| /* |
| * Copyright 2004 Freescale Semiconductor. |
| * (C) Copyright 2003 Motorola Inc. |
| * Xianghua Xiao (X.Xiao@motorola.com) |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/processor.h> |
| #include <i2c.h> |
| #include <spd.h> |
| #include <asm/mmu.h> |
| |
| #if defined(CONFIG_DDR_ECC) |
| extern void dma_init (void); |
| extern uint dma_check(void); |
| extern int dma_xfer (void *dest, uint count, void *src); |
| #endif |
| |
| #ifdef CONFIG_SPD_EEPROM |
| |
| #ifndef CFG_READ_SPD |
| #define CFG_READ_SPD i2c_read |
| #endif |
| |
| /* |
| * Convert picoseconds into clock cycles (rounding up if needed). |
| */ |
| |
| int |
| picos_to_clk(int picos) |
| { |
| int clks; |
| |
| clks = picos / (2000000000 / (get_bus_freq(0) / 1000)); |
| if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) { |
| clks++; |
| } |
| |
| return clks; |
| } |
| |
| unsigned int |
| banksize(unsigned char row_dens) |
| { |
| return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; |
| } |
| |
| long int |
| spd_sdram(void) |
| { |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile ccsr_ddr_t *ddr = &immap->im_ddr; |
| volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm; |
| spd_eeprom_t spd; |
| unsigned tmp, tmp1; |
| unsigned int memsize; |
| unsigned int tlb_size; |
| unsigned int law_size; |
| unsigned char caslat; |
| unsigned int ram_tlb_index; |
| unsigned int ram_tlb_address; |
| |
| CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd)); |
| |
| if (spd.nrows > 2) { |
| puts("DDR:Only two chip selects are supported on ADS.\n"); |
| return 0; |
| } |
| |
| if (spd.nrow_addr < 12 |
| || spd.nrow_addr > 14 |
| || spd.ncol_addr < 8 |
| || spd.ncol_addr > 11) { |
| puts("DDR:Row or Col number unsupported.\n"); |
| return 0; |
| } |
| |
| ddr->cs0_bnds = (banksize(spd.row_dens) >> 24) - 1; |
| ddr->cs0_config = ( 1 << 31 |
| | (spd.nrow_addr - 12) << 8 |
| | (spd.ncol_addr - 8) ); |
| debug("\n"); |
| debug("cs0_bnds = 0x%08x\n",ddr->cs0_bnds); |
| debug("cs0_config = 0x%08x\n",ddr->cs0_config); |
| |
| if (spd.nrows == 2) { |
| ddr->cs1_bnds = ( (banksize(spd.row_dens) >> 8) |
| | ((banksize(spd.row_dens) >> 23) - 1) ); |
| ddr->cs1_config = ( 1<<31 |
| | (spd.nrow_addr-12) << 8 |
| | (spd.ncol_addr-8) ); |
| debug("cs1_bnds = 0x%08x\n",ddr->cs1_bnds); |
| debug("cs1_config = 0x%08x\n",ddr->cs1_config); |
| } |
| |
| if (spd.mem_type != 0x07) { |
| puts("No DDR module found!\n"); |
| return 0; |
| } |
| |
| /* |
| * Figure out memory size in Megabytes. |
| */ |
| memsize = spd.nrows * banksize(spd.row_dens) / 0x100000; |
| |
| /* |
| * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. |
| */ |
| law_size = 19 + __ilog2(memsize); |
| |
| /* |
| * Determine size of each TLB1 entry. |
| */ |
| switch (memsize) { |
| case 16: |
| case 32: |
| tlb_size = BOOKE_PAGESZ_16M; |
| break; |
| case 64: |
| case 128: |
| tlb_size = BOOKE_PAGESZ_64M; |
| break; |
| case 256: |
| case 512: |
| case 1024: |
| case 2048: |
| tlb_size = BOOKE_PAGESZ_256M; |
| break; |
| default: |
| puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G DDR I are supported.\n"); |
| return 0; |
| break; |
| } |
| |
| /* |
| * Configure DDR TLB1 entries. |
| * Starting at TLB1 8, use no more than 8 TLB1 entries. |
| */ |
| ram_tlb_index = 8; |
| ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE; |
| while (ram_tlb_address < (memsize * 1024 * 1024) |
| && ram_tlb_index < 16) { |
| mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0)); |
| mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size)); |
| mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), |
| 0, 0, 0, 0, 0, 0, 0, 0)); |
| mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), |
| 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); |
| asm volatile("isync;msync;tlbwe;isync"); |
| |
| debug("DDR:MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0)); |
