blob: 9fed26cd94b726233b0724a3a3d7148d1e9db1b1 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2018 Microsemi Corporation
*/
#include <common.h>
#include <config.h>
#include <dm.h>
#include <dm/of_access.h>
#include <dm/of_addr.h>
#include <fdt_support.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <miiphy.h>
#include <net.h>
#include <wait_bit.h>
#define MIIM_STATUS 0x0
#define MIIM_STAT_BUSY BIT(3)
#define MIIM_CMD 0x8
#define MIIM_CMD_SCAN BIT(0)
#define MIIM_CMD_OPR_WRITE BIT(1)
#define MIIM_CMD_OPR_READ BIT(2)
#define MIIM_CMD_SINGLE_SCAN BIT(3)
#define MIIM_CMD_WRDATA(x) ((x) << 4)
#define MIIM_CMD_REGAD(x) ((x) << 20)
#define MIIM_CMD_PHYAD(x) ((x) << 25)
#define MIIM_CMD_VLD BIT(31)
#define MIIM_DATA 0xC
#define MIIM_DATA_ERROR (0x2 << 16)
#define PHY_CFG 0x0
#define PHY_CFG_ENA 0xF
#define PHY_CFG_COMMON_RST BIT(4)
#define PHY_CFG_RST (0xF << 5)
#define PHY_STAT 0x4
#define PHY_STAT_SUPERVISOR_COMPLETE BIT(0)
#define ANA_PORT_VLAN_CFG(x) (0x7000 + 0x100 * (x))
#define ANA_PORT_VLAN_CFG_AWARE_ENA BIT(20)
#define ANA_PORT_VLAN_CFG_POP_CNT(x) ((x) << 18)
#define ANA_PORT_PORT_CFG(x) (0x7070 + 0x100 * (x))
#define ANA_PORT_PORT_CFG_RECV_ENA BIT(6)
#define ANA_TABLES_MACHDATA 0x8b34
#define ANA_TABLES_MACLDATA 0x8b38
#define ANA_TABLES_MACACCESS 0x8b3c
#define ANA_TABLES_MACACCESS_VALID BIT(11)
#define ANA_TABLES_MACACCESS_ENTRYTYPE(x) ((x) << 9)
#define ANA_TABLES_MACACCESS_DEST_IDX(x) ((x) << 3)
#define ANA_TABLES_MACACCESS_MAC_TABLE_CMD(x) (x)
#define ANA_TABLES_MACACCESS_MAC_TABLE_CMD_M GENMASK(2, 0)
#define MACACCESS_CMD_IDLE 0
#define MACACCESS_CMD_LEARN 1
#define MACACCESS_CMD_GET_NEXT 4
#define ANA_PGID(x) (0x8c00 + 4 * (x))
#define SYS_FRM_AGING 0x574
#define SYS_FRM_AGING_ENA BIT(20)
#define SYS_SYSTEM_RST_CFG 0x508
#define SYS_SYSTEM_RST_MEM_INIT BIT(0)
#define SYS_SYSTEM_RST_MEM_ENA BIT(1)
#define SYS_SYSTEM_RST_CORE_ENA BIT(2)
#define SYS_PORT_MODE(x) (0x514 + 0x4 * (x))
#define SYS_PORT_MODE_INCL_INJ_HDR(x) ((x) << 3)
#define SYS_PORT_MODE_INCL_INJ_HDR_M GENMASK(4, 3)
#define SYS_PORT_MODE_INCL_XTR_HDR(x) ((x) << 1)
#define SYS_PORT_MODE_INCL_XTR_HDR_M GENMASK(2, 1)
#define SYS_PAUSE_CFG(x) (0x608 + 0x4 * (x))
#define SYS_PAUSE_CFG_PAUSE_ENA BIT(0)
#define QSYS_SWITCH_PORT_MODE(x) (0x11234 + 0x4 * (x))
#define QSYS_SWITCH_PORT_MODE_PORT_ENA BIT(14)
