| // SPDX-License-Identifier: LGPL-2.1+ |
| /* |
| * This implementation is based on code from uClibc-0.9.30.3 but was |
| * modified and extended for use within U-Boot. |
| * |
| * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de> |
| * |
| * Original license header: |
| * |
| * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. |
| * This file is part of the GNU C Library. |
| * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. |
| */ |
| |
| #include <errno.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <sort.h> |
| |
| #ifdef USE_HOSTCC /* HOST build */ |
| # include <string.h> |
| # include <assert.h> |
| # include <ctype.h> |
| |
| # ifndef debug |
| # ifdef DEBUG |
| # define debug(fmt,args...) printf(fmt ,##args) |
| # else |
| # define debug(fmt,args...) |
| # endif |
| # endif |
| #else /* U-Boot build */ |
| # include <common.h> |
| # include <linux/string.h> |
| # include <linux/ctype.h> |
| #endif |
| |
| #define USED_FREE 0 |
| #define USED_DELETED -1 |
| |
| #include <env_callback.h> |
| #include <env_flags.h> |
| #include <search.h> |
| #include <slre.h> |
| |
| /* |
| * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 |
| * [Knuth] The Art of Computer Programming, part 3 (6.4) |
| */ |
| |
| /* |
| * The reentrant version has no static variables to maintain the state. |
| * Instead the interface of all functions is extended to take an argument |
| * which describes the current status. |
| */ |
| |
| struct env_entry_node { |
| int used; |
| struct env_entry entry; |
| }; |
| |
| |
| static void _hdelete(const char *key, struct hsearch_data *htab, |
| struct env_entry *ep, int idx); |
| |
| /* |
| * hcreate() |
| */ |
| |
| /* |
| * For the used double hash method the table size has to be a prime. To |
| * correct the user given table size we need a prime test. This trivial |
| * algorithm is adequate because |
| * a) the code is (most probably) called a few times per program run and |
| * b) the number is small because the table must fit in the core |
| * */ |
| static int isprime(unsigned int number) |
| { |
| /* no even number will be passed */ |
| unsigned int div = 3; |
| |
| while (div * div < number && number % div != 0) |
| div += 2; |
| |
| return number % div != 0; |
| } |
| |
| /* |
| * Before using the hash table we must allocate memory for it. |
| * Test for an existing table are done. We allocate one element |
| * more as the found prime number says. This is done for more effective |
| * indexing as explained in the comment for the hsearch function. |
| * The contents of the table is zeroed, especially the field used |
| * becomes zero. |
| */ |
| |
| int hcreate_r(size_t nel, struct hsearch_data *htab) |
| { |
| /* Test for correct arguments. */ |
| if (htab == NULL) { |
| __set_errno(EINVAL); |
| return 0; |
| } |
| |
| /* There is still another table active. Return with error. */ |
| if (htab->table != NULL) { |
| __set_errno(EINVAL); |
| return 0; |
| } |
| |
| /* Change nel to the first prime number not smaller as nel. */ |
| nel |= 1; /* make odd */ |
| while (!isprime(nel)) |
| nel += 2; |
| |
| htab->size = nel; |
| htab->filled = 0; |
| |
| /* allocate memory and zero out */ |
| htab->table = (struct env_entry_node *)calloc(htab->size + 1, |
| sizeof(struct env_entry_node)); |
| if (htab->table == NULL) { |
| __set_errno(ENOMEM); |
| return 0; |
| } |
| |
| /* everything went alright */ |
| return 1; |
| } |
| |
| |
| /* |
| * hdestroy() |
| */ |
| |
| /* |
| * After using the hash table it has to be destroyed. The used memory can |
| * be freed and the local static variable can be marked as not used. |
| */ |
| |
| void hdestroy_r(struct hsearch_data *htab) |
| { |
| int i; |
| |
| /* Test for correct arguments. */ |
| if (htab == NULL) { |
| __set_errno(EINVAL); |
| return; |
| } |
| |
| /* free used memory */ |
| for (i = 1; i <= htab->size; ++i) { |
| if (htab->table[i].used > 0) { |
| struct env_entry *ep = &htab->table[i].entry; |
