| /* |
| * sun9i dram controller initialisation |
| * |
| * (C) Copyright 2007-2015 |
| * Allwinner Technology Co., Ltd. <www.allwinnertech.com> |
| * Jerry Wang <wangflord@allwinnertech.com> |
| * |
| * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH |
| * Philipp Tomsich <philipp.tomsich@theobroma-systems.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <errno.h> |
| #include <ram.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/dram.h> |
| #include <asm/arch/sys_proto.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define DRAM_CLK (CONFIG_DRAM_CLK * 1000000) |
| |
| /* |
| * The following amounts to an extensive rewrite of the code received from |
| * Allwinner as part of the open-source bootloader release (refer to |
| * https://github.com/allwinner-zh/bootloader.git) and augments the upstream |
| * sources (which act as the primary reference point for the inner workings |
| * of the 'underdocumented' DRAM controller in the A80) using the following |
| * documentation for other memory controllers based on the (Synopsys) |
| * Designware IP (DDR memory protocol controller and DDR PHY) |
| * * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide |
| * Document 'SPRUHN7C', Oct 2013 (revised March 2015) |
| * * Xilinx Zynq UltraScale+ MPSoC Register Reference |
| * document ug1087 (v1.0) |
| * Note that the Zynq-documentation provides a very close match for the DDR |
| * memory protocol controller (and provides a very good guide to the rounding |
| * rules for various timings), whereas the TI Keystone II document should be |
| * referred to for DDR PHY specifics only. |
| * |
| * The DRAM controller in the A80 runs at half the frequency of the DDR PHY |
| * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply). |
| * |
| * Known limitations |
| * ================= |
| * In the current state, the following features are not fully supported and |
| * a number of simplifying assumptions have been made: |
| * 1) Only DDR3 support is implemented, as our test platform (the A80-Q7 |
| * module) is designed to accomodate DDR3/DDR3L. |
| * 2) Only 2T-mode has been implemented and tested. |
| * 3) The controller supports two different clocking strategies (PLL6 can |
| * either be 2*CK or CK/2)... we only support the 2*CK clock at this |
| * time and haven't verified whether the alternative clocking strategy |
| * works. If you are interested in porting this over/testing this, |
| * please refer to cases where bit 0 of 'dram_tpr8' is tested in the |
| * original code from Allwinner. |
| * 4) Support for 2 ranks per controller is not implemented (as we don't |
| * the hardware to test it). |
| * |
| * Future directions |
| * ================= |
| * The driver should be driven from a device-tree based configuration that |
| * can dynamically provide the necessary timing parameters (i.e. target |
| * frequency and speed-bin information)---the data structures used in the |
| * calculation of the timing parameters are already designed to capture |
| * similar information as the device tree would provide. |
| * |
| * To enable a device-tree based configuration of the sun9i platform, we |
| * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially |
| * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the |
| * stage to initialise the platform via the device-tree---before having |
| * the full U-Boot run from DDR. |
| */ |
| |
| /* |
| * A number of DDR3 timings are given as "the greater of a fixed number of |
| * clock cycles (CK) or nanoseconds. We express these using a structure |
| * that holds a cycle count and a duration in picoseconds (so we can model |
| * sub-ns timings, such as 7.5ns without losing precision or resorting to |
| * rounding up early. |
| */ |
| struct dram_sun9i_timing { |
| u32 ck; |
| u32 ps; |
| }; |
| |
| /* */ |
| struct dram_sun9i_cl_cwl_timing { |
| u32 CL; |
| u32 CWL; |
| u32 tCKmin; /* in ps */ |
| u32 tCKmax; /* in ps */ |
| }; |
| |
| struct dram_sun9i_para { |
| u32 dram_type; |
| |
| u8 bus_width; |
| u8 chan; |
| u8 rank; |
| u8 rows; |
| u16 page_size; |
| |
| /* Timing information for each speed-bin */ |
