| /* |
| * (C) Copyright 2006 DENX Software Engineering |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| |
| #if (CONFIG_COMMANDS & CFG_CMD_NAND) |
| #ifdef CONFIG_NEW_NAND_CODE |
| |
| #include <nand.h> |
| #include <asm/arch/pxa-regs.h> |
| |
| /* mk@tbd move this to pxa-regs */ |
| #define OSCR_CLK_FREQ 3.250 /* MHz */ |
| |
| #define CFG_DFC_DEBUG1 |
| #define CFG_DFC_DEBUG2 |
| |
| #ifdef CFG_DFC_DEBUG1 |
| # define DFC_DEBUG1(fmt, args...) printf(fmt, ##args) |
| #else |
| # define DFC_DEBUG1(fmt, args...) |
| #endif |
| |
| #ifdef CFG_DFC_DEBUG2 |
| # define DFC_DEBUG2(fmt, args...) printf(fmt, ##args) |
| #else |
| # define DFC_DEBUG2(fmt, args...) |
| #endif |
| |
| static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; |
| |
| static struct nand_bbt_descr delta_bbt_descr = { |
| .options = 0, |
| .offs = 0, |
| .len = 2, |
| .pattern = scan_ff_pattern |
| }; |
| |
| static struct nand_oobinfo delta_oob = { |
| .useecc = MTD_NANDECC_AUTOPLACE, |
| .eccbytes = 6, |
| .eccpos = {2, 3, 4, 5, 6, 7}, |
| .oobfree = { {8, 2}, {12, 4} } |
| }; |
| |
| |
| /* |
| * not required for Monahans DFC |
| */ |
| static void delta_hwcontrol(struct mtd_info *mtdinfo, int cmd) |
| { |
| return; |
| } |
| |
| /* read device ready pin */ |
| static int delta_device_ready(struct mtd_info *mtdinfo) |
| { |
| if(NDSR & NDSR_RDY) |
| return 1; |
| else |
| return 0; |
| return 0; |
| } |
| |
| /* |
| * Write buf to the DFC Controller Data Buffer |
| */ |
| static void delta_write_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| unsigned long bytes_multi = len & 0xfffffffc; |
| unsigned long rest = len & 0x3; |
| unsigned long *long_buf; |
| int i; |
| |
| if(bytes_multi) { |
| for(i=0; i<bytes_multi; i+=4) { |
| long_buf = (unsigned long*) &buf[i]; |
| NDDB = *long_buf; |
| } |
| } |
| if(rest) { |
| printf("delta_write_buf: ERROR, writing non 4-byte aligned data.\n"); |
| } |
| return; |
| } |
| |
| |
| /* |
| * These functions are quite problematic for the DFC. Luckily they are |
| * not used in the current nand code, except for nand_command, which |
| * we've defined our own anyway. The problem is, that we always need |
| * to write 4 bytes to the DFC Data Buffer, but in these functions we |
| * don't know if to buffer the bytes/half words until we've gathered 4 |
| * bytes or if to send them straight away. |
| * |
| * Solution: Don't use these with Mona's DFC and complain loudly. |
| */ |
| static void delta_write_word(struct mtd_info *mtd, u16 word) |
| { |
| printf("delta_write_word: WARNING, this function does not work with the Monahans DFC!\n"); |
| } |
| static void delta_write_byte(struct mtd_info *mtd, u_char byte) |
| { |
| printf("delta_write_byte: WARNING, this function does not work with the Monahans DFC!\n"); |
| } |
| |
| /* The original: |
| * static void delta_read_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| * |