#define QSYS_QMAP 0x112d8
#define QSYS_EGR_NO_SHARING 0x1129c
/* Port registers */
#define DEV_CLOCK_CFG 0x0
#define DEV_CLOCK_CFG_LINK_SPEED_1000 1
#define DEV_MAC_ENA_CFG 0x1c
#define DEV_MAC_ENA_CFG_RX_ENA BIT(4)
#define DEV_MAC_ENA_CFG_TX_ENA BIT(0)
#define DEV_MAC_IFG_CFG 0x30
#define DEV_MAC_IFG_CFG_TX_IFG(x) ((x) << 8)
#define DEV_MAC_IFG_CFG_RX_IFG2(x) ((x) << 4)
#define DEV_MAC_IFG_CFG_RX_IFG1(x) (x)
#define PCS1G_CFG 0x48
#define PCS1G_MODE_CFG_SGMII_MODE_ENA BIT(0)
#define PCS1G_MODE_CFG 0x4c
#define PCS1G_MODE_CFG_UNIDIR_MODE_ENA BIT(4)
#define PCS1G_MODE_CFG_SGMII_MODE_ENA BIT(0)
#define PCS1G_SD_CFG 0x50
#define PCS1G_ANEG_CFG 0x54
#define PCS1G_ANEG_CFG_ADV_ABILITY(x) ((x) << 16)
#define QS_XTR_GRP_CFG(x) (4 * (x))
#define QS_XTR_GRP_CFG_MODE(x) ((x) << 2)
#define QS_XTR_GRP_CFG_STATUS_WORD_POS BIT(1)
#define QS_XTR_GRP_CFG_BYTE_SWAP BIT(0)
#define QS_XTR_RD(x) (0x8 + 4 * (x))
#define QS_XTR_FLUSH 0x18
#define QS_XTR_FLUSH_FLUSH GENMASK(1, 0)
#define QS_XTR_DATA_PRESENT 0x1c
#define QS_INJ_GRP_CFG(x) (0x24 + (x) * 4)
#define QS_INJ_GRP_CFG_MODE(x) ((x) << 2)
#define QS_INJ_GRP_CFG_BYTE_SWAP BIT(0)
#define QS_INJ_WR(x) (0x2c + 4 * (x))
#define QS_INJ_CTRL(x) (0x34 + 4 * (x))
#define QS_INJ_CTRL_GAP_SIZE(x) ((x) << 21)
#define QS_INJ_CTRL_EOF BIT(19)
#define QS_INJ_CTRL_SOF BIT(18)
#define QS_INJ_CTRL_VLD_BYTES(x) ((x) << 16)
#define XTR_EOF_0 ntohl(0x80000000u)
#define XTR_EOF_1 ntohl(0x80000001u)
#define XTR_EOF_2 ntohl(0x80000002u)
#define XTR_EOF_3 ntohl(0x80000003u)
#define XTR_PRUNED ntohl(0x80000004u)
#define XTR_ABORT ntohl(0x80000005u)
#define XTR_ESCAPE ntohl(0x80000006u)
#define XTR_NOT_READY ntohl(0x80000007u)
#define IFH_INJ_BYPASS BIT(31)
#define IFH_TAG_TYPE_C 0
#define XTR_VALID_BYTES(x) (4 - ((x) & 3))
#define MAC_VID 1
#define CPU_PORT 11
#define INTERNAL_PORT_MSK 0xF
#define IFH_LEN 4
#define OCELOT_BUF_CELL_SZ 60
#define ETH_ALEN 6
#define PGID_BROADCAST 13
#define PGID_UNICAST 14
#define PGID_SRC 80
enum ocelot_target {
ANA,
QS,
QSYS,
REW,
SYS,
HSIO,
PORT0,
PORT1,
PORT2,
PORT3,
TARGET_MAX,
};
#define MAX_PORT (PORT3 - PORT0)
/* MAC table entry types.
* ENTRYTYPE_NORMAL is subject to aging.
* ENTRYTYPE_LOCKED is not subject to aging.
* ENTRYTYPE_MACv4 is not subject to aging. For IPv4 multicast.
* ENTRYTYPE_MACv6 is not subject to aging. For IPv6 multicast.
