| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2014 Freescale Semiconductor, Inc. |
| * Copyright 2020 NXP |
| * Copyright 2020 Stephen Carlson <stcarlso@linux.microsoft.com> |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <env.h> |
| #include <i2c.h> |
| #include <irq_func.h> |
| #include <log.h> |
| #include <asm/io.h> |
| #ifdef CONFIG_FSL_LSCH2 |
| #include <asm/arch/immap_lsch2.h> |
| #elif defined(CONFIG_FSL_LSCH3) |
| #include <asm/arch/immap_lsch3.h> |
| #else |
| #include <asm/immap_85xx.h> |
| #endif |
| #include <linux/delay.h> |
| #include "vid.h" |
| |
| /* Voltages are generally handled in mV to keep them as integers */ |
| #define MV_PER_V 1000 |
| |
| /* |
| * Select the channel on the I2C mux (on some NXP boards) that contains |
| * the voltage regulator to use for VID. Return 0 for success or nonzero |
| * for failure. |
| */ |
| int __weak i2c_multiplexer_select_vid_channel(u8 channel) |
| { |
| return 0; |
| } |
| |
| /* |
| * Compensate for a board specific voltage drop between regulator and SoC. |
| * Returns the voltage offset in mV. |
| */ |
| int __weak board_vdd_drop_compensation(void) |
| { |
| return 0; |
| } |
| |
| /* |
| * Performs any board specific adjustments after the VID voltage has been |
| * set. Return 0 for success or nonzero for failure. |
| */ |
| int __weak board_adjust_vdd(int vdd) |
| { |
| return 0; |
| } |
| |
| /* |
| * Processor specific method of converting the fuse value read from VID |
| * registers into the core voltage to supply. Return the voltage in mV. |
| */ |
| u16 __weak soc_get_fuse_vid(int vid_index) |
| { |
| /* Default VDD for Layerscape Chassis 1 devices */ |
| static const u16 vdd[32] = { |
| 0, /* unused */ |
| 9875, /* 0.9875V */ |
| 9750, |
| 9625, |
| 9500, |
| 9375, |
| 9250, |
| 9125, |
| 9000, |
| 8875, |
| 8750, |
| 8625, |
| 8500, |
| 8375, |
| 8250, |
| 8125, |
| 10000, /* 1.0000V */ |
| 10125, |
| 10250, |
| 10375, |
| 10500, |
| 10625, |
| 10750, |
| 10875, |
| 11000, |
| 0, /* reserved */ |
| }; |
| return vdd[vid_index]; |
| } |
| |
| #ifndef I2C_VOL_MONITOR_ADDR |
| #define I2C_VOL_MONITOR_ADDR 0 |
| #endif |
| |
| #if CONFIG_IS_ENABLED(DM_I2C) |
| #define DEVICE_HANDLE_T struct udevice * |
| |
| #ifndef I2C_VOL_MONITOR_BUS |
| #define I2C_VOL_MONITOR_BUS 0 |
| #endif |
| |
| /* If DM is in use, retrieve the udevice chip for the specified bus number */ |
| static int vid_get_device(int address, DEVICE_HANDLE_T *dev) |
| { |
| int ret = i2c_get_chip_for_busnum(I2C_VOL_MONITOR_BUS, address, 1, dev); |
| |
| if (ret) |
| printf("VID: Bus %d has no device with address 0x%02X\n", |
| I2C_VOL_MONITOR_BUS, address); |
| return ret; |
| } |
| |
| #define I2C_READ(dev, register, data, length) \ |
| dm_i2c_read(dev, register, data, length) |
| #define I2C_WRITE(dev, register, data, length) \ |
| dm_i2c_write(dev, register, data, length) |
| #else |
| #define DEVICE_HANDLE_T int |
| |
| /* If DM is not in use, I2C addresses are passed directly */ |
| static int vid_get_device(int address, DEVICE_HANDLE_T *dev) |
| { |
| *dev = address; |
| return 0; |
| } |
| |
| #define I2C_READ(dev, register, data, length) \ |
| i2c_read(dev, register, 1, data, length) |
| #define I2C_WRITE(dev, register, data, length) \ |
| i2c_write(dev, register, 1, data, length) |
| #endif |
| |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| /* |
| * Get the i2c address configuration for the IR regulator chip |