| |
| free((void *)ep->key); |
| free(ep->data); |
| } |
| } |
| free(htab->table); |
| |
| /* the sign for an existing table is an value != NULL in htable */ |
| htab->table = NULL; |
| } |
| |
| /* |
| * hsearch() |
| */ |
| |
| /* |
| * This is the search function. It uses double hashing with open addressing. |
| * The argument item.key has to be a pointer to an zero terminated, most |
| * probably strings of chars. The function for generating a number of the |
| * strings is simple but fast. It can be replaced by a more complex function |
| * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. |
| * |
| * We use an trick to speed up the lookup. The table is created by hcreate |
| * with one more element available. This enables us to use the index zero |
| * special. This index will never be used because we store the first hash |
| * index in the field used where zero means not used. Every other value |
| * means used. The used field can be used as a first fast comparison for |
| * equality of the stored and the parameter value. This helps to prevent |
| * unnecessary expensive calls of strcmp. |
| * |
| * This implementation differs from the standard library version of |
| * this function in a number of ways: |
| * |
| * - While the standard version does not make any assumptions about |
| * the type of the stored data objects at all, this implementation |
| * works with NUL terminated strings only. |
| * - Instead of storing just pointers to the original objects, we |
| * create local copies so the caller does not need to care about the |
| * data any more. |
| * - The standard implementation does not provide a way to update an |
| * existing entry. This version will create a new entry or update an |
| * existing one when both "action == ENV_ENTER" and "item.data != NULL". |
| * - Instead of returning 1 on success, we return the index into the |
| * internal hash table, which is also guaranteed to be positive. |
| * This allows us direct access to the found hash table slot for |
| * example for functions like hdelete(). |
| */ |
| |
| int hmatch_r(const char *match, int last_idx, struct env_entry **retval, |
| struct hsearch_data *htab) |
| { |
| unsigned int idx; |
| size_t key_len = strlen(match); |
| |
| for (idx = last_idx + 1; idx < htab->size; ++idx) { |
| if (htab->table[idx].used <= 0) |
| continue; |
| if (!strncmp(match, htab->table[idx].entry.key, key_len)) { |
| *retval = &htab->table[idx].entry; |
| return idx; |
| } |
| } |
| |
| __set_errno(ESRCH); |
| *retval = NULL; |
| return 0; |
| } |
| |
| static int |
| do_callback(const struct env_entry *e, const char *name, const char *value, |
| enum env_op op, int flags) |
| { |
| #ifndef CONFIG_SPL_BUILD |
| if (e->callback) |
| return e->callback(name, value, op, flags); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Compare an existing entry with the desired key, and overwrite if the action |
| * is ENV_ENTER. This is simply a helper function for hsearch_r(). |
| */ |
| static inline int _compare_and_overwrite_entry(struct env_entry item, |
| enum env_action action, struct env_entry **retval, |
| struct hsearch_data *htab, int flag, unsigned int hval, |
| unsigned int idx) |
| { |
| if (htab->table[idx].used == hval |
| && strcmp(item.key, htab->table[idx].entry.key) == 0) { |
| /* Overwrite existing value? */ |
| if (action == ENV_ENTER && item.data) { |
| /* check for permission */ |
| if (htab->change_ok != NULL && htab->change_ok( |
| &htab->table[idx].entry, item.data, |
| env_op_overwrite, flag)) { |
| debug("change_ok() rejected setting variable " |
| "%s, skipping it!\n", item.key); |
| __set_errno(EPERM); |
| *retval = NULL; |
| return 0; |
| } |
| |
| /* If there is a callback, call it */ |
| if (do_callback(&htab->table[idx].entry, item.key, |
| item.data, env_op_overwrite, flag)) { |
| debug("callback() rejected setting variable " |
| "%s, skipping it!\n", item.key); |
| __set_errno(EINVAL); |
| *retval = NULL; |