| struct dram_sun9i_cl_cwl_timing *cl_cwl_table; |
| u32 cl_cwl_numentries; |
| |
| /* |
| * For the timings, we try to keep the order and grouping used in |
| * JEDEC Standard No. 79-3F |
| */ |
| |
| /* timings */ |
| u32 tREFI; /* in ns */ |
| u32 tRFC; /* in ns */ |
| |
| u32 tRAS; /* in ps */ |
| |
| /* command and address timing */ |
| u32 tDLLK; /* in nCK */ |
| struct dram_sun9i_timing tRTP; |
| struct dram_sun9i_timing tWTR; |
| u32 tWR; /* in nCK */ |
| u32 tMRD; /* in nCK */ |
| struct dram_sun9i_timing tMOD; |
| u32 tRCD; /* in ps */ |
| u32 tRP; /* in ps */ |
| u32 tRC; /* in ps */ |
| u32 tCCD; /* in nCK */ |
| struct dram_sun9i_timing tRRD; |
| u32 tFAW; /* in ps */ |
| |
| /* calibration timing */ |
| /* struct dram_sun9i_timing tZQinit; */ |
| struct dram_sun9i_timing tZQoper; |
| struct dram_sun9i_timing tZQCS; |
| |
| /* reset timing */ |
| /* struct dram_sun9i_timing tXPR; */ |
| |
| /* self-refresh timings */ |
| struct dram_sun9i_timing tXS; |
| u32 tXSDLL; /* in nCK */ |
| /* struct dram_sun9i_timing tCKESR; */ |
| struct dram_sun9i_timing tCKSRE; |
| struct dram_sun9i_timing tCKSRX; |
| |
| /* power-down timings */ |
| struct dram_sun9i_timing tXP; |
| struct dram_sun9i_timing tXPDLL; |
| struct dram_sun9i_timing tCKE; |
| |
| /* write leveling timings */ |
| u32 tWLMRD; /* min, in nCK */ |
| /* u32 tWLDQSEN; min, in nCK */ |
| u32 tWLO; /* max, in ns */ |
| /* u32 tWLOE; max, in ns */ |
| |
| /* u32 tCKDPX; in nCK */ |
| /* u32 tCKCSX; in nCK */ |
| }; |
| |
| static void mctl_sys_init(void); |
| |
| #define SCHED_RDWR_IDLE_GAP(n) ((n & 0xff) << 24) |
| #define SCHED_GO2CRITICAL_HYSTERESIS(n) ((n & 0xff) << 16) |
| #define SCHED_LPR_NUM_ENTRIES(n) ((n & 0xff) << 8) |
| #define SCHED_PAGECLOSE (1 << 2) |
| #define SCHED_PREFER_WRITE (1 << 1) |
| #define SCHED_FORCE_LOW_PRI_N (1 << 0) |
| |
| #define SCHED_CONFIG (SCHED_RDWR_IDLE_GAP(0xf) | \ |
| SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \ |
| SCHED_LPR_NUM_ENTRIES(0x20) | \ |
| SCHED_FORCE_LOW_PRI_N) |
| #define PERFHPR0_CONFIG 0x0000001f |
| #define PERFHPR1_CONFIG 0x1f00001f |
| #define PERFLPR0_CONFIG 0x000000ff |
| #define PERFLPR1_CONFIG 0x0f0000ff |
| #define PERFWR0_CONFIG 0x000000ff |
| #define PERFWR1_CONFIG 0x0f0001ff |
| |
| static void mctl_ctl_sched_init(unsigned long base) |
| { |
| struct sunxi_mctl_ctl_reg *mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)base; |
| |
| /* Needs to be done before the global clk enable... */ |
| writel(SCHED_CONFIG, &mctl_ctl->sched); |
| writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0); |
| writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1); |
| writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0); |
| writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1); |
| writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0); |
| writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1); |
| } |
| |
| static void mctl_sys_init(void) |
| { |
| struct sunxi_ccm_reg * const ccm = |
| (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| |
| debug("Setting PLL6 to %d\n", DRAM_CLK * 2); |
| clock_set_pll6(DRAM_CLK * 2); |
| |
| /* Original dram init code which may come in handy later |
| ******************************************************** |
| clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) : |
| (DRAM_CLK / 2), false); |
| |
| if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) { |
| * PLL6 should be 2*CK * |
| * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); * |
| ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0); |
| } else { |
| * PLL6 should be CK/2 * |
| ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1); |
| } |
| |
| if (para->dram_tpr13 & (0xf<<18)) { |
| * |
| * bit21:bit18=0001:pll swing 0.4 |
| * bit21:bit18=0010:pll swing 0.3 |
| * bit21:bit18=0100:pll swing 0.2 |
| * bit21:bit18=1000:pll swing 0.1 |
| * |
| dram_dbg("DRAM fre extend open !\n"); |
| reg_val=mctl_read_w(CCM_PLL6_DDR_REG); |
| reg_val&=(0x1<<16); |
| reg_val=reg_val>>16; |
| |
| if(para->dram_tpr13 & (0x1<<18)) |
| { |
| mctl_write_w(CCM_PLL_BASE + 0x114, |
