to transmit |
| * now. |
| */ |
| if (endpoint->tx_urb |
| && endpoint->tx_urb->actual_length) { |
| /* write data to FIFO */ |
| omap1510_write_noniso_tx_fifo (endpoint); |
| /* enable tx FIFO to start transmission */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| } |
| } |
| } else if (status & UDC_STALL) { |
| UDCDBGA ("STALL on TX endpoint %d", ep); |
| } else if (status & UDC_NAK) { |
| UDCDBGA ("NAK on TX endpoint %d", ep); |
| } else { |
| /*serial_printf("omap-bi: TX on ep %d with status %x\n", ep, status); */ |
| } |
| } |
| |
| |
| /* |
| ------------------------------------------------------------------------------- |
| */ |
| |
| /* Handle general USB interrupts and dispatch according to type. |
| * This function implements TRM Figure 14-13. |
| */ |
| void omap1510_udc_irq (void) |
| { |
| u16 irq_src = inw (UDC_IRQ_SRC); |
| int valid_irq = 0; |
| |
| if (!(irq_src & ~UDC_SOF_Flg)) /* ignore SOF interrupts ) */ |
| return; |
| |
| UDCDBGA ("< IRQ #%d start >- %x", udc_interrupts, irq_src); |
| /*serial_printf("< IRQ #%d start >- %x\n", udc_interrupts, irq_src); */ |
| |
| if (irq_src & UDC_DS_Chg) { |
| /* Device status changed */ |
| omap1510_udc_state_changed (); |
| valid_irq++; |
| } |
| if (irq_src & UDC_EP0_RX) { |
| /* Endpoint 0 receive */ |
| outw (UDC_EP0_RX, UDC_IRQ_SRC); /* ack interrupt */ |
| omap1510_udc_ep0_rx (udc_device->bus->endpoint_array + 0); |
| valid_irq++; |
| } |
| if (irq_src & UDC_EP0_TX) { |
| /* Endpoint 0 transmit */ |
| outw (UDC_EP0_TX, UDC_IRQ_SRC); /* ack interrupt */ |
| omap1510_udc_ep0_tx (udc_device->bus->endpoint_array + 0); |
| valid_irq++; |
| } |
| if (irq_src & UDC_Setup) { |
| /* Device setup */ |
| omap1510_udc_setup (udc_device->bus->endpoint_array + 0); |
| valid_irq++; |
| } |
| /*if (!valid_irq) */ |
| /* serial_printf("unknown interrupt, IRQ_SRC %.4x\n", irq_src); */ |
| UDCDBGA ("< IRQ #%d end >", udc_interrupts); |
| udc_interrupts++; |
| } |
| |
| /* This function implements TRM Figure 14-26. */ |
| void omap1510_udc_noniso_irq (void) |
| { |
| unsigned short epnum; |
| unsigned short irq_src = inw (UDC_IRQ_SRC); |
| int valid_irq = 0; |
| |
| if (!(irq_src & (UDC_EPn_RX | UDC_EPn_TX))) |
| return; |
| |
| UDCDBGA ("non-ISO IRQ, IRQ_SRC %x", inw (UDC_IRQ_SRC)); |
| |
| if (irq_src & UDC_EPn_RX) { /* Endpoint N OUT transaction */ |
| /* Determine the endpoint number for this interrupt */ |
| epnum = (inw (UDC_EPN_STAT) & 0x0f00) >> 8; |
| UDCDBGA ("RX on ep %x", epnum); |
| |
| /* acknowledge interrupt */ |
| outw (UDC_EPn_RX, UDC_IRQ_SRC); |
| |
| if (epnum) { |
| /* select the endpoint FIFO */ |
| outw (UDC_EP_Sel | epnum, UDC_EP_NUM); |
| |
| omap1510_udc_epn_rx (epnum); |
| |
| /* deselect the endpoint FIFO */ |
| outw (epnum, UDC_EP_NUM); |
| } |
| valid_irq++; |
| } |
| if (irq_src & UDC_EPn_TX) { /* Endpoint N IN transaction */ |
| /* Determine the endpoint number for this interrupt */ |
| epnum = (inw (UDC_EPN_STAT) & 0x000f) | USB_DIR_IN; |
| UDCDBGA ("TX on ep %x", epnum); |
| |
| /* acknowledge interrupt */ |
| outw (UDC_EPn_TX, UDC_IRQ_SRC); |
| |
| if (epnum) { |
| /* select the endpoint FIFO */ |
| outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM); |
| |
| omap1510_udc_epn_tx (epnum); |
| |
| /* deselect the endpoint FIFO */ |
| outw (UDC_EP_Dir | epnum, UDC_EP_NUM); |
| } |
| valid_irq++; |
| } |
| if (!valid_irq) |
| serial_printf (": unknown non-ISO interrupt, IRQ_SRC %.4x\n", |
| irq_src); |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| */ |
| |
| |
| /* |
| * Start of public functions. |
| */ |
| |
| /* Called to start packet transmission. */ |
| int udc_endpoint_write (struct usb_endpoint_instance *endpoint) |
| { |
| unsigned short epnum = |
| endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK; |
| |
| UDCDBGA ("Starting transmit on ep %x", epnum); |
| |
| if (endpoint->tx_urb) { |
| /* select the endpoint FIFO */ |
| outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM); |
| /* write data to FIFO */ |
| omap1510_write_noniso_tx_fifo (endpoint); |
| /* enable tx FIFO to start transmission */ |
| outw (UDC_Set_FIFO_En, UDC_CTRL); |
| /* deselect the endpoint FIFO */ |
| outw (UDC_EP_Dir | epnum, UDC_EP_NUM); |
| } |
| |
| return 0; |
| } |
| |
| /* Start to initialize h/w stuff */ |
| int udc_init (void) |
| { |
| u16 udc_rev; |
| uchar value; |
| ulong gpio; |
| int i; |
| |
| /* Let the device settle down before we start */ |
| for (i = 0; i < UDC_INIT_MDELAY; i++) udelay(1000); |
| |
| udc_device = NULL; |
| |
| UDCDBG ("starting"); |
| |
| /* Check peripheral reset. Must be 1 to make sure |
| MPU TIPB peripheral reset is inactive */ |
| UDCREG (ARM_RSTCT2); |
| |
| /* Set and check clock control. |
| * We might ought to be using the clock control API to do |
| * this instead of fiddling with the clock registers directly |
| * here. |
| */ |
| outw ((1 << 4) | (1 << 5), CLOCK_CTRL); |
| UDCREG (CLOCK_CTRL); |
| |
| #ifdef CONFIG_OMAP1510 |
| /* This code was originally implemented for OMAP1510 and |
| * therefore is only applicable for OMAP1510 boards. For |
| * OMAP5912 or OMAP16xx the register APLL_CTRL does not |
| * exist and DPLL_CTRL is already configured. |
| */ |
| |
| /* Set and check APLL */ |
| outw (0x0008, APLL_CTRL); |
| UDCREG (APLL_CTRL); |
| /* Set and check DPLL */ |
| outw (0x2210, DPLL_CTRL); |
| UDCREG (DPLL_CTRL); |
| #endif |
| /* Set and check SOFT |
| * The below line of code has been changed to perform a |
| * read-modify-write instead of a simple write for |
| * configuring the SOFT_REQ register. This allows the code |
| * to be compatible with OMAP5912 and OMAP16xx devices |
| */ |
| outw ((1 << 4) | (1 << 3) | 1 | (inw(SOFT_REQ)), SOFT_REQ); |
| |
| /* Short delay to wait for DPLL */ |
| udelay (1000); |
| |
| /* Print banner with device revision */ |
| udc_rev = inw (UDC_REV) & 0xff; |
| #ifdef CONFIG_OMAP1510 |
| printf ("USB: TI OMAP1510 USB function module rev %d.%d\n", |
| udc_rev >> 4, udc_rev & 0xf); |
| #endif |
| |
| #ifdef CONFIG_OMAP1610 |
| printf ("USB: TI OMAP5912 USB function module rev %d.%d\n", |
| udc_rev >> 4, udc_rev & 0xf); |
| #endif |
| |
| #ifdef CONFIG_OMAP_SX1 |
| i2c_read (0x32, 0x04, 1, &value, 1); |
| value |= 0x04; |
| i2c_write (0x32, 0x04, 1, &value, 1); |
| |
| i2c_read (0x32, 0x03, 1, &value, 1); |
| value |= 0x01; |
| i2c_write (0x32, 0x03, 1, &value, 1); |
| |
| gpio = inl(GPIO_PIN_CONTROL_REG); |
| gpio |= 0x0002; /* A_IRDA_OFF */ |
| gpio |= 0x0800; /* A_SWITCH */ |
| gpio |= 0x8000; /* A_USB_ON */ |
| outl (gpio, GPIO_PIN_CONTROL_REG); |
| |
| gpio = inl(GPIO_DIR_CONTROL_REG); |
| gpio &= ~0x0002; /* A_IRDA_OFF */ |
| gpio &= ~0x0800; /* A_SWITCH */ |
| gpio &= ~0x8000; /* A_USB_ON */ |
| outl (gpio, GPIO_DIR_CONTROL_REG); |
| |
| gpio = inl(GPIO_DATA_OUTPUT_REG); |
| gpio |= 0x0002; /* A_IRDA_OFF */ |
| gpio &= ~0x0800; /* A_SWITCH */ |
| gpio &= ~0x8000; /* A_USB_ON */ |
| outl (gpio, GPIO_DATA_OUTPUT_REG); |
| #endif |
| |
| /* The VBUS_MODE bit selects whether VBUS detection is done via |
| * software (1) or hardware (0). When software detection is |
| * selected, VBUS_CTRL selects whether USB is not connected (0) |
| * or connected (1). |
| */ |
| outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0); |
| outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0); |
| UDCREGL (FUNC_MUX_CTRL_0); |
| |
| /* |
| * At this point, device is ready for configuration... |
| */ |
| |
| UDCDBG ("disable USB interrupts"); |