| debug("DDR:MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size)); |
| debug("DDR:MAS2=0x%08x\n", |
| TLB1_MAS2(E500_TLB_EPN(ram_tlb_address), |
| 0, 0, 0, 0, 0, 0, 0, 0)); |
| debug("DDR:MAS3=0x%08x\n", |
| TLB1_MAS3(E500_TLB_RPN(ram_tlb_address), |
| 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)); |
| |
| ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2)); |
| ram_tlb_index++; |
| } |
| |
| /* |
| * Set up LAWBAR for all of DDR. |
| */ |
| ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff); |
| ecm->lawar1 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); |
| debug("DDR:LAWBAR1=0x%08x\n", ecm->lawbar1); |
| debug("DDR:LARAR1=0x%08x\n", ecm->lawar1); |
| |
| /* |
| * find the largest CAS |
| */ |
| if(spd.cas_lat & 0x40) { |
| caslat = 7; |
| } else if (spd.cas_lat & 0x20) { |
| caslat = 6; |
| } else if (spd.cas_lat & 0x10) { |
| caslat = 5; |
| } else if (spd.cas_lat & 0x08) { |
| caslat = 4; |
| } else if (spd.cas_lat & 0x04) { |
| caslat = 3; |
| } else if (spd.cas_lat & 0x02) { |
| caslat = 2; |
| } else if (spd.cas_lat & 0x01) { |
| caslat = 1; |
| } else { |
| puts("DDR:no valid CAS Latency information.\n"); |
| return 0; |
| } |
| |
| tmp = 20000 / (((spd.clk_cycle & 0xF0) >> 4) * 10 |
| + (spd.clk_cycle & 0x0f)); |
| debug("DDR:Module maximum data rate is: %dMhz\n", tmp); |
| |
| tmp1 = get_bus_freq(0) / 1000000; |
| if (tmp1 < 230 && tmp1 >= 90 && tmp >= 230) { |
| /* 90~230 range, treated as DDR 200 */ |
| if (spd.clk_cycle3 == 0xa0) |
| caslat -= 2; |
| else if(spd.clk_cycle2 == 0xa0) |
| caslat--; |
| } else if (tmp1 < 280 && tmp1 >= 230 && tmp >= 280) { |
| /* 230-280 range, treated as DDR 266 */ |
| if (spd.clk_cycle3 == 0x75) |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x75) |
| caslat--; |
| } else if (tmp1 < 350 && tmp1 >= 280 && tmp >= 350) { |
| /* 280~350 range, treated as DDR 333 */ |
| if (spd.clk_cycle3 == 0x60) |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x60) |
| caslat--; |
| } else if (tmp1 < 90 || tmp1 >= 350) { |
| /* DDR rate out-of-range */ |
| puts("DDR:platform frequency is not fit for DDR rate\n"); |
| return 0; |
| } |
| |
| /* |
| * note: caslat must also be programmed into ddr->sdram_mode |
| * register. |
| * |
| * note: WRREC(Twr) and WRTORD(Twtr) are not in SPD, |
| * use conservative value here. |
| */ |
| ddr->timing_cfg_1 = |
| (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | |
| ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | |
| ((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) | |
| ((caslat & 0x07) << 16 ) | |
| (((picos_to_clk(spd.sset[6] * 1000) - 8) & 0x0f) << 12 ) | |
| ( 0x300 ) | |
| ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1); |
| |
| ddr->timing_cfg_2 = 0x00000800; |
| |
| debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1); |
| debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2); |
| |
| /* |
| * Only DDR I is supported |
| * DDR I and II have different mode-register-set definition |
| */ |
| |
| /* burst length is always 4 */ |
| switch(caslat) { |
| case 2: |
| ddr->sdram_mode = 0x52; /* 1.5 */ |
| break; |
| case 3: |
| ddr->sdram_mode = 0x22; /* 2.0 */ |
| break; |
| case 4: |
| ddr->sdram_mode = 0x62; /* 2.5 */ |
| break; |
| case 5: |
| ddr->sdram_mode = 0x32; /* 3.0 */ |
| break; |
| default: |
| puts("DDR:only CAS Latency 1.5, 2.0, 2.5, 3.0 is supported.\n"); |
| return 0; |
| } |
| debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode); |
| |
| switch(spd.refresh) { |
| case 0x00: |
| case 0x80: |
| tmp = picos_to_clk(15625000); |
| break; |
| case 0x01: |
| case 0x81: |
| tmp = picos_to_clk(3900000); |
| break; |
| case 0x02: |
| case 0x82: |
| tmp = picos_to_clk(7800000); |
| break; |
| case 0x03: |
| case 0x83: |
| tmp = picos_to_clk(31300000); |
| break; |
| case 0x04: |
| case 0x84: |
| tmp = picos_to_clk(62500000); |