| * |
| * There are some variance in the RDB HW regarding the I2C address configuration |
| * for the IR regulator chip, which is likely a problem of external resistor |
| * accuracy. So we just check each address in a hopefully non-intrusive mode |
| * and use the first one that seems to work |
| * |
| * The IR chip can show up under the following addresses: |
| * 0x08 (Verified on T1040RDB-PA,T4240RDB-PB,X-T4240RDB-16GPA) |
| * 0x09 (Verified on T1040RDB-PA) |
| * 0x38 (Verified on T2080QDS, T2081QDS, T4240RDB) |
| */ |
| static int find_ir_chip_on_i2c(void) |
| { |
| int i2caddress, ret, i; |
| u8 mfrID; |
| const int ir_i2c_addr[] = {0x38, 0x08, 0x09}; |
| DEVICE_HANDLE_T dev; |
| |
| /* Check all the address */ |
| for (i = 0; i < (sizeof(ir_i2c_addr)/sizeof(ir_i2c_addr[0])); i++) { |
| i2caddress = ir_i2c_addr[i]; |
| ret = vid_get_device(i2caddress, &dev); |
| if (!ret) { |
| ret = I2C_READ(dev, IR36021_MFR_ID_OFFSET, |
| (void *)&mfrID, sizeof(mfrID)); |
| /* If manufacturer ID matches the IR36021 */ |
| if (!ret && mfrID == IR36021_MFR_ID) |
| return i2caddress; |
| } |
| } |
| return -1; |
| } |
| #endif |
| |
| /* Maximum loop count waiting for new voltage to take effect */ |
| #define MAX_LOOP_WAIT_NEW_VOL 100 |
| /* Maximum loop count waiting for the voltage to be stable */ |
| #define MAX_LOOP_WAIT_VOL_STABLE 100 |
| /* |
| * read_voltage from sensor on I2C bus |
| * We use average of 4 readings, waiting for WAIT_FOR_ADC before |
| * another reading |
| */ |
| #define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */ |
| |
| /* If an INA220 chip is available, we can use it to read back the voltage |
| * as it may have a higher accuracy than the IR chip for the same purpose |
| */ |
| #ifdef CONFIG_VOL_MONITOR_INA220 |
| #define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */ |
| #define ADC_MIN_ACCURACY 4 |
| #else |
| #define WAIT_FOR_ADC 138 /* wait for 138 microseconds for ADC */ |
| #define ADC_MIN_ACCURACY 4 |
| #endif |
| |
| #ifdef CONFIG_VOL_MONITOR_INA220 |
| static int read_voltage_from_INA220(int i2caddress) |
| { |
| int i, ret, voltage_read = 0; |
| u16 vol_mon; |
| u8 buf[2]; |
| DEVICE_HANDLE_T dev; |
| |
| /* Open device handle */ |
| ret = vid_get_device(i2caddress, &dev); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < NUM_READINGS; i++) { |
| ret = I2C_READ(dev, I2C_VOL_MONITOR_BUS_V_OFFSET, |
| (void *)&buf[0], sizeof(buf)); |
| if (ret) { |
| printf("VID: failed to read core voltage\n"); |
| return ret; |
| } |
| |
| vol_mon = (buf[0] << 8) | buf[1]; |
| if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) { |
| printf("VID: Core voltage sensor error\n"); |
| return -1; |
| } |
| |
| debug("VID: bus voltage reads 0x%04x\n", vol_mon); |
| /* LSB = 4mv */ |
| voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4; |
| udelay(WAIT_FOR_ADC); |
| } |
| |
| /* calculate the average */ |
| voltage_read /= NUM_READINGS; |
| |
| return voltage_read; |
| } |
| #endif |
| |
| #ifdef CONFIG_VOL_MONITOR_IR36021_READ |
| /* read voltage from IR */ |
| static int read_voltage_from_IR(int i2caddress) |
| { |
| int i, ret, voltage_read = 0; |
| u16 vol_mon; |
| u8 buf; |
| DEVICE_HANDLE_T dev; |
| |
| /* Open device handle */ |
| ret = vid_get_device(i2caddress, &dev); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < NUM_READINGS; i++) { |
| ret = I2C_READ(dev, IR36021_LOOP1_VOUT_OFFSET, (void *)&buf, |