| * Shouldn't this be "u_char * const buf" ? |
| */ |
| static void delta_read_buf(struct mtd_info *mtd, u_char* const buf, int len) |
| { |
| int i, j; |
| |
| /* we have to be carefull not to overflow the buffer if len is |
| * not a multiple of 4 */ |
| unsigned long bytes_multi = len & 0xfffffffc; |
| unsigned long rest = len & 0x3; |
| unsigned long *long_buf; |
| |
| /* if there are any, first copy multiple of 4 bytes */ |
| if(bytes_multi) { |
| for(i=0; i<bytes_multi; i+=4) { |
| long_buf = (unsigned long*) &buf[i]; |
| *long_buf = NDDB; |
| } |
| } |
| |
| /* ...then the rest */ |
| if(rest) { |
| unsigned long rest_data = NDDB; |
| for(j=0;j<rest; j++) |
| buf[i+j] = (u_char) ((rest_data>>j) & 0xff); |
| } |
| |
| return; |
| } |
| |
| /* |
| * read a word. Not implemented as not used in NAND code. |
| */ |
| static u16 delta_read_word(struct mtd_info *mtd) |
| { |
| printf("delta_write_byte: UNIMPLEMENTED.\n"); |
| } |
| |
| /* global var, too bad: mk@tbd: move to ->priv pointer */ |
| static unsigned long read_buf = 0; |
| static int bytes_read = -1; |
| |
| /* read a byte from NDDB Because we can only read 4 bytes from NDDB at |
| * a time, we buffer the remaining bytes. The buffer is reset when a |
| * new command is sent to the chip. |
| */ |
| static u_char delta_read_byte(struct mtd_info *mtd) |
| { |
| /* struct nand_chip *this = mtd->priv; */ |
| unsigned char byte; |
| |
| if(bytes_read < 0) { |
| read_buf = NDDB; |
| bytes_read = 0; |
| } |
| byte = (unsigned char) (read_buf>>(8 * bytes_read++)); |
| if(bytes_read >= 4) |
| bytes_read = -1; |
| |
| DFC_DEBUG2("delta_read_byte: byte %u: 0x%x of (0x%x).\n", bytes_read, byte, read_buf); |
| return byte; |
| } |
| |
| /* calculate delta between OSCR values start and now */ |
| static unsigned long get_delta(unsigned long start) |
| { |
| unsigned long cur = OSCR; |
| |
| if(cur < start) /* OSCR overflowed */ |
| return (cur + (start^0xffffffff)); |
| else |
| return (cur - start); |
| } |
| |
| /* delay function, this doesn't belong here */ |
| static void wait_us(unsigned long us) |
| { |
| unsigned long start = OSCR; |
| us *= OSCR_CLK_FREQ; |
| |
| while (get_delta(start) < us) { |
| /* do nothing */ |
| } |
| } |
| |
| static void delta_clear_nddb() |
| { |
| NDCR &= ~NDCR_ND_RUN; |
| wait_us(CFG_NAND_OTHER_TO); |
| } |
| |
| /* wait_event with timeout */ |
| static unsigned long delta_wait_event2(unsigned long event) |
| { |
| unsigned long ndsr, timeout, start = OSCR; |
| |
| if(!event) |
| return 0xff000000; |
| else if(event & (NDSR_CS0_CMDD | NDSR_CS0_BBD)) |
| timeout = CFG_NAND_PROG_ERASE_TO * OSCR_CLK_FREQ; |
| else |
| timeout = CFG_NAND_OTHER_TO * OSCR_CLK_FREQ; |
| |
| while(1) { |
| ndsr = NDSR; |
| if(ndsr & event) { |
| NDSR |= event; |
| break; |
| } |
| if(get_delta(start) > timeout) { |