| return 0; |
| } |
| |
| free(htab->table[idx].entry.data); |
| htab->table[idx].entry.data = strdup(item.data); |
| if (!htab->table[idx].entry.data) { |
| __set_errno(ENOMEM); |
| *retval = NULL; |
| return 0; |
| } |
| } |
| /* return found entry */ |
| *retval = &htab->table[idx].entry; |
| return idx; |
| } |
| /* keep searching */ |
| return -1; |
| } |
| |
| int hsearch_r(struct env_entry item, enum env_action action, |
| struct env_entry **retval, struct hsearch_data *htab, int flag) |
| { |
| unsigned int hval; |
| unsigned int count; |
| unsigned int len = strlen(item.key); |
| unsigned int idx; |
| unsigned int first_deleted = 0; |
| int ret; |
| |
| /* Compute an value for the given string. Perhaps use a better method. */ |
| hval = len; |
| count = len; |
| while (count-- > 0) { |
| hval <<= 4; |
| hval += item.key[count]; |
| } |
| |
| /* |
| * First hash function: |
| * simply take the modul but prevent zero. |
| */ |
| hval %= htab->size; |
| if (hval == 0) |
| ++hval; |
| |
| /* The first index tried. */ |
| idx = hval; |
| |
| if (htab->table[idx].used) { |
| /* |
| * Further action might be required according to the |
| * action value. |
| */ |
| unsigned hval2; |
| |
| if (htab->table[idx].used == USED_DELETED) |
| first_deleted = idx; |
| |
| ret = _compare_and_overwrite_entry(item, action, retval, htab, |
| flag, hval, idx); |
| if (ret != -1) |
| return ret; |
| |
| /* |
| * Second hash function: |
| * as suggested in [Knuth] |
| */ |
| hval2 = 1 + hval % (htab->size - 2); |
| |
| do { |
| /* |
| * Because SIZE is prime this guarantees to |
| * step through all available indices. |
| */ |
| if (idx <= hval2) |
| idx = htab->size + idx - hval2; |
| else |
| idx -= hval2; |
| |
| /* |
| * If we visited all entries leave the loop |
| * unsuccessfully. |
| */ |
| if (idx == hval) |
| break; |
| |
| if (htab->table[idx].used == USED_DELETED |
| && !first_deleted) |
| first_deleted = idx; |
| |
| /* If entry is found use it. */ |
| ret = _compare_and_overwrite_entry(item, action, retval, |
| htab, flag, hval, idx); |
| if (ret != -1) |
| return ret; |
| } |
| while (htab->table[idx].used != USED_FREE); |
| } |
| |
| /* An empty bucket has been found. */ |
| if (action == ENV_ENTER) { |
| /* |
| * If table is full and another entry should be |
| * entered return with error. |
| */ |
| if (htab->filled == htab->size) { |
| __set_errno(ENOMEM); |
| *retval = NULL; |
| return 0; |
| } |
| |
| /* |
| * Create new entry; |
| * create copies of item.key and item.data |
| */ |
| if (first_deleted) |
| idx = first_deleted; |
| |
| htab->table[idx].used = hval; |
| htab->table[idx].entry.key = strdup(item.key); |
| htab->table[idx].entry.data = strdup(item.data); |
| if (!htab->table[idx].entry.key || |
| !htab->table[idx].entry.data) { |
| __set_errno(ENOMEM); |
| *retval = NULL; |
| return 0; |
| } |
| |
| ++htab->filled; |
| |
| /* This is a new entry, so look up a possible callback */ |
| env_callback_init(&htab->table[idx].entry); |
| /* Also look for flags */ |
| env_flags_init(&htab->table[idx].entry); |
| |
| /* check for permission */ |
| if (htab->change_ok != NULL && htab->change_ok( |
| &htab->table[idx].entry, item.data, env_op_create, flag)) { |
| debug("change_ok() rejected setting variable " |
| "%s, skipping it!\n", item.key); |
| _hdelete(item.key, htab, &htab->table[idx].entry, idx); |
| __set_errno(EPERM); |
| *retval = NULL; |
| return 0; |
| } |
| |
| /* If there is a callback, call it */ |
| if (do_callback(&htab->table[idx].entry, item.key, item.data, |
| env_op_create, flag)) { |
| debug("callback() rejected setting variable " |
| "%s, skipping it!\n", item.key); |
| _hdelete(item.key, htab, &htab->table[idx].entry, idx); |
| __set_errno(EINVAL); |
| *retval = NULL; |
| return 0; |
| } |
| |
| /* return new entry */ |
| *retval = &htab->table[idx].entry; |
| return 1; |
| } |
| |
| __set_errno(ESRCH); |
| *retval = NULL; |
| return 0; |
| } |
| |
| |
| /* |