| sizeof(buf)); |
| if (ret) { |
| printf("VID: failed to read core voltage\n"); |
| return ret; |
| } |
| vol_mon = buf; |
| if (!vol_mon) { |
| printf("VID: Core voltage sensor error\n"); |
| return -1; |
| } |
| debug("VID: bus voltage reads 0x%02x\n", vol_mon); |
| /* Resolution is 1/128V. We scale up here to get 1/128mV |
| * and divide at the end |
| */ |
| voltage_read += vol_mon * MV_PER_V; |
| udelay(WAIT_FOR_ADC); |
| } |
| /* Scale down to the real mV as IR resolution is 1/128V, rounding up */ |
| voltage_read = DIV_ROUND_UP(voltage_read, 128); |
| |
| /* calculate the average */ |
| voltage_read /= NUM_READINGS; |
| |
| /* Compensate for a board specific voltage drop between regulator and |
| * SoC before converting into an IR VID value |
| */ |
| voltage_read -= board_vdd_drop_compensation(); |
| |
| return voltage_read; |
| } |
| #endif |
| |
| #if defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \ |
| defined(CONFIG_VOL_MONITOR_LTC3882_READ) || \ |
| defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \ |
| defined(CONFIG_VOL_MONITOR_LTC3882_SET) |
| |
| /* |
| * The message displayed if the VOUT exponent causes a resolution |
| * worse than 1.0 V (if exponent is >= 0). |
| */ |
| #define VOUT_WARNING "VID: VOUT_MODE exponent has resolution worse than 1 V!\n" |
| |
| /* Checks the PMBus voltage monitor for the format used for voltage values */ |
| static int get_pmbus_multiplier(DEVICE_HANDLE_T dev) |
| { |
| u8 mode; |
| int exponent, multiplier, ret; |
| |
| ret = I2C_READ(dev, PMBUS_CMD_VOUT_MODE, &mode, sizeof(mode)); |
| if (ret) { |
| printf("VID: unable to determine voltage multiplier\n"); |
| return 1; |
| } |
| |
| /* Upper 3 bits is mode, lower 5 bits is exponent */ |
| exponent = (int)mode & 0x1F; |
| mode >>= 5; |
| switch (mode) { |
| case 0: |
| /* Linear, 5 bit twos component exponent */ |
| if (exponent & 0x10) { |
| multiplier = 1 << (16 - (exponent & 0xF)); |
| } else { |
| /* If exponent is >= 0, then resolution is 1 V! */ |
| printf(VOUT_WARNING); |
| multiplier = 1; |
| } |
| break; |
| case 1: |
| /* VID code identifier */ |
| printf("VID: custom VID codes are not supported\n"); |
| multiplier = MV_PER_V; |
| break; |
| default: |
| /* Direct, in mV */ |
| multiplier = MV_PER_V; |
| break; |
| } |
| |
| debug("VID: calculated multiplier is %d\n", multiplier); |
| return multiplier; |
| } |
| #endif |
| |
| #if defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \ |
| defined(CONFIG_VOL_MONITOR_LTC3882_READ) |
| static int read_voltage_from_pmbus(int i2caddress) |
| { |
| int ret, multiplier, vout; |
| u8 channel = PWM_CHANNEL0; |
| u16 vcode; |
| DEVICE_HANDLE_T dev; |
| |
| /* Open device handle */ |
| ret = vid_get_device(i2caddress, &dev); |
| if (ret) |
| return ret; |
| |
| /* Select the right page */ |
| ret = I2C_WRITE(dev, PMBUS_CMD_PAGE, &channel, sizeof(channel)); |
| if (ret) { |
| printf("VID: failed to select VDD page %d\n", channel); |
| return ret; |
| } |
| |
| /* VOUT is little endian */ |
| ret = I2C_READ(dev, PMBUS_CMD_READ_VOUT, (void *)&vcode, sizeof(vcode)); |
| if (ret) { |
| printf("VID: failed to read core voltage\n"); |
| return ret; |
| } |
| |
| /* Scale down to the real mV */ |
| multiplier = get_pmbus_multiplier(dev); |
| vout = (int)vcode; |
| /* Multiplier 1000 (direct mode) requires no change to convert */ |
| if (multiplier != MV_PER_V) |