*/
enum macaccess_entry_type {
ENTRYTYPE_NORMAL = 0,
ENTRYTYPE_LOCKED,
ENTRYTYPE_MACv4,
ENTRYTYPE_MACv6,
};
enum ocelot_mdio_target {
MIIM,
PHY,
TARGET_MDIO_MAX,
};
enum ocelot_phy_id {
INTERNAL,
EXTERNAL,
NUM_PHY,
};
struct ocelot_private {
void __iomem *regs[TARGET_MAX];
struct mii_dev *bus[NUM_PHY];
struct phy_device *phydev;
int phy_mode;
int max_speed;
int rx_pos;
int rx_siz;
int rx_off;
int tx_num;
u8 tx_adj_packetbuf[PKTSIZE_ALIGN + PKTALIGN];
void *tx_adj_buf;
};
struct mscc_miim_dev {
void __iomem *regs;
void __iomem *phy_regs;
};
struct mscc_miim_dev miim[NUM_PHY];
static int mscc_miim_wait_ready(struct mscc_miim_dev *miim)
{
return wait_for_bit_le32(miim->regs + MIIM_STATUS, MIIM_STAT_BUSY,
false, 250, false);
}
static int mscc_miim_reset(struct mii_dev *bus)
{
struct mscc_miim_dev *miim = (struct mscc_miim_dev *)bus->priv;
if (miim->phy_regs) {
writel(0, miim->phy_regs + PHY_CFG);
writel(PHY_CFG_RST | PHY_CFG_COMMON_RST
| PHY_CFG_ENA, miim->phy_regs + PHY_CFG);
mdelay(500);
}
return 0;
}
static int mscc_miim_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct mscc_miim_dev *miim = (struct mscc_miim_dev *)bus->priv;
u32 val;
int ret;
ret = mscc_miim_wait_ready(miim);
if (ret)
goto out;
writel(MIIM_CMD_VLD | MIIM_CMD_PHYAD(addr) |
MIIM_CMD_REGAD(reg) | MIIM_CMD_OPR_READ,
miim->regs + MIIM_CMD);
ret = mscc_miim_wait_ready(miim);
if (ret)
goto out;
val = readl(miim->regs + MIIM_DATA);
if (val & MIIM_DATA_ERROR) {
ret = -EIO;
goto out;
}
ret = val & 0xFFFF;
out:
return ret;
}
static int mscc_miim_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct mscc_miim_dev *miim = (struct mscc_miim_dev *)bus->priv;
int ret;
ret = mscc_miim_wait_ready(miim);
if (ret < 0)
goto out;
writel(MIIM_CMD_VLD | MIIM_CMD_PHYAD(addr) |
MIIM_CMD_REGAD(reg) | MIIM_CMD_WRDATA(val) |
MIIM_CMD_OPR_WRITE, miim->regs + MIIM_CMD);
out:
return ret;
}
/* For now only setup the internal mdio bus */
static struct mii_dev *ocelot_mdiobus_init(struct udevice *dev)
{
unsigned long phy_size[TARGET_MAX];
phys_addr_t phy_base[TARGET_MAX];
struct ofnode_phandle_args phandle;
ofnode eth_node, node, mdio_node;
struct resource res;
struct mii_dev *bus;
fdt32_t faddr;
int i;
bus = mdio_alloc();
if (!bus)
return NULL;
/* gathered only the first mdio bus */
eth_node = dev_read_first_subnode(dev);
node = ofnode_first_subnode(eth_node);
ofnode_parse_phandle_with_args(node, "phy-handle", NULL, 0, 0,
&phandle);
mdio_node = ofnode_get_parent(phandle.node);
for (i = 0; i < TARGET_MDIO_MAX; i++) {
if (ofnode_read_resource(mdio_node, i, &res)) {
pr_err("%s: get OF resource failed\n", __func__);
return NULL;
}
faddr = cpu_to_fdt32(res.start);
phy_base[i] = ofnode_translate_address(mdio_node, &faddr);