| * hdelete() |
| */ |
| |
| /* |
| * The standard implementation of hsearch(3) does not provide any way |
| * to delete any entries from the hash table. We extend the code to |
| * do that. |
| */ |
| |
| static void _hdelete(const char *key, struct hsearch_data *htab, |
| struct env_entry *ep, int idx) |
| { |
| /* free used entry */ |
| debug("hdelete: DELETING key \"%s\"\n", key); |
| free((void *)ep->key); |
| free(ep->data); |
| ep->flags = 0; |
| htab->table[idx].used = USED_DELETED; |
| |
| --htab->filled; |
| } |
| |
| int hdelete_r(const char *key, struct hsearch_data *htab, int flag) |
| { |
| struct env_entry e, *ep; |
| int idx; |
| |
| debug("hdelete: DELETE key \"%s\"\n", key); |
| |
| e.key = (char *)key; |
| |
| idx = hsearch_r(e, ENV_FIND, &ep, htab, 0); |
| if (idx == 0) { |
| __set_errno(ESRCH); |
| return -ENOENT; /* not found */ |
| } |
| |
| /* Check for permission */ |
| if (htab->change_ok != NULL && |
| htab->change_ok(ep, NULL, env_op_delete, flag)) { |
| debug("change_ok() rejected deleting variable " |
| "%s, skipping it!\n", key); |
| __set_errno(EPERM); |
| return -EPERM; |
| } |
| |
| /* If there is a callback, call it */ |
| if (do_callback(&htab->table[idx].entry, key, NULL, |
| env_op_delete, flag)) { |
| debug("callback() rejected deleting variable " |
| "%s, skipping it!\n", key); |
| __set_errno(EINVAL); |
| return -EINVAL; |
| } |
| |
| _hdelete(key, htab, ep, idx); |
| |
| return 0; |
| } |
| |
| #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV)) |
| /* |
| * hexport() |
| */ |
| |
| /* |
| * Export the data stored in the hash table in linearized form. |
| * |
| * Entries are exported as "name=value" strings, separated by an |
| * arbitrary (non-NUL, of course) separator character. This allows to |
| * use this function both when formatting the U-Boot environment for |
| * external storage (using '\0' as separator), but also when using it |
| * for the "printenv" command to print all variables, simply by using |
| * as '\n" as separator. This can also be used for new features like |
| * exporting the environment data as text file, including the option |
| * for later re-import. |
| * |
| * The entries in the result list will be sorted by ascending key |
| * values. |
| * |
| * If the separator character is different from NUL, then any |
| * separator characters and backslash characters in the values will |
| * be escaped by a preceding backslash in output. This is needed for |
| * example to enable multi-line values, especially when the output |
| * shall later be parsed (for example, for re-import). |
| * |
| * There are several options how the result buffer is handled: |
| * |
| * *resp size |
| * ----------- |
| * NULL 0 A string of sufficient length will be allocated. |
| * NULL >0 A string of the size given will be |
| * allocated. An error will be returned if the size is |
| * not sufficient. Any unused bytes in the string will |
| * be '\0'-padded. |
| * !NULL 0 The user-supplied buffer will be used. No length |
| * checking will be performed, i. e. it is assumed that |
| * the buffer size will always be big enough. DANGEROUS. |
| * !NULL >0 The user-supplied buffer will be used. An error will |
| * be returned if the size is not sufficient. Any unused |
| * bytes in the string will be '\0'-padded. |
| */ |
| |
| static int cmpkey(const void *p1, const void *p2) |
| { |
| struct env_entry *e1 = *(struct env_entry **)p1; |
| struct env_entry *e2 = *(struct env_entry **)p2; |
| |
| return (strcmp(e1->key, e2->key)); |
| } |
| |
| static int match_string(int flag, const char *str, const char *pat, void *priv) |
| { |
| switch (flag & H_MATCH_METHOD) { |
| case H_MATCH_IDENT: |
| if (strcmp(str, pat) == 0) |
| return 1; |
| break; |
| case H_MATCH_SUBSTR: |
| if (strstr(str, pat)) |
| return 1; |
| break; |
| #ifdef CONFIG_REGEX |
| case H_MATCH_REGEX: |
| { |
| struct slre *slrep = (struct slre *)priv; |
| |
| if (slre_match(slrep, str, strlen(str), NULL)) |