| vout = DIV_ROUND_UP(vout * MV_PER_V, multiplier); |
| return vout - board_vdd_drop_compensation(); |
| } |
| #endif |
| |
| static int read_voltage(int i2caddress) |
| { |
| int voltage_read; |
| #ifdef CONFIG_VOL_MONITOR_INA220 |
| voltage_read = read_voltage_from_INA220(I2C_VOL_MONITOR_ADDR); |
| #elif defined CONFIG_VOL_MONITOR_IR36021_READ |
| voltage_read = read_voltage_from_IR(i2caddress); |
| #elif defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \ |
| defined(CONFIG_VOL_MONITOR_LTC3882_READ) |
| voltage_read = read_voltage_from_pmbus(i2caddress); |
| #else |
| voltage_read = -1; |
| #endif |
| return voltage_read; |
| } |
| |
| #ifdef CONFIG_VOL_MONITOR_IR36021_SET |
| /* |
| * We need to calculate how long before the voltage stops to drop |
| * or increase. It returns with the loop count. Each loop takes |
| * several readings (WAIT_FOR_ADC) |
| */ |
| static int wait_for_new_voltage(int vdd, int i2caddress) |
| { |
| int timeout, vdd_current; |
| |
| vdd_current = read_voltage(i2caddress); |
| /* wait until voltage starts to reach the target. Voltage slew |
| * rates by typical regulators will always lead to stable readings |
| * within each fairly long ADC interval in comparison to the |
| * intended voltage delta change until the target voltage is |
| * reached. The fairly small voltage delta change to any target |
| * VID voltage also means that this function will always complete |
| * within few iterations. If the timeout was ever reached, it would |
| * point to a serious failure in the regulator system. |
| */ |
| for (timeout = 0; |
| abs(vdd - vdd_current) > (IR_VDD_STEP_UP + IR_VDD_STEP_DOWN) && |
| timeout < MAX_LOOP_WAIT_NEW_VOL; timeout++) { |
| vdd_current = read_voltage(i2caddress); |
| } |
| if (timeout >= MAX_LOOP_WAIT_NEW_VOL) { |
| printf("VID: Voltage adjustment timeout\n"); |
| return -1; |
| } |
| return timeout; |
| } |
| |
| /* |
| * Blocks and reads the VID voltage until it stabilizes, or the |
| * timeout expires |
| */ |
| static int wait_for_voltage_stable(int i2caddress) |
| { |
| int timeout, vdd_current, vdd; |
| |
| vdd = read_voltage(i2caddress); |
| udelay(NUM_READINGS * WAIT_FOR_ADC); |
| |
| vdd_current = read_voltage(i2caddress); |
| /* |
| * The maximum timeout is |
| * MAX_LOOP_WAIT_VOL_STABLE * NUM_READINGS * WAIT_FOR_ADC |
| */ |
| for (timeout = MAX_LOOP_WAIT_VOL_STABLE; |
| abs(vdd - vdd_current) > ADC_MIN_ACCURACY && |
| timeout > 0; timeout--) { |
| vdd = vdd_current; |
| udelay(NUM_READINGS * WAIT_FOR_ADC); |
| vdd_current = read_voltage(i2caddress); |
| } |
| if (timeout == 0) |
| return -1; |
| return vdd_current; |
| } |
| |
| /* Sets the VID voltage using the IR36021 */ |
| static int set_voltage_to_IR(int i2caddress, int vdd) |
| { |
| int wait, vdd_last; |
| int ret; |
| u8 vid; |
| DEVICE_HANDLE_T dev; |
| |
| /* Open device handle */ |
| ret = vid_get_device(i2caddress, &dev); |
| if (ret) |
| return ret; |
| |
| /* Compensate for a board specific voltage drop between regulator and |
| * SoC before converting into an IR VID value |
| */ |
| vdd += board_vdd_drop_compensation(); |
| #ifdef CONFIG_FSL_LSCH2 |
| vid = DIV_ROUND_UP(vdd - 265, 5); |
| #else |
| vid = DIV_ROUND_UP(vdd - 245, 5); |
| #endif |
| |
| ret = I2C_WRITE(dev, IR36021_LOOP1_MANUAL_ID_OFFSET, (void *)&vid, |
| sizeof(vid)); |
| if (ret) { |
| printf("VID: failed to write new voltage\n"); |
| return -1; |
| } |
