| /* |
| * drivers/mtd/nand/nand_util.c |
| * |
| * Copyright (C) 2006 by Weiss-Electronic GmbH. |
| * All rights reserved. |
| * |
| * @author: Guido Classen <clagix@gmail.com> |
| * @descr: NAND Flash support |
| * @references: borrowed heavily from Linux mtd-utils code: |
| * flash_eraseall.c by Arcom Control System Ltd |
| * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com) |
| * and Thomas Gleixner (tglx@linutronix.de) |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License version |
| * 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| * |
| * Copyright 2010 Freescale Semiconductor |
| * The portions of this file whose copyright is held by Freescale and which |
| * are not considered a derived work of GPL v2-only code may be distributed |
| * and/or modified under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <watchdog.h> |
| #include <malloc.h> |
| #include <div64.h> |
| |
| #include <asm/errno.h> |
| #include <linux/mtd/mtd.h> |
| #include <nand.h> |
| #include <jffs2/jffs2.h> |
| |
| typedef struct erase_info erase_info_t; |
| typedef struct mtd_info mtd_info_t; |
| |
| /* support only for native endian JFFS2 */ |
| #define cpu_to_je16(x) (x) |
| #define cpu_to_je32(x) (x) |
| |
| /*****************************************************************************/ |
| static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip) |
| { |
| return 0; |
| } |
| |
| /** |
| * nand_erase_opts: - erase NAND flash with support for various options |
| * (jffs2 formating) |
| * |
| * @param meminfo NAND device to erase |
| * @param opts options, @see struct nand_erase_options |
| * @return 0 in case of success |
| * |
| * This code is ported from flash_eraseall.c from Linux mtd utils by |
| * Arcom Control System Ltd. |
| */ |
| int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts) |
| { |
| struct jffs2_unknown_node cleanmarker; |
| erase_info_t erase; |
| unsigned long erase_length, erased_length; /* in blocks */ |
| int bbtest = 1; |
| int result; |
| int percent_complete = -1; |
| int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL; |
| const char *mtd_device = meminfo->name; |
| struct mtd_oob_ops oob_opts; |
| struct nand_chip *chip = meminfo->priv; |
| |
| if ((opts->offset & (meminfo->writesize - 1)) != 0) { |
| printf("Attempt to erase non page aligned data\n"); |
| return -1; |
| } |
| |
| memset(&erase, 0, sizeof(erase)); |
| memset(&oob_opts, 0, sizeof(oob_opts)); |
| |
| erase.mtd = meminfo; |
| erase.len = meminfo->erasesize; |
| erase.addr = opts->offset; |
| erase_length = lldiv(opts->length + meminfo->erasesize - 1, |
| meminfo->erasesize); |
| |
| cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); |
| cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); |
| cleanmarker.totlen = cpu_to_je32(8); |
| |
| /* scrub option allows to erase badblock. To prevent internal |
| * check from erase() method, set block check method to dummy |
| * and disable bad block table while erasing. |
| */ |
| if (opts->scrub) { |
| struct nand_chip *priv_nand = meminfo->priv; |
| |
| nand_block_bad_old = priv_nand->block_bad; |
| priv_nand->block_bad = nand_block_bad_scrub; |
| /* we don't need the bad block table anymore... |
| * after scrub, there are no bad blocks left! |
| */ |
| if (priv_nand->bbt) { |
| kfree(priv_nand->bbt); |
| } |
| priv_nand->bbt = NULL; |
| } |
| |
| for (erased_length = 0; |
| erased_length < erase_length; |
| erase.addr += meminfo->erasesize) { |
| |
| WATCHDOG_RESET (); |
| |
| if (!opts->scrub && bbtest) { |
| int ret = meminfo->block_isbad(meminfo, erase.addr); |
| if (ret > 0) { |
| if (!opts->quiet) |
| printf("\rSkipping bad block at " |
| "0x%08llx " |
| " \n", |
| erase.addr); |
| |
| if (!opts->spread) |
| erased_length++; |
| |
| continue; |
| |
| } else if (ret < 0) { |
| printf("\n%s: MTD get bad block failed: %d\n", |
| mtd_device, |
| ret); |
| return -1; |
| } |
| } |
| |
| erased_length++; |
| |
| result = meminfo->erase(meminfo, &erase); |
| if (result != 0) { |
| printf("\n%s: MTD Erase failure: %d\n", |
| mtd_device, result); |
| continue; |
| } |
| |
| /* format for JFFS2 ? */ |
| if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) { |
| chip->ops.ooblen = 8; |
| chip->ops.datbuf = NULL; |
| chip->ops.oobbuf = (uint8_t *)&cleanmarker; |
| chip->ops.ooboffs = 0; |