| return 1; |
| } |
| break; |
| #endif |
| default: |
| printf("## ERROR: unsupported match method: 0x%02x\n", |
| flag & H_MATCH_METHOD); |
| break; |
| } |
| return 0; |
| } |
| |
| static int match_entry(struct env_entry *ep, int flag, int argc, |
| char *const argv[]) |
| { |
| int arg; |
| void *priv = NULL; |
| |
| for (arg = 0; arg < argc; ++arg) { |
| #ifdef CONFIG_REGEX |
| struct slre slre; |
| |
| if (slre_compile(&slre, argv[arg]) == 0) { |
| printf("Error compiling regex: %s\n", slre.err_str); |
| return 0; |
| } |
| |
| priv = (void *)&slre; |
| #endif |
| if (flag & H_MATCH_KEY) { |
| if (match_string(flag, ep->key, argv[arg], priv)) |
| return 1; |
| } |
| if (flag & H_MATCH_DATA) { |
| if (match_string(flag, ep->data, argv[arg], priv)) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag, |
| char **resp, size_t size, |
| int argc, char *const argv[]) |
| { |
| struct env_entry *list[htab->size]; |
| char *res, *p; |
| size_t totlen; |
| int i, n; |
| |
| /* Test for correct arguments. */ |
| if ((resp == NULL) || (htab == NULL)) { |
| __set_errno(EINVAL); |
| return (-1); |
| } |
| |
| debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %lu\n", |
| htab, htab->size, htab->filled, (ulong)size); |
| /* |
| * Pass 1: |
| * search used entries, |
| * save addresses and compute total length |
| */ |
| for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { |
| |
| if (htab->table[i].used > 0) { |
| struct env_entry *ep = &htab->table[i].entry; |
| int found = match_entry(ep, flag, argc, argv); |
| |
| if ((argc > 0) && (found == 0)) |
| continue; |
| |
| if ((flag & H_HIDE_DOT) && ep->key[0] == '.') |
| continue; |
| |
| list[n++] = ep; |
| |
| totlen += strlen(ep->key); |
| |
| if (sep == '\0') { |
| totlen += strlen(ep->data); |
| } else { /* check if escapes are needed */ |
| char *s = ep->data; |
| |
| while (*s) { |
| ++totlen; |
| /* add room for needed escape chars */ |
| if ((*s == sep) || (*s == '\\')) |
| ++totlen; |
| ++s; |
| } |
| } |
| totlen += 2; /* for '=' and 'sep' char */ |
| } |
| } |
| |
| #ifdef DEBUG |
| /* Pass 1a: print unsorted list */ |
| printf("Unsorted: n=%d\n", n); |
| for (i = 0; i < n; ++i) { |
| printf("\t%3d: %p ==> %-10s => %s\n", |
| i, list[i], list[i]->key, list[i]->data); |
| } |
| #endif |
| |
| /* Sort list by keys */ |
| qsort(list, n, sizeof(struct env_entry *), cmpkey); |
| |
| /* Check if the user supplied buffer size is sufficient */ |
| if (size) { |
| if (size < totlen + 1) { /* provided buffer too small */ |
| printf("Env export buffer too small: %lu, but need %lu\n", |
| (ulong)size, (ulong)totlen + 1); |
| __set_errno(ENOMEM); |
| return (-1); |
| } |
| } else { |
| size = totlen + 1; |
| } |
| |
| /* Check if the user provided a buffer */ |
| if (*resp) { |
| /* yes; clear it */ |
| res = *resp; |
| memset(res, '\0', size); |
| } else { |
| /* no, allocate and clear one */ |
| *resp = res = calloc(1, size); |
| if (res == NULL) { |
| __set_errno(ENOMEM); |
| return (-1); |
| } |
| } |
| /* |
| * Pass 2: |
| * export sorted list of result data |
| */ |
| for (i = 0, p = res; i < n; ++i) { |
| const char *s; |
| |
| s = list[i]->key; |
| while (*s) |
| *p++ = *s++; |
| *p++ = '='; |
| |
| s = list[i]->data; |
| |
| while (*s) { |
| if ((*s == sep) || (*s == '\\')) |
| *p++ = '\\'; /* escape */ |
| *p++ = *s++; |
| } |
| *p++ = sep; |
| } |
| *p = '\0'; /* terminate result */ |
| |
| return size; |
| } |
| #endif |
| |
| |
| /* |
| * himport() |
| */ |
| |
| /* |
| * Check whether variable 'name' is amongst vars[], |
| * and remove all instances by setting the pointer to NULL |
| */ |
| static int drop_var_from_set(const char *name, int nvars, char * vars[]) |
| { |
| int i = 0; |
| int res = 0; |
| |
| /* No variables specified means process all of them */ |
| if (nvars == 0) |
| return 1; |
| |
| for (i = 0; i < nvars; i++) { |
| if (vars[i] == NULL) |
| continue; |
| /* If we found it, delete all of them */ |