| wait = wait_for_new_voltage(vdd, i2caddress); |
| if (wait < 0) |
| return -1; |
| debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC); |
| |
| vdd_last = wait_for_voltage_stable(i2caddress); |
| if (vdd_last < 0) |
| return -1; |
| debug("VID: Current voltage is %d mV\n", vdd_last); |
| return vdd_last; |
| } |
| #endif |
| |
| #if defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \ |
| defined(CONFIG_VOL_MONITOR_LTC3882_SET) |
| static int set_voltage_to_pmbus(int i2caddress, int vdd) |
| { |
| int ret, vdd_last, vdd_target = vdd; |
| int count = MAX_LOOP_WAIT_NEW_VOL, temp = 0, multiplier; |
| unsigned char value; |
| |
| /* The data to be sent with the PMBus command PAGE_PLUS_WRITE */ |
| u8 buffer[5] = { 0x04, PWM_CHANNEL0, PMBUS_CMD_VOUT_COMMAND, 0, 0 }; |
| DEVICE_HANDLE_T dev; |
| |
| /* Open device handle */ |
| ret = vid_get_device(i2caddress, &dev); |
| if (ret) |
| return ret; |
| |
| /* Scale up to the proper value for the VOUT command, little endian */ |
| multiplier = get_pmbus_multiplier(dev); |
| vdd += board_vdd_drop_compensation(); |
| if (multiplier != MV_PER_V) |
| vdd = DIV_ROUND_UP(vdd * multiplier, MV_PER_V); |
| buffer[3] = vdd & 0xFF; |
| buffer[4] = (vdd & 0xFF00) >> 8; |
| |
| /* Check write protect state */ |
| ret = I2C_READ(dev, PMBUS_CMD_WRITE_PROTECT, (void *)&value, |
| sizeof(value)); |
| if (ret) |
| goto exit; |
| |
| if (value != EN_WRITE_ALL_CMD) { |
| value = EN_WRITE_ALL_CMD; |
| ret = I2C_WRITE(dev, PMBUS_CMD_WRITE_PROTECT, |
| (void *)&value, sizeof(value)); |
| if (ret) |
| goto exit; |
| } |
| |
| /* Write the desired voltage code to the regulator */ |
| ret = I2C_WRITE(dev, PMBUS_CMD_PAGE_PLUS_WRITE, (void *)&buffer[0], |
| sizeof(buffer)); |
| if (ret) { |
| printf("VID: I2C failed to write to the voltage regulator\n"); |
| return -1; |
| } |
| |
| exit: |
| /* Wait for the voltage to get to the desired value */ |
| do { |
| vdd_last = read_voltage_from_pmbus(i2caddress); |
| if (vdd_last < 0) { |
| printf("VID: Couldn't read sensor abort VID adjust\n"); |
| return -1; |
| } |
| count--; |
| temp = vdd_last - vdd_target; |
| } while ((abs(temp) > 2) && (count > 0)); |
| |
| return vdd_last; |
| } |
| #endif |
| |
| static int set_voltage(int i2caddress, int vdd) |
| { |
| int vdd_last = -1; |
| |
| #ifdef CONFIG_VOL_MONITOR_IR36021_SET |
| vdd_last = set_voltage_to_IR(i2caddress, vdd); |
| #elif defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \ |
| defined(CONFIG_VOL_MONITOR_LTC3882_SET) |
| vdd_last = set_voltage_to_pmbus(i2caddress, vdd); |
| #else |
| #error Specific voltage monitor must be defined |
| #endif |
| return vdd_last; |
| } |
| |
| int adjust_vdd(ulong vdd_override) |
| { |
| int re_enable = disable_interrupts(); |
| #if defined(CONFIG_FSL_LSCH2) || defined(CONFIG_FSL_LSCH3) |
| struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| #else |
| ccsr_gur_t __iomem *gur = |
| (void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| #endif |
| u8 vid; |
| u32 fusesr; |
| int vdd_current, vdd_last, vdd_target; |
| int ret, i2caddress = I2C_VOL_MONITOR_ADDR; |
| unsigned long vdd_string_override; |
| char *vdd_string; |
| |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| u8 buf; |
| DEVICE_HANDLE_T dev; |
| #endif |
| |
| /* |
| * VID is used according to the table below |
| * --------------------------------------- |
| * | DA_V | |
| * |-------------------------------------| |