| break; |
| case 0x05: |
| case 0x85: |
| tmp = picos_to_clk(125000000); |
| break; |
| default: |
| tmp = 0x512; |
| break; |
| } |
| |
| /* |
| * Set BSTOPRE to 0x100 for page mode |
| * If auto-charge is used, set BSTOPRE = 0 |
| */ |
| ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100; |
| debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval); |
| |
| /* |
| * Is this an ECC DDR chip? |
| */ |
| #if defined(CONFIG_DDR_ECC) |
| if (spd.config == 0x02) { |
| ddr->err_disable = 0x0000000d; |
| ddr->err_sbe = 0x00ff0000; |
| } |
| debug("DDR:err_disable=0x%08x\n", ddr->err_disable); |
| debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe); |
| #endif |
| asm("sync;isync;msync"); |
| |
| udelay(500); |
| |
| #ifdef MPC85xx_DDR_SDRAM_CLK_CNTL |
| /* Setup the clock control (8555 and later) |
| * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 |
| * SDRAM_CLK_CNTL[5-7] = Clock Adjust == 3 (3/4 cycle late) |
| */ |
| ddr->sdram_clk_cntl = 0x83000000; |
| #endif |
| |
| /* |
| * Figure out the settings for the sdram_cfg register. Build up |
| * the entire register in 'tmp' before writing since the write into |
| * the register will actually enable the memory controller, and all |
| * settings must be done before enabling. |
| * |
| * sdram_cfg[0] = 1 (ddr sdram logic enable) |
| * sdram_cfg[1] = 1 (self-refresh-enable) |
| * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM) |
| */ |
| tmp = 0xc2000000; |
| |
| /* |
| * sdram_cfg[3] = RD_EN - registered DIMM enable |
| * A value of 0x26 indicates micron registered DIMMS (micron.com) |
| */ |
| if (spd.mod_attr == 0x26) { |
| tmp |= 0x10000000; |
| } |
| |
| #if defined(CONFIG_DDR_ECC) |
| /* |
| * If the user wanted ECC (enabled via sdram_cfg[2]) |
| */ |
| if (spd.config == 0x02) { |
| tmp |= 0x20000000; |
| } |
| #endif |
| |
| /* |
| * REV1 uses 1T timing. |
| * REV2 may use 1T or 2T as configured by the user. |
| */ |
| { |
| uint pvr = get_pvr(); |
| |
| if (pvr != PVR_85xx_REV1) { |
| #if defined(CONFIG_DDR_2T_TIMING) |
| /* |
| * Enable 2T timing by setting sdram_cfg[16]. |
| */ |
| tmp |= 0x8000; |
| #endif |
| } |
| } |
| |
| ddr->sdram_cfg = tmp; |
| |
| asm("sync;isync;msync"); |
| udelay(500); |
| |
| debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg); |
| |
| return memsize * 1024 * 1024; |
| } |
| #endif /* CONFIG_SPD_EEPROM */ |
| |
| |
| #if defined(CONFIG_DDR_ECC) |
| /* |
| * Initialize all of memory for ECC, then enable errors. |
| */ |
| void |
| ddr_enable_ecc(unsigned int dram_size) |
| { |
| uint *p = 0; |
| uint i = 0; |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile ccsr_ddr_t *ddr= &immap->im_ddr; |
| |
| dma_init(); |
| |
| for (*p = 0; p < (uint *)(8 * 1024); p++) { |
| if (((unsigned int)p & 0x1f) == 0) { |
| ppcDcbz((unsigned long) p); |
| } |
| *p = (unsigned int)0xdeadbeef; |
| if (((unsigned int)p & 0x1c) == 0x1c) { |
| ppcDcbf((unsigned long) p); |
| } |
| } |
| |
| /* 8K */ |
| dma_xfer((uint *)0x2000, 0x2000, (uint *)0); |
| /* 16K */ |
| dma_xfer((uint *)0x4000, 0x4000, (uint *)0); |
| /* 32K */ |
| dma_xfer((uint *)0x8000, 0x8000, (uint *)0); |
| /* 64K */ |
| dma_xfer((uint *)0x10000, 0x10000, (uint *)0); |
| /* 128k */ |
| dma_xfer((uint *)0x20000, 0x20000, (uint *)0); |
| /* 256k */ |
| dma_xfer((uint *)0x40000, 0x40000, (uint *)0); |
| /* 512k */ |
| dma_xfer((uint *)0x80000, 0x80000, (uint *)0); |
| /* 1M */ |
| dma_xfer((uint *)0x100000, 0x100000, (uint *)0); |
| /* 2M */ |
| dma_xfer((uint *)0x200000, 0x200000, (uint *)0); |
| /* 4M */ |
| dma_xfer((uint *)0x400000, 0x400000, (uint *)0); |
| |
| for (i = 1; i < dram_size / 0x800000; i++) { |
| dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); |
| } |
| |
| /* |
| * Enable errors for ECC. |
| */ |
| ddr->err_disable = 0x00000000; |
| asm("sync;isync;msync"); |
| } |
| #endif /* CONFIG_DDR_ECC */ |