| chip->ops.mode = MTD_OOB_AUTO; |
| |
| result = meminfo->write_oob(meminfo, |
| erase.addr, |
| &chip->ops); |
| if (result != 0) { |
| printf("\n%s: MTD writeoob failure: %d\n", |
| mtd_device, result); |
| continue; |
| } |
| } |
| |
| if (!opts->quiet) { |
| unsigned long long n = erased_length * 100ULL; |
| int percent; |
| |
| do_div(n, erase_length); |
| percent = (int)n; |
| |
| /* output progress message only at whole percent |
| * steps to reduce the number of messages printed |
| * on (slow) serial consoles |
| */ |
| if (percent != percent_complete) { |
| percent_complete = percent; |
| |
| printf("\rErasing at 0x%llx -- %3d%% complete.", |
| erase.addr, percent); |
| |
| if (opts->jffs2 && result == 0) |
| printf(" Cleanmarker written at 0x%llx.", |
| erase.addr); |
| } |
| } |
| } |
| if (!opts->quiet) |
| printf("\n"); |
| |
| if (nand_block_bad_old) { |
| struct nand_chip *priv_nand = meminfo->priv; |
| |
| priv_nand->block_bad = nand_block_bad_old; |
| priv_nand->scan_bbt(meminfo); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK |
| |
| /****************************************************************************** |
| * Support for locking / unlocking operations of some NAND devices |
| *****************************************************************************/ |
| |
| #define NAND_CMD_LOCK 0x2a |
| #define NAND_CMD_LOCK_TIGHT 0x2c |
| #define NAND_CMD_UNLOCK1 0x23 |
| #define NAND_CMD_UNLOCK2 0x24 |
| #define NAND_CMD_LOCK_STATUS 0x7a |
| |
| /** |
| * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT |
| * state |
| * |
| * @param mtd nand mtd instance |
| * @param tight bring device in lock tight mode |
| * |
| * @return 0 on success, -1 in case of error |
| * |
| * The lock / lock-tight command only applies to the whole chip. To get some |
| * parts of the chip lock and others unlocked use the following sequence: |
| * |
| * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin) |
| * - Call nand_unlock() once for each consecutive area to be unlocked |
| * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1) |
| * |
| * If the device is in lock-tight state software can't change the |
| * current active lock/unlock state of all pages. nand_lock() / nand_unlock() |
| * calls will fail. It is only posible to leave lock-tight state by |
| * an hardware signal (low pulse on _WP pin) or by power down. |
| */ |
| int nand_lock(struct mtd_info *mtd, int tight) |
| { |
| int ret = 0; |
| int status; |
| struct nand_chip *chip = mtd->priv; |
| |
| /* select the NAND device */ |
| chip->select_chip(mtd, 0); |
| |
| chip->cmdfunc(mtd, |
| (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK), |
| -1, -1); |
| |
| /* call wait ready function */ |
| status = chip->waitfunc(mtd, chip); |
| |
| /* see if device thinks it succeeded */ |
| if (status & 0x01) { |
| ret = -1; |
| } |
| |
| /* de-select the NAND device */ |
| chip->select_chip(mtd, -1); |
| return ret; |
| } |
| |
| /** |
| * nand_get_lock_status: - query current lock state from one page of NAND |
| * flash |
| * |
| * @param mtd nand mtd instance |
| * @param offset page address to query (muss be page aligned!) |
| * |
| * @return -1 in case of error |
| * >0 lock status: |
| * bitfield with the following combinations: |
| * NAND_LOCK_STATUS_TIGHT: page in tight state |
| * NAND_LOCK_STATUS_LOCK: page locked |
| * NAND_LOCK_STATUS_UNLOCK: page unlocked |
| * |
| */ |
| int nand_get_lock_status(struct mtd_info *mtd, loff_t offset) |
| { |
| int ret = 0; |
| int chipnr; |
| int page; |
| struct nand_chip *chip = mtd->priv; |
| |
| /* select the NAND device */ |
| chipnr = (int)(offset >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| |
| if ((offset & (mtd->writesize - 1)) != 0) { |
| printf ("nand_get_lock_status: " |
| "Start address must be beginning of " |
| "nand page!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* check the Lock Status */ |
| page = (int)(offset >> chip->page_shift); |
| chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); |
| |
| ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT |
| | NAND_LOCK_STATUS_LOCK |
| | NAND_LOCK_STATUS_UNLOCK); |
| |
| out: |
| /* de-select the NAND device */ |
| chip->select_chip(mtd, -1); |
| return ret; |
| } |
| |
| /** |
| * nand_unlock: - Unlock area of NAND pages |
| * only one consecutive area can be unlocked at one time! |