| * | 5b00000 | 5b00001-5b11110 | 5b11111 | |
| * ---------------+---------+-----------------+---------| |
| * | D | 5b00000 | NO VID | VID = DA_V | NO VID | |
| * | A |----------+---------+-----------------+---------| |
| * | _ | 5b00001 |VID = | VID = |VID = | |
| * | V | ~ | DA_V_ALT| DA_V_ALT | DA_A_VLT| |
| * | _ | 5b11110 | | | | |
| * | A |----------+---------+-----------------+---------| |
| * | L | 5b11111 | No VID | VID = DA_V | NO VID | |
| * | T | | | | | |
| * ------------------------------------------------------ |
| */ |
| #if defined(CONFIG_FSL_LSCH3) |
| fusesr = in_le32(&gur->dcfg_fusesr); |
| vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_ALTVID_SHIFT) & |
| FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK; |
| if (vid == 0 || vid == FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK) { |
| vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_VID_SHIFT) & |
| FSL_CHASSIS3_DCFG_FUSESR_VID_MASK; |
| } |
| #elif defined(CONFIG_FSL_LSCH2) |
| fusesr = in_be32(&gur->dcfg_fusesr); |
| vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_ALTVID_SHIFT) & |
| FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK; |
| if (vid == 0 || vid == FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK) { |
| vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_VID_SHIFT) & |
| FSL_CHASSIS2_DCFG_FUSESR_VID_MASK; |
| } |
| #else |
| fusesr = in_be32(&gur->dcfg_fusesr); |
| vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) & |
| FSL_CORENET_DCFG_FUSESR_ALTVID_MASK; |
| if (vid == 0 || vid == FSL_CORENET_DCFG_FUSESR_ALTVID_MASK) { |
| vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) & |
| FSL_CORENET_DCFG_FUSESR_VID_MASK; |
| } |
| #endif |
| vdd_target = soc_get_fuse_vid((int)vid); |
| |
| ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR); |
| if (ret) { |
| debug("VID: I2C failed to switch channel\n"); |
| ret = -1; |
| goto exit; |
| } |
| |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| ret = find_ir_chip_on_i2c(); |
| if (ret < 0) { |
| printf("VID: Could not find voltage regulator on I2C.\n"); |
| ret = -1; |
| goto exit; |
| } else { |
| i2caddress = ret; |
| debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress); |
| } |
| |
| ret = vid_get_device(i2caddress, &dev); |
| if (ret) |
| return ret; |
| |
| /* check IR chip work on Intel mode */ |
| ret = I2C_READ(dev, IR36021_INTEL_MODE_OFFSET, (void *)&buf, |
| sizeof(buf)); |
| if (ret) { |
| printf("VID: failed to read IR chip mode.\n"); |
| ret = -1; |
| goto exit; |
| } |
| if ((buf & IR36021_MODE_MASK) != IR36021_INTEL_MODE) { |
| printf("VID: IR Chip is not used in Intel mode.\n"); |
| ret = -1; |
| goto exit; |
| } |
| #endif |
| |
| /* check override variable for overriding VDD */ |
| vdd_string = env_get(CONFIG_VID_FLS_ENV); |
| debug("VID: Initial VDD value is %d mV\n", |
| DIV_ROUND_UP(vdd_target, 10)); |
| if (vdd_override == 0 && vdd_string && |
| !strict_strtoul(vdd_string, 10, &vdd_string_override)) |
| vdd_override = vdd_string_override; |
| if (vdd_override >= VDD_MV_MIN && vdd_override <= VDD_MV_MAX) { |
| vdd_target = vdd_override * 10; /* convert to 1/10 mV */ |
| debug("VID: VDD override is %lu\n", vdd_override); |
| } else if (vdd_override != 0) { |
| printf("VID: Invalid VDD value.\n"); |
| } |
| if (vdd_target == 0) { |
| debug("VID: VID not used\n"); |
| ret = 0; |
| goto exit; |
| } else { |