| (0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)| |
| (0x2U<<29)|(0x1U<<31))); |
| } |
| else if(para->dram_tpr13 & (0x1<<19)) |
| { |
| mctl_write_w(CCM_PLL_BASE + 0x114, |
| (0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)| |
| (0x2U<<29)|(0x1U<<31))); |
| } |
| else if(para->dram_tpr13 & (0x1<<20)) |
| { |
| mctl_write_w(CCM_PLL_BASE + 0x114, |
| (0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)| |
| (0x2U<<29)|(0x1U<<31))); |
| } |
| else if(para->dram_tpr13 & (0x1<<21)) |
| { |
| mctl_write_w(CCM_PLL_BASE + 0x114, |
| (0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)| |
| (0x2U<<29)|(0x1U<<31))); |
| } |
| |
| //frequency extend open |
| reg_val = mctl_read_w(CCM_PLL6_DDR_REG); |
| reg_val |= ((0x1<<24)|(0x1<<30)); |
| mctl_write_w(CCM_PLL6_DDR_REG, reg_val); |
| |
| |
| while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30)); |
| } |
| |
| aw_delay(0x20000); //make some delay |
| ******************************************************** |
| */ |
| |
| /* assert mctl reset */ |
| clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL); |
| /* stop mctl clock */ |
| clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL); |
| |
| sdelay(2000); |
| |
| /* deassert mctl reset */ |
| setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL); |
| /* enable mctl clock */ |
| setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL); |
| |
| /* set up the transactions scheduling before enabling the global clk */ |
| mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE); |
| mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE); |
| sdelay(1000); |
| |
| debug("2\n"); |
| |
| /* (3 << 12): PLL_DDR */ |
| writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg); |
| do { |
| debug("Waiting for DRAM_CLK_CFG\n"); |
| sdelay(10000); |
| } while (readl(&ccm->dram_clk_cfg) & (1 << 16)); |
| setbits_le32(&ccm->dram_clk_cfg, (1 << 31)); |
| |
| /* TODO: we only support the common case ... i.e. 2*CK */ |
| setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30)); |
| writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */ |
| |
| sdelay(2000); |
| |
| /* Original dram init code which may come in handy later |
| ******************************************************** |
| if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) { |
| * PLL6 should be 2*CK * |
| * gating 2 channel pll * |
| reg_val = mctl_read_w(MC_CCR); |
| reg_val |= ((0x1 << 14) | (0x1U << 30)); |
| mctl_write_w(MC_CCR, reg_val); |
| mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 * |
| } else { |
| * enable 2 channel pll * |
| reg_val = mctl_read_w(MC_CCR); |
| reg_val &= ~((0x1 << 14) | (0x1U << 30)); |
| mctl_write_w(MC_CCR, reg_val); |
| mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 * |
| } |
| |
| reg_val = mctl_read_w(MC_CCR); |
| reg_val &= ~((0x1<<15)|(0x1U<<31)); |
| mctl_write_w(MC_CCR, reg_val); |
| aw_delay(20); |
| //aw_delay(0x10); |
| ******************************************************** |
| */ |
| |
| clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN); |
| sdelay(1000); |
| |
| setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN); |
| /* TODO if (para->chan == 2) */ |
| setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN); |
| } |
| |
| static void mctl_com_init(struct dram_sun9i_para *para) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| |
| /* TODO: hard-wired for DDR3 now */ |
| writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL : |
| MCTL_CR_CHANNEL_SINGLE) |
| | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1) |
| | MCTL_CR_ROW(para->rows) |
| | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16) |
| | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank), |
| &mctl_com->cr); |
| |
| debug("CR: %d\n", readl(&mctl_com->cr)); |
| } |
| |
| static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para) |
| { |
| struct sunxi_mctl_ctl_reg *mctl_ctl; |
| struct sunxi_mctl_phy_reg *mctl_phy; |
| |
| u32 CL = 0; |
| u32 CWL = 0; |
| u16 mr[4] = { 0, }; |
| |
| #define PS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000000) |
| #define PS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999999) / 1000000) |