| outw (0, UDC_IRQ_EN); |
| UDCREG (UDC_IRQ_EN); |
| |
| UDCDBG ("disable USB DMA"); |
| outw (0, UDC_DMA_IRQ_EN); |
| UDCREG (UDC_DMA_IRQ_EN); |
| |
| UDCDBG ("initialize SYSCON1"); |
| outw (UDC_Self_Pwr | UDC_Pullup_En, UDC_SYSCON1); |
| UDCREG (UDC_SYSCON1); |
| |
| return 0; |
| } |
| |
| /* Stall endpoint */ |
| static void udc_stall_ep (unsigned int ep_addr) |
| { |
| /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ |
| int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| |
| UDCDBGA ("stall ep_addr %d", ep_addr); |
| |
| /* REVISIT? |
| * The OMAP TRM section 14.2.4.2 says we must check that the FIFO |
| * is empty before halting the endpoint. The current implementation |
| * doesn't check that the FIFO is empty. |
| */ |
| |
| if (!ep_num) { |
| outw (UDC_Stall_Cmd, UDC_SYSCON2); |
| } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) { |
| if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) { |
| /* we have a valid rx endpoint, so halt it */ |
| outw (UDC_EP_Sel | ep_num, UDC_EP_NUM); |
| outw (UDC_Set_Halt, UDC_CTRL); |
| outw (ep_num, UDC_EP_NUM); |
| } |
| } else { |
| if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) { |
| /* we have a valid tx endpoint, so halt it */ |
| outw (UDC_EP_Sel | UDC_EP_Dir | ep_num, UDC_EP_NUM); |
| outw (UDC_Set_Halt, UDC_CTRL); |
| outw (ep_num, UDC_EP_NUM); |
| } |
| } |
| } |
| |
| /* Reset endpoint */ |
| #if 0 |
| static void udc_reset_ep (unsigned int ep_addr) |
| { |
| /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ |
| int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| |
| UDCDBGA ("reset ep_addr %d", ep_addr); |
| |
| if (!ep_num) { |
| /* control endpoint 0 can't be reset */ |
| } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) { |
| UDCDBGA ("UDC_EP_RX(%d) = 0x%04x", ep_num, |
| inw (UDC_EP_RX (ep_num))); |
| if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) { |
| /* we have a valid rx endpoint, so reset it */ |
| outw (ep_num | UDC_EP_Sel, UDC_EP_NUM); |
| outw (UDC_Reset_EP, UDC_CTRL); |
| outw (ep_num, UDC_EP_NUM); |
| UDCDBGA ("OUT endpoint %d reset", ep_num); |
| } |
| } else { |
| UDCDBGA ("UDC_EP_TX(%d) = 0x%04x", ep_num, |
| inw (UDC_EP_TX (ep_num))); |
| /* Resetting of tx endpoints seems to be causing the USB function |
| * module to fail, which causes problems when the driver is |
| * uninstalled. We'll skip resetting tx endpoints for now until |
| * we figure out what the problem is. |
| */ |
| #if 0 |
| if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) { |
| /* we have a valid tx endpoint, so reset it */ |
| outw (ep_num | UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); |
| outw (UDC_Reset_EP, UDC_CTRL); |
| outw (ep_num | UDC_EP_Dir, UDC_EP_NUM); |
| UDCDBGA ("IN endpoint %d reset", ep_num); |
| } |
| #endif |
| } |
| } |
| #endif |
| |
| /* ************************************************************************** */ |
| |
| /** |
| * udc_check_ep - check logical endpoint |
| * |
| * Return physical endpoint number to use for this logical endpoint or zero if not valid. |
| */ |
| #if 0 |
| int udc_check_ep (int logical_endpoint, int packetsize) |
| { |
| if ((logical_endpoint == 0x80) || |
| ((logical_endpoint & 0x8f) != logical_endpoint)) { |
| return 0; |
| } |
| |
| switch (packetsize) { |
| case 8: |
| case 16: |
| case 32: |
| case 64: |
| case 128: |
| case 256: |
| case 512: |
| break; |
| default: |
| return 0; |
| } |
| |
| return EP_ADDR_TO_PHYS_EP (logical_endpoint); |
| } |
| #endif |
| |
| /* |
| * udc_setup_ep - setup endpoint |
| * |
| * Associate a physical endpoint with endpoint_instance |
| */ |
| void udc_setup_ep (struct usb_device_instance *device, |
| unsigned int ep, struct usb_endpoint_instance *endpoint) |