| * |
| * @param mtd nand mtd instance |
| * @param start start byte address |
| * @param length number of bytes to unlock (must be a multiple of |
| * page size nand->writesize) |
| * |
| * @return 0 on success, -1 in case of error |
| */ |
| int nand_unlock(struct mtd_info *mtd, ulong start, ulong length) |
| { |
| int ret = 0; |
| int chipnr; |
| int status; |
| int page; |
| struct nand_chip *chip = mtd->priv; |
| printf ("nand_unlock: start: %08x, length: %d!\n", |
| (int)start, (int)length); |
| |
| /* select the NAND device */ |
| chipnr = (int)(start >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| /* check the WP bit */ |
| chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) { |
| printf ("nand_unlock: Device is write protected!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| if ((start & (mtd->erasesize - 1)) != 0) { |
| printf ("nand_unlock: Start address must be beginning of " |
| "nand block!\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| if (length == 0 || (length & (mtd->erasesize - 1)) != 0) { |
| printf ("nand_unlock: Length must be a multiple of nand block " |
| "size %08x!\n", mtd->erasesize); |
| ret = -1; |
| goto out; |
| } |
| |
| /* |
| * Set length so that the last address is set to the |
| * starting address of the last block |
| */ |
| length -= mtd->erasesize; |
| |
| /* submit address of first page to unlock */ |
| page = (int)(start >> chip->page_shift); |
| chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); |
| |
| /* submit ADDRESS of LAST page to unlock */ |
| page += (int)(length >> chip->page_shift); |
| chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask); |
| |
| /* call wait ready function */ |
| status = chip->waitfunc(mtd, chip); |
| /* see if device thinks it succeeded */ |
| if (status & 0x01) { |
| /* there was an error */ |
| ret = -1; |
| goto out; |
| } |
| |
| out: |
| /* de-select the NAND device */ |
| chip->select_chip(mtd, -1); |
| return ret; |
| } |
| #endif |
| |
| /** |
| * check_skip_len |
| * |
| * Check if there are any bad blocks, and whether length including bad |
| * blocks fits into device |
| * |
| * @param nand NAND device |
| * @param offset offset in flash |
| * @param length image length |
| * @return 0 if the image fits and there are no bad blocks |
| * 1 if the image fits, but there are bad blocks |
| * -1 if the image does not fit |
| */ |
| static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length) |
| { |
| size_t len_excl_bad = 0; |
| int ret = 0; |
| |
| while (len_excl_bad < length) { |
| size_t block_len, block_off; |
| loff_t block_start; |
| |
| if (offset >= nand->size) |
| return -1; |
| |
| block_start = offset & ~(loff_t)(nand->erasesize - 1); |
| block_off = offset & (nand->erasesize - 1); |
| block_len = nand->erasesize - block_off; |
| |
| if (!nand_block_isbad(nand, block_start)) |
| len_excl_bad += block_len; |
| else |
| ret = 1; |
| |
| offset += block_len; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * nand_write_skip_bad: |
| * |
| * Write image to NAND flash. |
| * Blocks that are marked bad are skipped and the is written to the next |
| * block instead as long as the image is short enough to fit even after |
| * skipping the bad blocks. |
| * |
| * @param nand NAND device |
| * @param offset offset in flash |
| * @param length buffer length |
| * @param buffer buffer to read from |
| * @param withoob whether write with yaffs format |
| * @return 0 in case of success |
| */ |
| int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, |
| u_char *buffer, int withoob) |
| { |
| int rval = 0, blocksize; |
| size_t left_to_write = *length; |
| u_char *p_buffer = buffer; |
| int need_skip; |
| |
| #ifdef CONFIG_CMD_NAND_YAFFS |
| if (withoob) { |
| int pages; |
| pages = nand->erasesize / nand->writesize; |
| blocksize = (pages * nand->oobsize) + nand->erasesize; |
| if (*length % (nand->writesize + nand->oobsize)) { |
| printf ("Attempt to write incomplete page" |
| " in yaffs mode\n"); |
| return -EINVAL; |
| } |
| } else |
| #endif |
| { |
| blocksize = nand->erasesize; |
| } |
| |
| /* |
| * nand_write() handles unaligned, partial page writes. |
| * |
| * We allow length to be unaligned, for convenience in |
| * using the $filesize variable. |
| * |
| * However, starting at an unaligned offset makes the |