| #define NS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000) |
| #define NS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999) / 1000) |
| #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
| |
| /* |
| * Convert the values to cycle counts (nCK) from what is provided |
| * by the definition of each speed bin. |
| */ |
| /* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */ |
| const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); |
| const u32 tRFC = NS2CYCLES_ROUNDUP(para->tRFC); |
| const u32 tRCD = PS2CYCLES_ROUNDUP(para->tRCD); |
| const u32 tRP = PS2CYCLES_ROUNDUP(para->tRP); |
| const u32 tRC = PS2CYCLES_ROUNDUP(para->tRC); |
| const u32 tRAS = PS2CYCLES_ROUNDUP(para->tRAS); |
| |
| /* command and address timing */ |
| const u32 tDLLK = para->tDLLK; |
| const u32 tRTP = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps)); |
| const u32 tWTR = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps)); |
| const u32 tWR = NS2CYCLES_FLOOR(para->tWR); |
| const u32 tMRD = para->tMRD; |
| const u32 tMOD = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps)); |
| const u32 tCCD = para->tCCD; |
| const u32 tRRD = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps)); |
| const u32 tFAW = PS2CYCLES_ROUNDUP(para->tFAW); |
| |
| /* calibration timings */ |
| /* const u32 tZQinit = MAX(para->tZQinit.ck, |
| PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */ |
| const u32 tZQoper = MAX(para->tZQoper.ck, |
| PS2CYCLES_ROUNDUP(para->tZQoper.ps)); |
| const u32 tZQCS = MAX(para->tZQCS.ck, |
| PS2CYCLES_ROUNDUP(para->tZQCS.ps)); |
| |
| /* reset timing */ |
| /* const u32 tXPR = MAX(para->tXPR.ck, |
| PS2CYCLES_ROUNDUP(para->tXPR.ps)); */ |
| |
| /* power-down timings */ |
| const u32 tXP = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps)); |
| const u32 tXPDLL = MAX(para->tXPDLL.ck, |
| PS2CYCLES_ROUNDUP(para->tXPDLL.ps)); |
| const u32 tCKE = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps)); |
| |
| /* |
| * self-refresh timings (keep below power-down timings, as tCKESR |
| * needs to be calculated based on the nCK value of tCKE) |
| */ |
| const u32 tXS = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps)); |
| const u32 tXSDLL = para->tXSDLL; |
| const u32 tCKSRE = MAX(para->tCKSRE.ck, |
| PS2CYCLES_ROUNDUP(para->tCKSRE.ps)); |
| const u32 tCKESR = tCKE + 1; |
| const u32 tCKSRX = MAX(para->tCKSRX.ck, |
| PS2CYCLES_ROUNDUP(para->tCKSRX.ps)); |
| |
| /* write leveling timings */ |
| const u32 tWLMRD = para->tWLMRD; |
| /* const u32 tWLDQSEN = para->tWLDQSEN; */ |
| const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO); |
| /* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */ |
| |
| const u32 tRASmax = tREFI * 9; |
| int i; |
| |
| for (i = 0; i < para->cl_cwl_numentries; ++i) { |
| const u32 tCK = 1000000 / CONFIG_DRAM_CLK; |
| |
| if ((para->cl_cwl_table[i].tCKmin <= tCK) && |
| (tCK < para->cl_cwl_table[i].tCKmax)) { |
| CL = para->cl_cwl_table[i].CL; |
| CWL = para->cl_cwl_table[i].CWL; |
| |
| debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL); |
| break; |
| } |
| } |
| |
| if ((CL == 0) && (CWL == 0)) { |
| printf("failed to find valid CL/CWL for operating point %d MHz\n", |
| CONFIG_DRAM_CLK); |
| return 0; |
| } |
| |
| if (ch_index == 0) { |
| mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE; |
| } else { |
| mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE; |
| mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE; |
| } |
| |
| if (para->dram_type == DRAM_TYPE_DDR3) { |
| mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) | |
| DDR3_MR0_CL(CL); |
| mr[1] = DDR3_MR1_RTT120OHM; |
| mr[2] = DDR3_MR2_TWL(CWL); |
| mr[3] = 0; |
| |
| /* |
| * DRAM3 initialisation requires holding CKE LOW for |
| * at least 500us prior to starting the initialisation |
| * sequence and at least 10ns after driving CKE HIGH |
| * before the initialisation sequence may be started). |
| * |
| * Refer to Micron document "TN-41-07: DDR3 Power-Up, |
| * Initialization, and Reset DDR3 Initialization |
| * Routine" for details). |
| */ |