| /* divide and round up by 10 to get a value in mV */ |
| vdd_target = DIV_ROUND_UP(vdd_target, 10); |
| debug("VID: vid = %d mV\n", vdd_target); |
| } |
| |
| /* |
| * Read voltage monitor to check real voltage. |
| */ |
| vdd_last = read_voltage(i2caddress); |
| if (vdd_last < 0) { |
| printf("VID: Couldn't read sensor abort VID adjustment\n"); |
| ret = -1; |
| goto exit; |
| } |
| vdd_current = vdd_last; |
| debug("VID: Core voltage is currently at %d mV\n", vdd_last); |
| |
| #if defined(CONFIG_VOL_MONITOR_LTC3882_SET) || \ |
| defined(CONFIG_VOL_MONITOR_ISL68233_SET) |
| /* Set the target voltage */ |
| vdd_current = set_voltage(i2caddress, vdd_target); |
| vdd_last = vdd_current; |
| #else |
| /* |
| * Adjust voltage to at or one step above target. |
| * As measurements are less precise than setting the values |
| * we may run through dummy steps that cancel each other |
| * when stepping up and then down. |
| */ |
| while (vdd_last > 0 && |
| vdd_last < vdd_target) { |
| vdd_current += IR_VDD_STEP_UP; |
| vdd_last = set_voltage(i2caddress, vdd_current); |
| } |
| while (vdd_last > 0 && |
| vdd_last > vdd_target + (IR_VDD_STEP_DOWN - 1)) { |
| vdd_current -= IR_VDD_STEP_DOWN; |
| vdd_last = set_voltage(i2caddress, vdd_current); |
| } |
| #endif |
| |
| /* Board specific adjustments */ |
| if (board_adjust_vdd(vdd_target) < 0) { |
| ret = -1; |
| goto exit; |
| } |
| |
| if (vdd_last > 0) |
| printf("VID: Core voltage after adjustment is at %d mV\n", |
| vdd_last); |
| else |
| ret = -1; |
| exit: |
| if (re_enable) |
| enable_interrupts(); |
| |
| i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT); |
| |
| return ret; |
| } |
| |
| static int print_vdd(void) |
| { |
| int vdd_last, ret, i2caddress = I2C_VOL_MONITOR_ADDR; |
| |
| ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR); |
| if (ret) { |
| debug("VID : I2c failed to switch channel\n"); |
| return -1; |
| } |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| ret = find_ir_chip_on_i2c(); |
| if (ret < 0) { |
| printf("VID: Could not find voltage regulator on I2C.\n"); |
| goto exit; |
| } else { |
| i2caddress = ret; |
| debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress); |
| } |
| #endif |
| |
| /* |
| * Read voltage monitor to check real voltage. |
| */ |
| vdd_last = read_voltage(i2caddress); |
| if (vdd_last < 0) { |
| printf("VID: Couldn't read sensor abort VID adjustment\n"); |
| goto exit; |
| } |
| printf("VID: Core voltage is at %d mV\n", vdd_last); |
| exit: |
| i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT); |
| |
| return ret < 0 ? -1 : 0; |
| |
| } |
| |
| static int do_vdd_override(struct cmd_tbl *cmdtp, |
| int flag, int argc, |
| char *const argv[]) |
| { |
| ulong override; |
| |
| if (argc < 2) |
| return CMD_RET_USAGE; |
| |
| if (!strict_strtoul(argv[1], 10, &override)) |
| adjust_vdd(override); /* the value is checked by callee */ |
| else |
| return CMD_RET_USAGE; |
| return 0; |
| } |
| |
| static int do_vdd_read(struct cmd_tbl *cmdtp, int flag, int argc, |
| char *const argv[]) |
| { |
| if (argc < 1) |
| return CMD_RET_USAGE; |
| print_vdd(); |
| |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| vdd_override, 2, 0, do_vdd_override, |
| "override VDD", |
| " - override with the voltage specified in mV, eg. 1050" |
| ); |
| |
| U_BOOT_CMD( |
| vdd_read, 1, 0, do_vdd_read, |
| "read VDD", |
| " - Read the voltage specified in mV" |
| ) |