| if (!strcmp(name, vars[i])) { |
| vars[i] = NULL; |
| res = 1; |
| } |
| } |
| if (!res) |
| debug("Skipping non-listed variable %s\n", name); |
| |
| return res; |
| } |
| |
| /* |
| * Import linearized data into hash table. |
| * |
| * This is the inverse function to hexport(): it takes a linear list |
| * of "name=value" pairs and creates hash table entries from it. |
| * |
| * Entries without "value", i. e. consisting of only "name" or |
| * "name=", will cause this entry to be deleted from the hash table. |
| * |
| * The "flag" argument can be used to control the behaviour: when the |
| * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. |
| * new data will be added to an existing hash table; otherwise, if no |
| * vars are passed, old data will be discarded and a new hash table |
| * will be created. If vars are passed, passed vars that are not in |
| * the linear list of "name=value" pairs will be removed from the |
| * current hash table. |
| * |
| * The separator character for the "name=value" pairs can be selected, |
| * so we both support importing from externally stored environment |
| * data (separated by NUL characters) and from plain text files |
| * (entries separated by newline characters). |
| * |
| * To allow for nicely formatted text input, leading white space |
| * (sequences of SPACE and TAB chars) is ignored, and entries starting |
| * (after removal of any leading white space) with a '#' character are |
| * considered comments and ignored. |
| * |
| * [NOTE: this means that a variable name cannot start with a '#' |
| * character.] |
| * |
| * When using a non-NUL separator character, backslash is used as |
| * escape character in the value part, allowing for example for |
| * multi-line values. |
| * |
| * In theory, arbitrary separator characters can be used, but only |
| * '\0' and '\n' have really been tested. |
| */ |
| |
| int himport_r(struct hsearch_data *htab, |
| const char *env, size_t size, const char sep, int flag, |
| int crlf_is_lf, int nvars, char * const vars[]) |
| { |
| char *data, *sp, *dp, *name, *value; |
| char *localvars[nvars]; |
| int i; |
| |
| /* Test for correct arguments. */ |
| if (htab == NULL) { |
| __set_errno(EINVAL); |
| return 0; |
| } |
| |
| /* we allocate new space to make sure we can write to the array */ |
| if ((data = malloc(size + 1)) == NULL) { |
| debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1); |
| __set_errno(ENOMEM); |
| return 0; |
| } |
| memcpy(data, env, size); |
| data[size] = '\0'; |
| dp = data; |
| |
| /* make a local copy of the list of variables */ |
| if (nvars) |
| memcpy(localvars, vars, sizeof(vars[0]) * nvars); |
| |
| #if CONFIG_IS_ENABLED(ENV_APPEND) |
| flag |= H_NOCLEAR; |
| #endif |
| |
| if ((flag & H_NOCLEAR) == 0 && !nvars) { |
| /* Destroy old hash table if one exists */ |
| debug("Destroy Hash Table: %p table = %p\n", htab, |
| htab->table); |
| if (htab->table) |
| hdestroy_r(htab); |
| } |
| |
| /* |
| * Create new hash table (if needed). The computation of the hash |
| * table size is based on heuristics: in a sample of some 70+ |
| * existing systems we found an average size of 39+ bytes per entry |
| * in the environment (for the whole key=value pair). Assuming a |
| * size of 8 per entry (= safety factor of ~5) should provide enough |
| * safety margin for any existing environment definitions and still |
| * allow for more than enough dynamic additions. Note that the |
| * "size" argument is supposed to give the maximum environment size |
| * (CONFIG_ENV_SIZE). This heuristics will result in |
| * unreasonably large numbers (and thus memory footprint) for |
| * big flash environments (>8,000 entries for 64 KB |
| * environment size), so we clip it to a reasonable value. |
| * On the other hand we need to add some more entries for free |
| * space when importing very small buffers. Both boundaries can |
| * be overwritten in the board config file if needed. |
| */ |
| |