| writel(MCTL_INIT0_POST_CKE_x1024(1) | |
| MCTL_INIT0_PRE_CKE_x1024( |
| (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */ |
| &mctl_ctl->init[0]); |
| writel(MCTL_INIT1_DRAM_RSTN_x1024(1), |
| &mctl_ctl->init[1]); |
| /* INIT2 is not used for DDR3 */ |
| writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]), |
| &mctl_ctl->init[3]); |
| writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]), |
| &mctl_ctl->init[4]); |
| writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */ |
| &mctl_ctl->init[5]); |
| } else { |
| /* !!! UNTESTED !!! */ |
| /* |
| * LPDDR2 and/or LPDDR3 require a 200us minimum delay |
| * after driving CKE HIGH in the initialisation sequence. |
| */ |
| writel(MCTL_INIT0_POST_CKE_x1024( |
| (200 * CONFIG_DRAM_CLK + 1023) / 1024), |
| &mctl_ctl->init[0]); |
| writel(MCTL_INIT1_DRAM_RSTN_x1024(1), |
| &mctl_ctl->init[1]); |
| writel(MCTL_INIT2_IDLE_AFTER_RESET_x32( |
| (CONFIG_DRAM_CLK + 31) / 32) /* 1us */ |
| | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5), /* 5 cycles */ |
| &mctl_ctl->init[2]); |
| writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]), |
| &mctl_ctl->init[3]); |
| writel(MCTL_INIT4_EMR2(mr[3]), |
| &mctl_ctl->init[4]); |
| writel(MCTL_INIT5_DEV_ZQINIT_x32( |
| (CONFIG_DRAM_CLK + 31) / 32) /* 1us */ |
| | MCTL_INIT5_MAX_AUTO_INIT_x1024( |
| (10 * CONFIG_DRAM_CLK + 1023) / 1024), |
| &mctl_ctl->init[5]); |
| } |
| |
| /* (DDR3) We always use a burst-length of 8. */ |
| #define MCTL_BL 8 |
| /* wr2pre: WL + BL/2 + tWR */ |
| #define WR2PRE (MCTL_BL/2 + CWL + tWTR) |
| /* wr2rd = CWL + BL/2 + tWTR */ |
| #define WR2RD (MCTL_BL/2 + CWL + tWTR) |
| /* |
| * rd2wr = RL + BL/2 + 2 - WL (for DDR3) |
| * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3) |
| */ |
| #define RD2WR (CL + MCTL_BL/2 + 2 - CWL) |
| #define MCTL_PHY_TRTW 0 |
| #define MCTL_PHY_TRTODT 0 |
| |
| #define MCTL_DIV2(n) ((n + 1)/2) |
| #define MCTL_DIV32(n) (n/32) |
| #define MCTL_DIV1024(n) (n/1024) |
| |
| writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) | |
| (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0), |
| &mctl_ctl->dramtmg[0]); |
| writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) | |
| (MCTL_DIV2(tRC) << 0), |
| &mctl_ctl->dramtmg[1]); |
| writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) | |
| (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0), |
| &mctl_ctl->dramtmg[2]); |
| /* |
| * Note: tMRW is located at bit 16 (and up) in DRAMTMG3... |
| * this is only relevant for LPDDR2/LPDDR3 |
| */ |
| writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0), |
| &mctl_ctl->dramtmg[3]); |
| writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) | |
| (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0), |
| &mctl_ctl->dramtmg[4]); |
| writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) | |
| (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0), |
| &mctl_ctl->dramtmg[5]); |
| |
| /* These timings are relevant for LPDDR2/LPDDR3 only */ |
| /* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) | |
| (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */ |
| |
| /* printf("DRAMTMG7 reset value: 0x%x\n", |
| readl(&mctl_ctl->dramtmg[7])); */ |
| /* DRAMTMG7 reset value: 0x202 */ |
| /* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */ |
| /* printf("DRAMTMG8 reset value: 0x%x\n", |
| readl(&mctl_ctl->dramtmg[8])); */ |
| /* DRAMTMG8 reset value: 0x44 */ |
| |
| writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]); |
| |
| writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0), |
| &mctl_ctl->rfshtmg); |
| |
| if (para->dram_type == DRAM_TYPE_DDR3) { |
| writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) | |
| (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0), |
| &mctl_ctl->dfitmg[0]); |
| } else { |
| /* TODO */ |
| } |
| |
| /* TODO: handle the case of the write latency domain going to 0 ... */ |
| |
| /* |
| * Disable dfi_init_complete_en (the triggering of the SDRAM |
| * initialisation when the PHY initialisation completes). |
| */ |
| clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN); |