| DFC_DEBUG1("delta_wait_event: TIMEOUT waiting for event: 0x%x.\n", event); |
| return 0xff000000; |
| } |
| |
| } |
| return ndsr; |
| } |
| |
| |
| #if DEADCODE |
| /* poll the NAND Controller Status Register for event */ |
| static void delta_wait_event(unsigned long event) |
| { |
| if(!event) |
| return; |
| |
| while(1) { |
| if(NDSR & event) { |
| NDSR |= event; |
| break; |
| } |
| } |
| } |
| #endif |
| |
| /* we don't always wan't to do this */ |
| static void delta_new_cmd() |
| { |
| int retry = 0; |
| unsigned long status; |
| |
| while(retry++ <= CFG_NAND_SENDCMD_RETRY) { |
| /* Clear NDSR */ |
| NDSR = 0xFFF; |
| |
| /* set NDCR[NDRUN] */ |
| if(!(NDCR & NDCR_ND_RUN)) |
| NDCR |= NDCR_ND_RUN; |
| |
| status = delta_wait_event2(NDSR_WRCMDREQ); |
| |
| if(status & NDSR_WRCMDREQ) |
| return; |
| |
| DFC_DEBUG2("delta_new_cmd: FAILED to get WRITECMDREQ, retry: %d.\n", retry); |
| delta_clear_nddb(); |
| } |
| DFC_DEBUG1("delta_new_cmd: giving up after %d retries.\n", retry); |
| |
| #if DEADCODE |
| while(1) { |
| if(NDSR & NDSR_WRCMDREQ) { |
| NDSR |= NDSR_WRCMDREQ; /* Ack */ |
| break; |
| } |
| } |
| #endif |
| |
| } |
| /* this function is called after Programm and Erase Operations to |
| * check for success or failure */ |
| static int delta_wait(struct mtd_info *mtd, struct nand_chip *this, int state) |
| { |
| unsigned long ndsr=0, event=0; |
| |
| /* mk@tbd set appropriate timeouts */ |
| /* if (state == FL_ERASING) */ |
| /* timeo = CFG_HZ * 400; */ |
| /* else */ |
| /* timeo = CFG_HZ * 20; */ |
| if(state == FL_WRITING) { |
| event = NDSR_CS0_CMDD | NDSR_CS0_BBD; |
| } else if(state == FL_ERASING) { |
| event = NDSR_CS0_CMDD | NDSR_CS0_BBD; |
| } |
| |
| ndsr = delta_wait_event2(event); |
| |
| if((ndsr & NDSR_CS0_BBD) || (ndsr & 0xff000000)) |
| return(0x1); /* Status Read error */ |
| return 0; |
| } |
| |
| /* cmdfunc send commands to the DFC */ |
| static void delta_cmdfunc(struct mtd_info *mtd, unsigned command, |
| int column, int page_addr) |
| { |
| /* register struct nand_chip *this = mtd->priv; */ |
| unsigned long ndcb0=0, ndcb1=0, ndcb2=0, event=0; |
| unsigned long what_the_hack; |
| |
| /* clear the ugly byte read buffer */ |
| bytes_read = -1; |
| read_buf = 0; |
| |
| /* if command is a double byte cmd, we set bit double cmd bit 19 */ |
| /* command2 = (command>>8) & 0xFF; */ |
| /* ndcb0 = command | ((command2 ? 1 : 0) << 19); *\/ */ |
| |
| switch (command) { |
| case NAND_CMD_READ0: |
| delta_new_cmd(); |
| ndcb0 = (NAND_CMD_READ0 | (4<<16)); |
| column >>= 1; /* adjust for 16 bit bus */ |
| ndcb1 = (((column>>1) & 0xff) | |
| ((page_addr<<8) & 0xff00) | |
| ((page_addr<<8) & 0xff0000) | |
| ((page_addr<<8) & 0xff000000)); /* make this 0x01000000 ? */ |
| event = NDSR_RDDREQ; |
| goto write_cmd; |
| case NAND_CMD_READID: |
| delta_new_cmd(); |
| DFC_DEBUG2("delta_cmdfunc: NAND_CMD_READID.\n"); |