phy_size[i] = res.end - res.start;
}
strcpy(bus->name, "miim-internal");
miim[INTERNAL].phy_regs = ioremap(phy_base[PHY], phy_size[PHY]);
miim[INTERNAL].regs = ioremap(phy_base[MIIM], phy_size[MIIM]);
bus->priv = &miim[INTERNAL];
bus->reset = mscc_miim_reset;
bus->read = mscc_miim_read;
bus->write = mscc_miim_write;
if (mdio_register(bus))
return NULL;
else
return bus;
}
__weak void mscc_switch_reset(void)
{
}
static void ocelot_stop(struct udevice *dev)
{
struct ocelot_private *priv = dev_get_priv(dev);
int i;
mscc_switch_reset();
for (i = 0; i < NUM_PHY; i++)
if (priv->bus[i])
mscc_miim_reset(priv->bus[i]);
}
static void ocelot_cpu_capture_setup(struct ocelot_private *priv)
{
int i;
/* map the 8 CPU extraction queues to CPU port 11 */
writel(0, priv->regs[QSYS] + QSYS_QMAP);
for (i = 0; i <= 1; i++) {
/*
* Do byte-swap and expect status after last data word
* Extraction: Mode: manual extraction) | Byte_swap
*/
writel(QS_XTR_GRP_CFG_MODE(1) | QS_XTR_GRP_CFG_BYTE_SWAP,
priv->regs[QS] + QS_XTR_GRP_CFG(i));
/*
* Injection: Mode: manual extraction | Byte_swap
*/
writel(QS_INJ_GRP_CFG_MODE(1) | QS_INJ_GRP_CFG_BYTE_SWAP,
priv->regs[QS] + QS_INJ_GRP_CFG(i));
}
for (i = 0; i <= 1; i++)
/* Enable IFH insertion/parsing on CPU ports */
writel(SYS_PORT_MODE_INCL_INJ_HDR(1) |
SYS_PORT_MODE_INCL_XTR_HDR(1),
priv->regs[SYS] + SYS_PORT_MODE(CPU_PORT + i));
/*
* Setup the CPU port as VLAN aware to support switching frames
* based on tags
*/
writel(ANA_PORT_VLAN_CFG_AWARE_ENA | ANA_PORT_VLAN_CFG_POP_CNT(1) |
MAC_VID, priv->regs[ANA] + ANA_PORT_VLAN_CFG(CPU_PORT));
/* Disable learning (only RECV_ENA must be set) */
writel(ANA_PORT_PORT_CFG_RECV_ENA,
priv->regs[ANA] + ANA_PORT_PORT_CFG(CPU_PORT));
/* Enable switching to/from cpu port */
setbits_le32(priv->regs[QSYS] + QSYS_SWITCH_PORT_MODE(CPU_PORT),
QSYS_SWITCH_PORT_MODE_PORT_ENA);
/* No pause on CPU port - not needed (off by default) */
clrbits_le32(priv->regs[SYS] + SYS_PAUSE_CFG(CPU_PORT),
SYS_PAUSE_CFG_PAUSE_ENA);
setbits_le32(priv->regs[QSYS] + QSYS_EGR_NO_SHARING, BIT(CPU_PORT));
}
static void ocelot_port_init(struct ocelot_private *priv, int port)
{
void __iomem *regs = priv->regs[port];
/* Enable PCS */
writel(PCS1G_MODE_CFG_SGMII_MODE_ENA, regs + PCS1G_CFG);
/* Disable Signal Detect */
writel(0, regs + PCS1G_SD_CFG);
/* Enable MAC RX and TX */
writel(DEV_MAC_ENA_CFG_RX_ENA | DEV_MAC_ENA_CFG_TX_ENA,
regs + DEV_MAC_ENA_CFG);
/* Clear sgmii_mode_ena */
writel(0, regs + PCS1G_MODE_CFG);
/*
* Clear sw_resolve_ena(bit 0) and set adv_ability to
* something meaningful just in case
*/
writel(PCS1G_ANEG_CFG_ADV_ABILITY(0x20), regs + PCS1G_ANEG_CFG);
/* Set MAC IFG Gaps */
writel(DEV_MAC_IFG_CFG_TX_IFG(5) | DEV_MAC_IFG_CFG_RX_IFG1(5) |