| { |
| UDCDBGA ("setting up endpoint addr %x", endpoint->endpoint_address); |
| |
| /* This routine gets called by bi_modinit for endpoint 0 and from |
| * bi_config for all of the other endpoints. bi_config gets called |
| * during the DEVICE_CREATE, DEVICE_CONFIGURED, and |
| * DEVICE_SET_INTERFACE events. We need to reconfigure the OMAP packet |
| * RAM after bi_config scans the selected device configuration and |
| * initializes the endpoint structures, but before this routine enables |
| * the OUT endpoint FIFOs. Since bi_config calls this routine in a |
| * loop for endpoints 1 through UDC_MAX_ENDPOINTS, we reconfigure our |
| * packet RAM here when ep==1. |
| * I really hate to do this here, but it seems like the API exported |
| * by the USB bus interface controller driver to the usbd-bi module |
| * isn't quite right so there is no good place to do this. |
| */ |
| if (ep == 1) { |
| omap1510_deconfigure_device (); |
| omap1510_configure_device (device); |
| } |
| |
| if (endpoint && (ep < UDC_MAX_ENDPOINTS)) { |
| int ep_addr = endpoint->endpoint_address; |
| |
| if (!ep_addr) { |
| /* nothing to do for endpoint 0 */ |
| } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| /* nothing to do for IN (tx) endpoints */ |
| } else { /* OUT (rx) endpoint */ |
| if (endpoint->rcv_packetSize) { |
| /*struct urb* urb = &(urb_out_array[ep&0xFF]); */ |
| /*urb->endpoint = endpoint; */ |
| /*urb->device = device; */ |
| /*urb->buffer_length = sizeof(urb->buffer); */ |
| |
| /*endpoint->rcv_urb = urb; */ |
| omap1510_prepare_endpoint_for_rx (ep_addr); |
| } |
| } |
| } |
| } |
| |
| /** |
| * udc_disable_ep - disable endpoint |
| * @ep: |
| * |
| * Disable specified endpoint |
| */ |
| #if 0 |
| void udc_disable_ep (unsigned int ep_addr) |
| { |
| /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ |
| int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| struct usb_endpoint_instance *endpoint = omap1510_find_ep (ep_addr); /*udc_device->bus->endpoint_array + ep; */ |
| |
| UDCDBGA ("disable ep_addr %d", ep_addr); |
| |
| if (!ep_num) { |
| /* nothing to do for endpoint 0 */ ; |
| } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| if (endpoint->tx_packetSize) { |
| /* we have a valid tx endpoint */ |
| /*usbd_flush_tx(endpoint); */ |
| endpoint->tx_urb = NULL; |
| } |
| } else { |
| if (endpoint->rcv_packetSize) { |
| /* we have a valid rx endpoint */ |
| /*usbd_flush_rcv(endpoint); */ |
| endpoint->rcv_urb = NULL; |
| } |
| } |
| } |
| #endif |
| |
| /* ************************************************************************** */ |
| |
| /** |
| * udc_connected - is the USB cable connected |
| * |
| * Return non-zero if cable is connected. |
| */ |
| #if 0 |
| int udc_connected (void) |
| { |
| return ((inw (UDC_DEVSTAT) & UDC_ATT) == UDC_ATT); |
| } |
| #endif |
| |
| /* Turn on the USB connection by enabling the pullup resistor */ |
| void udc_connect (void) |
| { |
| UDCDBG ("connect, enable Pullup"); |
| outl (0x00000018, FUNC_MUX_CTRL_D); |
| } |
| |
| /* Turn off the USB connection by disabling the pullup resistor */ |
| void udc_disconnect (void) |
| { |
| UDCDBG ("disconnect, disable Pullup"); |
| outl (0x00000000, FUNC_MUX_CTRL_D); |
| } |
| |
| /* ************************************************************************** */ |
| |
| |
| /* |
| * udc_disable_interrupts - disable interrupts |
| * switch off interrupts |
| */ |
| #if 0 |
| void udc_disable_interrupts (struct usb_device_instance *device) |
| { |
| UDCDBG ("disabling all interrupts"); |
| outw (0, UDC_IRQ_EN); |
| } |
| #endif |
| |
| /* ************************************************************************** */ |
| |
| /** |
| * udc_ep0_packetsize - return ep0 packetsize |