| ndcb0 = (NAND_CMD_READID | (3 << 21) | (1 << 16)); /* addr cycles*/ |
| event = NDSR_RDDREQ; |
| goto write_cmd; |
| case NAND_CMD_PAGEPROG: |
| /* sent as a multicommand in NAND_CMD_SEQIN */ |
| DFC_DEBUG2("delta_cmdfunc: NAND_CMD_PAGEPROG empty due to multicmd.\n"); |
| goto end; |
| case NAND_CMD_ERASE1: |
| DFC_DEBUG2("delta_cmdfunc: NAND_CMD_ERASE1.\n"); |
| delta_new_cmd(); |
| ndcb0 = (0xd060 | (1<<25) | (2<<21) | (1<<19) | (3<<16)); |
| ndcb1 = (page_addr & 0x00ffffff); |
| goto write_cmd; |
| case NAND_CMD_ERASE2: |
| DFC_DEBUG2("delta_cmdfunc: NAND_CMD_ERASE2 empty due to multicmd.\n"); |
| goto end; |
| case NAND_CMD_SEQIN: |
| /* send PAGE_PROG command(0x1080) */ |
| delta_new_cmd(); |
| DFC_DEBUG2("delta_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG.\n"); |
| ndcb0 = (0x1080 | (1<<25) | (1<<21) | (1<<19) | (4<<16)); |
| column >>= 1; /* adjust for 16 bit bus */ |
| ndcb1 = (((column>>1) & 0xff) | |
| ((page_addr<<8) & 0xff00) | |
| ((page_addr<<8) & 0xff0000) | |
| ((page_addr<<8) & 0xff000000)); /* make this 0x01000000 ? */ |
| event = NDSR_WRDREQ; |
| goto write_cmd; |
| /* case NAND_CMD_SEQIN_pointer_operation: */ |
| |
| /* /\* This is confusing because the command names are */ |
| /* * different compared to the ones in the K9K12Q0C */ |
| /* * datasheet. Infact this has nothing to do with */ |
| /* * reading, as the but with page programming */ |
| /* * (writing). */ |
| /* * Here we send the multibyte commands */ |
| /* * cmd1=0x00, cmd2=0x80 (for programming main area) or */ |
| /* * cmd1=0x50, cmd2=0x80 (for spare area) */ |
| /* * */ |
| /* * When all data is written to the buffer, the page */ |
| /* * program command (0x10) is sent to actually write */ |
| /* * the data. */ |
| /* *\/ */ |
| |
| /* printf("delta_cmdfunc: NAND_CMD_SEQIN pointer op called.\n"); */ |
| |
| /* ndcb0 = (NAND_CMD_SEQIN<<8) | (1<<21) | (1<<19) | (4<<16); */ |
| /* if(column >= mtd->oobblock) { */ |
| /* /\* OOB area *\/ */ |
| /* column -= mtd->oobblock; */ |
| /* ndcb0 |= NAND_CMD_READOOB; */ |
| /* } else if (column < 256) { */ |
| /* /\* First 256 bytes --> READ0 *\/ */ |
| /* ndcb0 |= NAND_CMD_READ0; */ |
| /* } else { */ |
| /* /\* Only for 8 bit devices - not delta!!! *\/ */ |
| /* column -= 256; */ |
| /* ndcb0 |= NAND_CMD_READ1; */ |
| /* } */ |
| /* event = NDSR_WRDREQ; */ |
| /* break; */ |
| case NAND_CMD_STATUS: |
| DFC_DEBUG2("delta_cmdfunc: NAND_CMD_STATUS.\n"); |
| /* oh, this is not nice. for some reason the real |
| * status byte is in the second read from the data |
| * buffer. The hack is to read the first byte right |
| * here, so the next read access by the nand code |
| * yields the right one. |
| */ |
| delta_new_cmd(); |
| ndcb0 = NAND_CMD_STATUS | (4<<21); |
| event = NDSR_RDDREQ; |
| #undef READ_STATUS_BUG |
| #ifdef READ_STATUS_BUG |
| NDCB0 = ndcb0; |
| NDCB0 = ndcb1; |
| NDCB0 = ndcb2; |
| delta_wait_event2(event); |