| /* Disable the automatic generation of DLL calibration requests */ |
| setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD); |
| |
| /* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */ |
| /* TODO: make 2T and BUSWIDTH configurable */ |
| writel(MCTL_MSTR_DEVICETYPE(para->dram_type) | |
| MCTL_MSTR_BURSTLENGTH(para->dram_type) | |
| MCTL_MSTR_ACTIVERANKS(para->rank) | |
| MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32, |
| &mctl_ctl->mstr); |
| |
| if (para->dram_type == DRAM_TYPE_DDR3) { |
| writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) | |
| (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]); |
| /* |
| * TODO: is the following really necessary as the bottom |
| * half should already be 0x100 and the upper half should |
| * be ignored for a DDR3 device??? |
| */ |
| writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100), |
| &mctl_ctl->zqctrl[1]); |
| } else { |
| writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40), |
| &mctl_ctl->zqctrl[0]); |
| writel(MCTL_ZQCTRL1_TZQRESET(0x28) | |
| MCTL_ZQCTRL1_TZQSI_x1024(0x100), |
| &mctl_ctl->zqctrl[1]); |
| } |
| |
| /* Assert dfi_init_complete signal */ |
| setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN); |
| /* Disable auto-refresh */ |
| setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH); |
| |
| /* PHY initialisation */ |
| |
| /* TODO: make 2T and 8-bank mode configurable */ |
| writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE | |
| MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3, |
| &mctl_phy->dcr); |
| |
| /* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */ |
| if (para->dram_type != DRAM_TYPE_DDR3) |
| clrbits_le32(&mctl_phy->dsgcr, (3 << 6)); |
| |
| writel(mr[0], &mctl_phy->mr0); |
| writel(mr[1], &mctl_phy->mr1); |
| writel(mr[2], &mctl_phy->mr2); |
| writel(mr[3], &mctl_phy->mr3); |
| |
| /* |
| * The DFI PHY is running at full rate. We thus use the actual |
| * timings in clock cycles here. |
| */ |
| writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) | |
| (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0), |
| &mctl_phy->dtpr[0]); |
| writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) | |
| (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26), |
| &mctl_phy->dtpr[1]); |
| writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) | |
| (tCKE << 15) | (tDLLK << 19) | |
| (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) | |
| (((tCCD - 4) & 0x1) << 31), |
| &mctl_phy->dtpr[2]); |
| |
| /* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */ |
| /* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */ |
| |
| /* |
| * We use the same values used by Allwinner's Boot0 for the PTR |
| * (PHY timing register) configuration that is tied to the PHY |
| * implementation. |
| */ |
| writel(0x42C21590, &mctl_phy->ptr[0]); |
| writel(0xD05612C0, &mctl_phy->ptr[1]); |
| if (para->dram_type == DRAM_TYPE_DDR3) { |
| const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */ |
| const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) / |
| 1000; /* 360ns */ |
| const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */ |
| const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */ |
| |
| writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]); |
| writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]); |
| } else { |
| /* LPDDR2 or LPDDR3 */ |
| const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) / |
| 1000; /* 100ns */ |
| const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */ |
| const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */ |
| const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */ |
| |
| writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]); |
| writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]); |
| } |
| |
| /* TEST ME */ |
| writel(0x00203131, &mctl_phy->acmdlr); |
| |
| /* TODO: can we enable this for 2 ranks, even when we don't know yet */ |
| writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank), |
| &mctl_phy->dtcr); |
| |
| /* TODO: half width */ |
| debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0])); |