DEV_MAC_IFG_CFG_RX_IFG2(1), regs + DEV_MAC_IFG_CFG);
/* Set link speed and release all resets */
writel(DEV_CLOCK_CFG_LINK_SPEED_1000, regs + DEV_CLOCK_CFG);
/* Make VLAN aware for CPU traffic */
writel(ANA_PORT_VLAN_CFG_AWARE_ENA | ANA_PORT_VLAN_CFG_POP_CNT(1) |
MAC_VID, priv->regs[ANA] + ANA_PORT_VLAN_CFG(port - PORT0));
/* Enable the port in the core */
setbits_le32(priv->regs[QSYS] + QSYS_SWITCH_PORT_MODE(port - PORT0),
QSYS_SWITCH_PORT_MODE_PORT_ENA);
}
static int ocelot_switch_init(struct ocelot_private *priv)
{
/* Reset switch & memories */
writel(SYS_SYSTEM_RST_MEM_ENA | SYS_SYSTEM_RST_MEM_INIT,
priv->regs[SYS] + SYS_SYSTEM_RST_CFG);
/* Wait to complete */
if (wait_for_bit_le32(priv->regs[SYS] + SYS_SYSTEM_RST_CFG,
SYS_SYSTEM_RST_MEM_INIT, false, 2000, false)) {
pr_err("Timeout in memory reset\n");
return -EIO;
}
/* Enable switch core */
setbits_le32(priv->regs[SYS] + SYS_SYSTEM_RST_CFG,
SYS_SYSTEM_RST_CORE_ENA);
return 0;
}
static void ocelot_switch_flush(struct ocelot_private *priv)
{
/* All Queues flush */
setbits_le32(priv->regs[QS] + QS_XTR_FLUSH, QS_XTR_FLUSH_FLUSH);
/* Allow to drain */
mdelay(1);
/* All Queues normal */
clrbits_le32(priv->regs[QS] + QS_XTR_FLUSH, QS_XTR_FLUSH_FLUSH);
}
static int ocelot_initialize(struct ocelot_private *priv)
{
int ret, i;
/* Initialize switch memories, enable core */
ret = ocelot_switch_init(priv);
if (ret)
return ret;
/*
* Disable port-to-port by switching
* Put fron ports in "port isolation modes" - i.e. they cant send
* to other ports - via the PGID sorce masks.
*/
for (i = 0; i <= MAX_PORT; i++)
writel(0, priv->regs[ANA] + ANA_PGID(PGID_SRC + i));
/* Flush queues */
ocelot_switch_flush(priv);
/* Setup frame ageing - "2 sec" - The unit is 6.5us on Ocelot */
writel(SYS_FRM_AGING_ENA | (20000000 / 65),
priv->regs[SYS] + SYS_FRM_AGING);
for (i = PORT0; i <= PORT3; i++)
ocelot_port_init(priv, i);
ocelot_cpu_capture_setup(priv);
debug("Ports enabled\n");
return 0;
}
static inline int ocelot_vlant_wait_for_completion(struct ocelot_private *priv)
{
unsigned int val, timeout = 10;
/* Wait for the issued mac table command to be completed, or timeout.
* When the command read from ANA_TABLES_MACACCESS is
* MACACCESS_CMD_IDLE, the issued command completed successfully.
*/
do {
val = readl(priv->regs[ANA] + ANA_TABLES_MACACCESS);
val &= ANA_TABLES_MACACCESS_MAC_TABLE_CMD_M;
} while (val != MACACCESS_CMD_IDLE && timeout--);
if (!timeout)
return -ETIMEDOUT;
return 0;
}
static int ocelot_mac_table_add(struct ocelot_private *priv,
const unsigned char mac[ETH_ALEN], int pgid)
{
u32 macl = 0, mach = 0;
int ret;
/* Set the MAC address to handle and the vlan associated in a format
* understood by the hardware.