| what_the_hack = NDDB; |
| if(what_the_hack != 0xffffffff) { |
| DFC_DEBUG2("what the hack.\n"); |
| read_buf = what_the_hack; |
| bytes_read = 0; |
| } |
| goto end; |
| #endif |
| goto write_cmd; |
| case NAND_CMD_RESET: |
| DFC_DEBUG2("delta_cmdfunc: NAND_CMD_RESET.\n"); |
| ndcb0 = NAND_CMD_RESET | (5<<21); |
| event = NDSR_CS0_CMDD; |
| goto write_cmd; |
| default: |
| printk("delta_cmdfunc: error, unsupported command.\n"); |
| goto end; |
| } |
| |
| write_cmd: |
| NDCB0 = ndcb0; |
| NDCB0 = ndcb1; |
| NDCB0 = ndcb2; |
| |
| wait_event: |
| delta_wait_event2(event); |
| end: |
| return; |
| } |
| |
| static void delta_dfc_gpio_init() |
| { |
| DFC_DEBUG2("Setting up DFC GPIO's.\n"); |
| |
| /* no idea what is done here, see zylonite.c */ |
| GPIO4 = 0x1; |
| |
| DF_ALE_WE1 = 0x00000001; |
| DF_ALE_WE2 = 0x00000001; |
| DF_nCS0 = 0x00000001; |
| DF_nCS1 = 0x00000001; |
| DF_nWE = 0x00000001; |
| DF_nRE = 0x00000001; |
| DF_IO0 = 0x00000001; |
| DF_IO8 = 0x00000001; |
| DF_IO1 = 0x00000001; |
| DF_IO9 = 0x00000001; |
| DF_IO2 = 0x00000001; |
| DF_IO10 = 0x00000001; |
| DF_IO3 = 0x00000001; |
| DF_IO11 = 0x00000001; |
| DF_IO4 = 0x00000001; |
| DF_IO12 = 0x00000001; |
| DF_IO5 = 0x00000001; |
| DF_IO13 = 0x00000001; |
| DF_IO6 = 0x00000001; |
| DF_IO14 = 0x00000001; |
| DF_IO7 = 0x00000001; |
| DF_IO15 = 0x00000001; |
| |
| DF_nWE = 0x1901; |
| DF_nRE = 0x1901; |
| DF_CLE_NOE = 0x1900; |
| DF_ALE_WE1 = 0x1901; |
| DF_INT_RnB = 0x1900; |
| } |
| |
| /* |
| * Board-specific NAND initialization. The following members of the |
| * argument are board-specific (per include/linux/mtd/nand_new.h): |
| * - IO_ADDR_R?: address to read the 8 I/O lines of the flash device |
| * - IO_ADDR_W?: address to write the 8 I/O lines of the flash device |
| * - hwcontrol: hardwarespecific function for accesing control-lines |
| * - dev_ready: hardwarespecific function for accesing device ready/busy line |
| * - enable_hwecc?: function to enable (reset) hardware ecc generator. Must |
| * only be provided if a hardware ECC is available |
| * - eccmode: mode of ecc, see defines |
| * - chip_delay: chip dependent delay for transfering data from array to |
| * read regs (tR) |
| * - options: various chip options. They can partly be set to inform |
| * nand_scan about special functionality. See the defines for further |
| * explanation |
| * Members with a "?" were not set in the merged testing-NAND branch, |
| * so they are not set here either. |
| */ |
| void board_nand_init(struct nand_chip *nand) |
| { |
| unsigned long tCH, tCS, tWH, tWP, tRH, tRP, tRP_high, tR, tWHR, tAR; |
| |
| /* set up GPIO Control Registers */ |
| delta_dfc_gpio_init(); |
| |
| /* turn on the NAND Controller Clock (104 MHz @ D0) */ |
| CKENA |= (CKENA_4_NAND | CKENA_9_SMC); |
| |
| /* wait ? */ |
| /* printf("stupid loop start...\n"); */ |
| /* wait(200); */ |