| */ |
| #if 0 |
| int udc_ep0_packetsize (void) |
| { |
| return EP0_PACKETSIZE; |
| } |
| #endif |
| |
| /* Switch on the UDC */ |
| void udc_enable (struct usb_device_instance *device) |
| { |
| UDCDBGA ("enable device %p, status %d", device, device->status); |
| |
| /* initialize driver state variables */ |
| udc_devstat = 0; |
| |
| /* Save the device structure pointer */ |
| udc_device = device; |
| |
| /* Setup ep0 urb */ |
| if (!ep0_urb) { |
| ep0_urb = |
| usbd_alloc_urb (udc_device, |
| udc_device->bus->endpoint_array); |
| } else { |
| serial_printf ("udc_enable: ep0_urb already allocated %p\n", |
| ep0_urb); |
| } |
| |
| UDCDBG ("Check clock status"); |
| UDCREG (STATUS_REQ); |
| |
| /* The VBUS_MODE bit selects whether VBUS detection is done via |
| * software (1) or hardware (0). When software detection is |
| * selected, VBUS_CTRL selects whether USB is not connected (0) |
| * or connected (1). |
| */ |
| outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_CTRL | UDC_VBUS_MODE, |
| FUNC_MUX_CTRL_0); |
| UDCREGL (FUNC_MUX_CTRL_0); |
| |
| omap1510_configure_device (device); |
| } |
| |
| /* Switch off the UDC */ |
| void udc_disable (void) |
| { |
| UDCDBG ("disable UDC"); |
| |
| omap1510_deconfigure_device (); |
| |
| /* The VBUS_MODE bit selects whether VBUS detection is done via |
| * software (1) or hardware (0). When software detection is |
| * selected, VBUS_CTRL selects whether USB is not connected (0) |
| * or connected (1). |
| */ |
| outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0); |
| outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0); |
| UDCREGL (FUNC_MUX_CTRL_0); |
| |
| /* Free ep0 URB */ |
| if (ep0_urb) { |
| /*usbd_dealloc_urb(ep0_urb); */ |
| ep0_urb = NULL; |
| } |
| |
| /* Reset device pointer. |
| * We ought to do this here to balance the initialization of udc_device |
| * in udc_enable, but some of our other exported functions get called |
| * by the bus interface driver after udc_disable, so we have to hang on |
| * to the device pointer to avoid a null pointer dereference. */ |
| /* udc_device = NULL; */ |
| } |
| |
| /** |
| * udc_startup - allow udc code to do any additional startup |
| */ |
| void udc_startup_events (struct usb_device_instance *device) |
| { |
| /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */ |
| usbd_device_event_irq (device, DEVICE_INIT, 0); |
| |
| /* The DEVICE_CREATE event puts the USB device in the state |
| * STATE_ATTACHED. |
| */ |
| usbd_device_event_irq (device, DEVICE_CREATE, 0); |
| |
| /* Some USB controller driver implementations signal |
| * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here. |
| * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED, |
| * and DEVICE_RESET causes a transition to the state STATE_DEFAULT. |
| * The OMAP USB client controller has the capability to detect when the |
| * USB cable is connected to a powered USB bus via the ATT bit in the |
| * DEVSTAT register, so we will defer the DEVICE_HUB_CONFIGURED and |
| * DEVICE_RESET events until later. |
| */ |
| |
| udc_enable (device); |
| } |
| |
| /** |
| * udc_irq - do pseudo interrupts |
| */ |
| void udc_irq(void) |
| { |
| /* Loop while we have interrupts. |
| * If we don't do this, the input chain |
| * polling delay is likely to miss |
| * host requests. |
| */ |
| while (inw (UDC_IRQ_SRC) & ~UDC_SOF_Flg) { |
| /* Handle any new IRQs */ |
| omap1510_udc_irq (); |
| omap1510_udc_noniso_irq (); |
| } |
| } |
| |
| /* Flow control */ |
| void udc_set_nak(int epid) |
| { |
| /* TODO: implement this functionality in omap1510 */ |
| } |
| |
| void udc_unset_nak (int epid) |
| { |
| /* TODO: implement this functionality in omap1510 */ |
| } |