*/
mach |= MAC_VID << 16;
mach |= ((u32)mac[0]) << 8;
mach |= ((u32)mac[1]) << 0;
macl |= ((u32)mac[2]) << 24;
macl |= ((u32)mac[3]) << 16;
macl |= ((u32)mac[4]) << 8;
macl |= ((u32)mac[5]) << 0;
writel(macl, priv->regs[ANA] + ANA_TABLES_MACLDATA);
writel(mach, priv->regs[ANA] + ANA_TABLES_MACHDATA);
writel(ANA_TABLES_MACACCESS_VALID |
ANA_TABLES_MACACCESS_DEST_IDX(pgid) |
ANA_TABLES_MACACCESS_ENTRYTYPE(ENTRYTYPE_LOCKED) |
ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_LEARN),
priv->regs[ANA] + ANA_TABLES_MACACCESS);
ret = ocelot_vlant_wait_for_completion(priv);
return ret;
}
static int ocelot_write_hwaddr(struct udevice *dev)
{
struct ocelot_private *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
ocelot_mac_table_add(priv, pdata->enetaddr, PGID_UNICAST);
writel(BIT(CPU_PORT), priv->regs[ANA] + ANA_PGID(PGID_UNICAST));
return 0;
}
static int ocelot_start(struct udevice *dev)
{
struct ocelot_private *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
const unsigned char mac[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff,
0xff };
int ret;
ret = ocelot_initialize(priv);
if (ret)
return ret;
/* Set MAC address tables entries for CPU redirection */
ocelot_mac_table_add(priv, mac, PGID_BROADCAST);
writel(BIT(CPU_PORT) | INTERNAL_PORT_MSK,
priv->regs[ANA] + ANA_PGID(PGID_BROADCAST));
/* It should be setup latter in ocelot_write_hwaddr */
ocelot_mac_table_add(priv, pdata->enetaddr, PGID_UNICAST);
writel(BIT(CPU_PORT), priv->regs[ANA] + ANA_PGID(PGID_UNICAST));
return 0;
}
static int ocelot_send(struct udevice *dev, void *packet, int length)
{
struct ocelot_private *priv = dev_get_priv(dev);
u32 ifh[IFH_LEN];
int port = BIT(0); /* use port 0 */
u8 grp = 0; /* Send everything on CPU group 0 */
int i, count = (length + 3) / 4, last = length % 4;
u32 *buf = packet;
writel(QS_INJ_CTRL_GAP_SIZE(1) | QS_INJ_CTRL_SOF,
priv->regs[QS] + QS_INJ_CTRL(grp));
/*
* Generate the IFH for frame injection
*
* The IFH is a 128bit-value
* bit 127: bypass the analyzer processing
* bit 56-67: destination mask
* bit 28-29: pop_cnt: 3 disables all rewriting of the frame
* bit 20-27: cpu extraction queue mask
* bit 16: tag type 0: C-tag, 1: S-tag
* bit 0-11: VID
*/
ifh[0] = IFH_INJ_BYPASS;
ifh[1] = (0xf00 & port) >> 8;
ifh[2] = (0xff & port) << 24;
ifh[3] = (IFH_TAG_TYPE_C << 16);
for (i = 0; i < IFH_LEN; i++)
writel(ifh[i], priv->regs[QS] + QS_INJ_WR(grp));
for (i = 0; i < count; i++)
writel(buf[i], priv->regs[QS] + QS_INJ_WR(grp));
/* Add padding */
while (i < (OCELOT_BUF_CELL_SZ / 4)) {
writel(0, priv->regs[QS] + QS_INJ_WR(grp));
i++;
}
/* Indicate EOF and valid bytes in last word */
writel(QS_INJ_CTRL_GAP_SIZE(1) |
QS_INJ_CTRL_VLD_BYTES(length < OCELOT_BUF_CELL_SZ ? 0 : last) |
QS_INJ_CTRL_EOF, priv->regs[QS] + QS_INJ_CTRL(grp));
/* Add dummy CRC */
writel(0, priv->regs[QS] + QS_INJ_WR(grp));
return 0;
}