| * semantics of bad block skipping ambiguous (really, |
| * you should only start a block skipping access at a |
| * partition boundary). So don't try to handle that. |
| */ |
| if ((offset & (nand->writesize - 1)) != 0) { |
| printf ("Attempt to write non page aligned data\n"); |
| *length = 0; |
| return -EINVAL; |
| } |
| |
| need_skip = check_skip_len(nand, offset, *length); |
| if (need_skip < 0) { |
| printf ("Attempt to write outside the flash area\n"); |
| *length = 0; |
| return -EINVAL; |
| } |
| |
| if (!need_skip) { |
| rval = nand_write (nand, offset, length, buffer); |
| if (rval == 0) |
| return 0; |
| |
| *length = 0; |
| printf ("NAND write to offset %llx failed %d\n", |
| offset, rval); |
| return rval; |
| } |
| |
| while (left_to_write > 0) { |
| size_t block_offset = offset & (nand->erasesize - 1); |
| size_t write_size; |
| |
| WATCHDOG_RESET (); |
| |
| if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) { |
| printf ("Skip bad block 0x%08llx\n", |
| offset & ~(nand->erasesize - 1)); |
| offset += nand->erasesize - block_offset; |
| continue; |
| } |
| |
| if (left_to_write < (blocksize - block_offset)) |
| write_size = left_to_write; |
| else |
| write_size = blocksize - block_offset; |
| |
| #ifdef CONFIG_CMD_NAND_YAFFS |
| if (withoob) { |
| int page, pages; |
| size_t pagesize = nand->writesize; |
| size_t pagesize_oob = pagesize + nand->oobsize; |
| struct mtd_oob_ops ops; |
| |
| ops.len = pagesize; |
| ops.ooblen = nand->oobsize; |
| ops.mode = MTD_OOB_AUTO; |
| ops.ooboffs = 0; |
| |
| pages = write_size / pagesize_oob; |
| for (page = 0; page < pages; page++) { |
| ops.datbuf = p_buffer; |
| ops.oobbuf = ops.datbuf + pagesize; |
| |
| rval = nand->write_oob(nand, offset, &ops); |
| if (!rval) |
| break; |
| |
| offset += pagesize; |
| p_buffer += pagesize_oob; |
| } |
| } |
| else |
| #endif |
| { |
| rval = nand_write (nand, offset, &write_size, p_buffer); |
| offset += write_size; |
| p_buffer += write_size; |
| } |
| |
| if (rval != 0) { |
| printf ("NAND write to offset %llx failed %d\n", |
| offset, rval); |
| *length -= left_to_write; |
| return rval; |
| } |
| |
| left_to_write -= write_size; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nand_read_skip_bad: |
| * |
| * Read image from NAND flash. |
| * Blocks that are marked bad are skipped and the next block is readen |
| * instead as long as the image is short enough to fit even after skipping the |
| * bad blocks. |
| * |
| * @param nand NAND device |
| * @param offset offset in flash |
| * @param length buffer length, on return holds remaining bytes to read |
| * @param buffer buffer to write to |
| * @return 0 in case of success |
| */ |
| int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, |
| u_char *buffer) |
| { |
| int rval; |
| size_t left_to_read = *length; |
| u_char *p_buffer = buffer; |
| int need_skip; |
| |
| if ((offset & (nand->writesize - 1)) != 0) { |
| printf ("Attempt to read non page aligned data\n"); |
| *length = 0; |
| return -EINVAL; |
| } |
| |
| need_skip = check_skip_len(nand, offset, *length); |
| if (need_skip < 0) { |
| printf ("Attempt to read outside the flash area\n"); |
| *length = 0; |
| return -EINVAL; |
| } |
| |
| if (!need_skip) { |
| rval = nand_read (nand, offset, length, buffer); |
| if (!rval || rval == -EUCLEAN) |
| return 0; |
| |
| *length = 0; |
| printf ("NAND read from offset %llx failed %d\n", |
| offset, rval); |
| return rval; |
| } |
| |
| while (left_to_read > 0) { |
| size_t block_offset = offset & (nand->erasesize - 1); |
| size_t read_length; |
| |
| WATCHDOG_RESET (); |
| |
| if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) { |
| printf ("Skipping bad block 0x%08llx\n", |
| offset & ~(nand->erasesize - 1)); |
| offset += nand->erasesize - block_offset; |
| continue; |
| } |
| |
| if (left_to_read < (nand->erasesize - block_offset)) |
| read_length = left_to_read; |
| else |
| read_length = nand->erasesize - block_offset; |
| |
| rval = nand_read (nand, offset, &read_length, p_buffer); |
| if (rval && rval != -EUCLEAN) { |
| printf ("NAND read from offset %llx failed %d\n", |
| offset, rval); |
| *length -= left_to_read; |
| return rval; |
| } |
| |
| left_to_read -= read_length; |
| offset += read_length; |
| p_buffer += read_length; |
| } |
| |
| return 0; |
| } |