| writel(0x7C000285, &mctl_phy->dx[2].gcr[0]); |
| writel(0x7C000285, &mctl_phy->dx[3].gcr[0]); |
| |
| clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff, |
| (CONFIG_DRAM_ZQ >> 0) & 0xff); /* CK/CA */ |
| clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff, |
| (CONFIG_DRAM_ZQ >> 8) & 0xff); /* DX0/DX1 */ |
| clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff, |
| (CONFIG_DRAM_ZQ >> 16) & 0xff); /* DX2/DX3 */ |
| |
| /* TODO: make configurable & implement non-ODT path */ |
| if (1) { |
| int lane; |
| for (lane = 0; lane < 4; ++lane) { |
| clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff); |
| clrbits_le32(&mctl_phy->dx[lane].gcr[3], |
| (0x3<<12) | (0x3<<4)); |
| } |
| } else { |
| /* TODO: check */ |
| int lane; |
| for (lane = 0; lane < 4; ++lane) { |
| clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff, |
| 0xaaaa); |
| if (para->dram_type == DRAM_TYPE_DDR3) |
| setbits_le32(&mctl_phy->dx[lane].gcr[3], |
| (0x3<<12) | (0x3<<4)); |
| else |
| setbits_le32(&mctl_phy->dx[lane].gcr[3], |
| 0x00000012); |
| } |
| } |
| |
| writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */ |
| writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */ |
| writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */ |
| |
| /* Disable auto-refresh prior to data training */ |
| setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH); |
| |
| setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */ |
| /* TODO: IODDRM (IO DDR-MODE) for DDR3L */ |
| clrsetbits_le32(&mctl_phy->pgcr[1], |
| MCTL_PGCR1_ZCKSEL_MASK, |
| MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN); |
| |
| setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */ |
| /* TODO: single-channel PLL mode??? missing */ |
| setbits_le32(&mctl_phy->pllcr, |
| MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN); |
| /* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */ |
| |
| /* Disable VT compensation */ |
| clrbits_le32(&mctl_phy->pgcr[0], 0x3f); |
| |
| /* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */ |
| if (para->dram_type == DRAM_TYPE_DDR3) |
| clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3); |
| else |
| clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573); |
| |
| sdelay(10000); /* XXX necessary? */ |
| |
| /* Wait for the INIT bit to clear itself... */ |
| while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) { |
| /* not done yet -- keep spinning */ |
| debug("MCTL_PIR_INIT not set\n"); |
| sdelay(1000); |
| /* TODO: implement timeout */ |
| } |
| |
| /* TODO: not used --- there's a "2rank debug" section here */ |
| |
| /* Original dram init code which may come in handy later |
| ******************************************************** |
| * LPDDR2 and LPDDR3 * |
| if ((para->dram_type) == 6 || (para->dram_type) == 7) { |
| reg_val = mctl_read_w(P0_DSGCR + ch_offset); |
| reg_val &= (~(0x3<<6)); * set DQSGX to 1 * |
| reg_val |= (0x1<<6); * dqs gate extend * |
| mctl_write_w(P0_DSGCR + ch_offset, reg_val); |
| dram_dbg("DQS Gate Extend Enable!\n", ch_index); |
| } |
| |
| * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ * |
| if (para->dram_tpr13 & (0x1<<31)) { |
| reg_val = mctl_read_w(P0_ZQ0CR + ch_offset); |
| reg_val |= (0x7<<11); |
| mctl_write_w(P0_ZQ0CR + ch_offset, reg_val); |
| } |
| ******************************************************** |
| */ |
| |
| /* |
| * TODO: more 2-rank support |
| * (setting the "dqs gate delay to average between 2 rank") |
| */ |
| |
| /* check if any errors are set */ |
| if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) { |
| debug("Channel %d unavailable!\n", ch_index); |
| return 0; |
| } else{ |
| /* initial OK */ |
| debug("Channel %d OK!\n", ch_index); |
| /* return 1; */ |
| } |
| |
| while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) { |
| debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n"); |
| sdelay(100000); |
| /* init not done */ |
| /* TODO: implement time-out */ |
| } |
| debug("done\n"); |
| |
| /* "DDR is controller by contoller" */ |
| clrbits_le32(&mctl_phy->pgcr[3], (1 << 25)); |
| |