static int ocelot_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct ocelot_private *priv = dev_get_priv(dev);
u8 grp = 0; /* Send everything on CPU group 0 */
u32 *rxbuf = (u32 *)net_rx_packets[0];
int i, byte_cnt = 0;
bool eof_flag = false, pruned_flag = false, abort_flag = false;
if (!(readl(priv->regs[QS] + QS_XTR_DATA_PRESENT) & BIT(grp)))
return -EAGAIN;
/* skip IFH */
for (i = 0; i < IFH_LEN; i++)
readl(priv->regs[QS] + QS_XTR_RD(grp));
while (!eof_flag) {
u32 val = readl(priv->regs[QS] + QS_XTR_RD(grp));
switch (val) {
case XTR_NOT_READY:
debug("%d NOT_READY...?\n", byte_cnt);
break;
case XTR_ABORT:
/* really nedeed?? not done in linux */
*rxbuf = readl(priv->regs[QS] + QS_XTR_RD(grp));
abort_flag = true;
eof_flag = true;
debug("XTR_ABORT\n");
break;
case XTR_EOF_0:
case XTR_EOF_1:
case XTR_EOF_2:
case XTR_EOF_3:
byte_cnt += XTR_VALID_BYTES(val);
*rxbuf = readl(priv->regs[QS] + QS_XTR_RD(grp));
eof_flag = true;
debug("EOF\n");
break;
case XTR_PRUNED:
/* But get the last 4 bytes as well */
eof_flag = true;
pruned_flag = true;
debug("PRUNED\n");
/* fallthrough */
case XTR_ESCAPE:
*rxbuf = readl(priv->regs[QS] + QS_XTR_RD(grp));
byte_cnt += 4;
rxbuf++;
debug("ESCAPED\n");
break;
default:
*rxbuf = val;
byte_cnt += 4;
rxbuf++;
}
}
if (abort_flag || pruned_flag || !eof_flag) {
debug("Discarded frame: abort:%d pruned:%d eof:%d\n",
abort_flag, pruned_flag, eof_flag);
return -EAGAIN;
}
*packetp = net_rx_packets[0];
return byte_cnt;
}
static int ocelot_probe(struct udevice *dev)
{
struct ocelot_private *priv = dev_get_priv(dev);
int ret, i;
struct {
enum ocelot_target id;
char *name;
} reg[] = {
{ SYS, "sys" },
{ REW, "rew" },
{ QSYS, "qsys" },
{ ANA, "ana" },
{ QS, "qs" },
{ HSIO, "hsio" },
{ PORT0, "port0" },
{ PORT1, "port1" },
{ PORT2, "port2" },
{ PORT3, "port3" },
};
for (i = 0; i < ARRAY_SIZE(reg); i++) {
priv->regs[reg[i].id] = dev_remap_addr_name(dev, reg[i].name);
if (!priv->regs[reg[i].id]) {
pr_err
("Error %d: can't get regs base addresses for %s\n",
ret, reg[i].name);
return -ENOMEM;
}
}
priv->bus[INTERNAL] = ocelot_mdiobus_init(dev);
for (i = 0; i < 4; i++) {
phy_connect(priv->bus[INTERNAL], i, dev,
PHY_INTERFACE_MODE_NONE);
}
return 0;
}
static int ocelot_remove(struct udevice *dev)
{
struct ocelot_private *priv = dev_get_priv(dev);
int i;
for (i = 0; i < NUM_PHY; i++) {
mdio_unregister(priv->bus[i]);
mdio_free(priv->bus[i]);
}
return 0;
}
static const struct eth_ops ocelot_ops = {
.start = ocelot_start,
.stop = ocelot_stop,
.send = ocelot_send,
.recv = ocelot_recv,
.write_hwaddr = ocelot_write_hwaddr,
};
static const struct udevice_id mscc_ocelot_ids[] = {
{.compatible = "mscc,vsc7514-switch"},
{ /* Sentinel */ }
};
U_BOOT_DRIVER(ocelot) = {
.name = "ocelot-switch",
.id = UCLASS_ETH,
.of_match = mscc_ocelot_ids,
.probe = ocelot_probe,
.remove = ocelot_remove,
.ops = &ocelot_ops,
.priv_auto_alloc_size = sizeof(struct ocelot_private),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};