| if (!htab->table) { |
| int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; |
| |
| if (nent > CONFIG_ENV_MAX_ENTRIES) |
| nent = CONFIG_ENV_MAX_ENTRIES; |
| |
| debug("Create Hash Table: N=%d\n", nent); |
| |
| if (hcreate_r(nent, htab) == 0) { |
| free(data); |
| return 0; |
| } |
| } |
| |
| if (!size) { |
| free(data); |
| return 1; /* everything OK */ |
| } |
| if(crlf_is_lf) { |
| /* Remove Carriage Returns in front of Line Feeds */ |
| unsigned ignored_crs = 0; |
| for(;dp < data + size && *dp; ++dp) { |
| if(*dp == '\r' && |
| dp < data + size - 1 && *(dp+1) == '\n') |
| ++ignored_crs; |
| else |
| *(dp-ignored_crs) = *dp; |
| } |
| size -= ignored_crs; |
| dp = data; |
| } |
| /* Parse environment; allow for '\0' and 'sep' as separators */ |
| do { |
| struct env_entry e, *rv; |
| |
| /* skip leading white space */ |
| while (isblank(*dp)) |
| ++dp; |
| |
| /* skip comment lines */ |
| if (*dp == '#') { |
| while (*dp && (*dp != sep)) |
| ++dp; |
| ++dp; |
| continue; |
| } |
| |
| /* parse name */ |
| for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) |
| ; |
| |
| /* deal with "name" and "name=" entries (delete var) */ |
| if (*dp == '\0' || *(dp + 1) == '\0' || |
| *dp == sep || *(dp + 1) == sep) { |
| if (*dp == '=') |
| *dp++ = '\0'; |
| *dp++ = '\0'; /* terminate name */ |
| |
| debug("DELETE CANDIDATE: \"%s\"\n", name); |
| if (!drop_var_from_set(name, nvars, localvars)) |
| continue; |
| |
| if (hdelete_r(name, htab, flag)) |
| debug("DELETE ERROR ##############################\n"); |
| |
| continue; |
| } |
| *dp++ = '\0'; /* terminate name */ |
| |
| /* parse value; deal with escapes */ |
| for (value = sp = dp; *dp && (*dp != sep); ++dp) { |
| if ((*dp == '\\') && *(dp + 1)) |
| ++dp; |
| *sp++ = *dp; |
| } |
| *sp++ = '\0'; /* terminate value */ |
| ++dp; |
| |
| if (*name == 0) { |
| debug("INSERT: unable to use an empty key\n"); |
| __set_errno(EINVAL); |
| free(data); |
| return 0; |
| } |
| |
| /* Skip variables which are not supposed to be processed */ |
| if (!drop_var_from_set(name, nvars, localvars)) |
| continue; |
| |
| /* enter into hash table */ |
| e.key = name; |
| e.data = value; |
| |
| hsearch_r(e, ENV_ENTER, &rv, htab, flag); |
| #if !CONFIG_IS_ENABLED(ENV_WRITEABLE_LIST) |
| if (rv == NULL) { |
| printf("himport_r: can't insert \"%s=%s\" into hash table\n", |
| name, value); |
| } |
| #endif |
| |
| debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", |
| htab, htab->filled, htab->size, |
| rv, name, value); |
| } while ((dp < data + size) && *dp); /* size check needed for text */ |
| /* without '\0' termination */ |
| debug("INSERT: free(data = %p)\n", data); |
| free(data); |
| |
| if (flag & H_NOCLEAR) |
| goto end; |
| |
| /* process variables which were not considered */ |
| for (i = 0; i < nvars; i++) { |
| if (localvars[i] == NULL) |
| continue; |
| /* |
| * All variables which were not deleted from the variable list |
| * were not present in the imported env |
| * This could mean two things: |
| * a) if the variable was present in current env, we delete it |
| * b) if the variable was not present in current env, we notify |
| * it might be a typo |
| */ |
| if (hdelete_r(localvars[i], htab, flag)) |
| printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]); |
| else |
| printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]); |
| } |
| |
| end: |
| debug("INSERT: done\n"); |
| return 1; /* everything OK */ |
| } |
| |
| /* |
| * hwalk_r() |
| */ |
| |
| /* |
| * Walk all of the entries in the hash, calling the callback for each one. |
| * this allows some generic operation to be performed on each element. |
| */ |
| int hwalk_r(struct hsearch_data *htab, int (*callback)(struct env_entry *entry)) |
| { |
| int i; |
| int retval; |
| |
| for (i = 1; i <= htab->size; ++i) { |
| if (htab->table[i].used > 0) { |
| retval = callback(&htab->table[i].entry); |
| if (retval) |
| return retval; |
| } |
| } |
| |
| return 0; |
| } |