| /* TODO: is the following necessary? */ |
| debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc)); |
| writel(0, &mctl_ctl->dfimisc); |
| |
| /* Enable auto-refresh */ |
| clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH); |
| |
| debug("channel_init complete\n"); |
| return 1; |
| } |
| |
| signed int DRAMC_get_dram_size(void) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| |
| unsigned int reg_val; |
| unsigned int dram_size; |
| unsigned int temp; |
| |
| reg_val = readl(&mctl_com->cr); |
| |
| temp = (reg_val >> 8) & 0xf; /* page size code */ |
| dram_size = (temp - 6); /* (1 << dram_size) * 512Bytes */ |
| |
| temp = (reg_val >> 4) & 0xf; /* row width code */ |
| dram_size += (temp + 1); /* (1 << dram_size) * 512Bytes */ |
| |
| temp = (reg_val >> 2) & 0x3; /* bank number code */ |
| dram_size += (temp + 2); /* (1 << dram_size) * 512Bytes */ |
| |
| temp = reg_val & 0x3; /* rank number code */ |
| dram_size += temp; /* (1 << dram_size) * 512Bytes */ |
| |
| temp = (reg_val >> 19) & 0x1; /* channel number code */ |
| dram_size += temp; /* (1 << dram_size) * 512Bytes */ |
| |
| dram_size = dram_size - 11; /* (1 << dram_size) MBytes */ |
| |
| return 1 << dram_size; |
| } |
| |
| unsigned long sunxi_dram_init(void) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| |
| struct dram_sun9i_cl_cwl_timing cl_cwl[] = { |
| { .CL = 5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 }, |
| { .CL = 6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 }, |
| { .CL = 8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 }, |
| { .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 }, |
| { .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 } |
| }; |
| |
| /* Set initial parameters, these get modified by the autodetect code */ |
| struct dram_sun9i_para para = { |
| .dram_type = DRAM_TYPE_DDR3, |
| .bus_width = 32, |
| .chan = 2, |
| .rank = 1, |
| /* .rank = 2, */ |
| .page_size = 4096, |
| /* .rows = 16, */ |
| .rows = 15, |
| |
| /* CL/CWL table for the speed bin */ |
| .cl_cwl_table = cl_cwl, |
| .cl_cwl_numentries = sizeof(cl_cwl) / |
| sizeof(struct dram_sun9i_cl_cwl_timing), |
| |
| /* timings */ |
| .tREFI = 7800, /* 7.8us (up to 85 degC) */ |
| .tRFC = 260, /* 260ns for 4GBit devices */ |
| /* 350ns @ 8GBit */ |
| |
| .tRCD = 13750, |
| .tRP = 13750, |
| .tRC = 48750, |
| .tRAS = 35000, |
| |
| .tDLLK = 512, |
| .tRTP = { .ck = 4, .ps = 7500 }, |
| .tWTR = { .ck = 4, .ps = 7500 }, |
| .tWR = 15, |
| .tMRD = 4, |
| .tMOD = { .ck = 12, .ps = 15000 }, |
| .tCCD = 4, |
| .tRRD = { .ck = 4, .ps = 7500 }, |
| .tFAW = 40, |
| |
| /* calibration timing */ |
| /* .tZQinit = { .ck = 512, .ps = 640000 }, */ |
| .tZQoper = { .ck = 256, .ps = 320000 }, |
| .tZQCS = { .ck = 64, .ps = 80000 }, |
| |
| /* reset timing */ |
| /* .tXPR = { .ck = 5, .ps = 10000 }, */ |
| |
| /* self-refresh timings */ |
| .tXS = { .ck = 5, .ps = 10000 }, |
| .tXSDLL = 512, |
| .tCKSRE = { .ck = 5, .ps = 10000 }, |
| .tCKSRX = { .ck = 5, .ps = 10000 }, |
| |
| /* power-down timings */ |
| .tXP = { .ck = 3, .ps = 6000 }, |
| .tXPDLL = { .ck = 10, .ps = 24000 }, |
| .tCKE = { .ck = 3, .ps = 5000 }, |
| |
| /* write leveling timings */ |
| .tWLMRD = 40, |
| /* .tWLDQSEN = 25, */ |
| .tWLO = 7500, |
| /* .tWLOE = 2000, */ |
| }; |
| |
| /* |
| * Disable A80 internal 240 ohm resistor. |
| * |
| * This code sequence is adapated from Allwinner's Boot0 (see |
| * https://github.com/allwinner-zh/bootloader.git), as there |
| * is no documentation for these two registers in the R_PRCM |
| * block. |
| */ |
| setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8)); |
| writel(0, SUNXI_PRCM_BASE + 0x1e8); |
| |
| mctl_sys_init(); |
| |
| if (!mctl_channel_init(0, ¶)) |
| return 0; |
| |
| /* dual-channel */ |
| if (!mctl_channel_init(1, ¶)) { |
| /* disable channel 1 */ |
| clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK, |
| MCTL_CR_CHANNEL_SINGLE); |
| /* disable channel 1 global clock */ |
| clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN); |
| } |
| |
| mctl_com_init(¶); |
| |
| /* return the proper RAM size */ |
| return DRAMC_get_dram_size() << 20; |
| } |