| /* printf("stupid loop end.\n"); */ |
| |
| |
| /* NAND Timing Parameters (in ns) */ |
| #define NAND_TIMING_tCH 10 |
| #define NAND_TIMING_tCS 0 |
| #define NAND_TIMING_tWH 20 |
| #define NAND_TIMING_tWP 40 |
| |
| #define NAND_TIMING_tRH 20 |
| #define NAND_TIMING_tRP 40 |
| |
| /* #define NAND_TIMING_tRH 25 */ |
| /* #define NAND_TIMING_tRP 50 */ |
| |
| #define NAND_TIMING_tR 11123 |
| /* #define NAND_TIMING_tWHR 110 */ |
| #define NAND_TIMING_tWHR 100 |
| #define NAND_TIMING_tAR 10 |
| |
| /* Maximum values for NAND Interface Timing Registers in DFC clock |
| * periods */ |
| #define DFC_MAX_tCH 7 |
| #define DFC_MAX_tCS 7 |
| #define DFC_MAX_tWH 7 |
| #define DFC_MAX_tWP 7 |
| #define DFC_MAX_tRH 7 |
| #define DFC_MAX_tRP 15 |
| #define DFC_MAX_tR 65535 |
| #define DFC_MAX_tWHR 15 |
| #define DFC_MAX_tAR 15 |
| |
| #define DFC_CLOCK 104 /* DFC Clock is 104 MHz */ |
| #define DFC_CLK_PER_US DFC_CLOCK/1000 /* clock period in ns */ |
| #define MIN(x, y) ((x < y) ? x : y) |
| |
| |
| #ifndef CFG_TIMING_TIGHT |
| tCH = MIN(((unsigned long) (NAND_TIMING_tCH * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tCH); |
| tCS = MIN(((unsigned long) (NAND_TIMING_tCS * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tCS); |
| tWH = MIN(((unsigned long) (NAND_TIMING_tWH * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tWH); |
| tWP = MIN(((unsigned long) (NAND_TIMING_tWP * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tWP); |
| tRH = MIN(((unsigned long) (NAND_TIMING_tRH * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tRH); |
| tRP = MIN(((unsigned long) (NAND_TIMING_tRP * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tRP); |
| tR = MIN(((unsigned long) (NAND_TIMING_tR * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tR); |
| tWHR = MIN(((unsigned long) (NAND_TIMING_tWHR * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tWHR); |
| tAR = MIN(((unsigned long) (NAND_TIMING_tAR * DFC_CLK_PER_US) + 1), |
| DFC_MAX_tAR); |
| #else /* this is the tight timing */ |
| |
| tCH = MIN(((unsigned long) (NAND_TIMING_tCH * DFC_CLK_PER_US)), |
| DFC_MAX_tCH); |
| tCS = MIN(((unsigned long) (NAND_TIMING_tCS * DFC_CLK_PER_US)), |
| DFC_MAX_tCS); |
| tWH = MIN(((unsigned long) (NAND_TIMING_tWH * DFC_CLK_PER_US)), |
| DFC_MAX_tWH); |
| tWP = MIN(((unsigned long) (NAND_TIMING_tWP * DFC_CLK_PER_US)), |
| DFC_MAX_tWP); |
| tRH = MIN(((unsigned long) (NAND_TIMING_tRH * DFC_CLK_PER_US)), |
| DFC_MAX_tRH); |
| tRP = MIN(((unsigned long) (NAND_TIMING_tRP * DFC_CLK_PER_US)), |
| DFC_MAX_tRP); |
| tR = MIN(((unsigned long) (NAND_TIMING_tR * DFC_CLK_PER_US) - tCH - 2), |
| DFC_MAX_tR); |
| tWHR = MIN(((unsigned long) (NAND_TIMING_tWHR * DFC_CLK_PER_US) - tCH - 2), |
| DFC_MAX_tWHR); |
| tAR = MIN(((unsigned long) (NAND_TIMING_tAR * DFC_CLK_PER_US) - 2), |
| DFC_MAX_tAR); |
| #endif /* CFG_TIMING_TIGHT */ |
| |
| |
| DFC_DEBUG2("tCH=%u, tCS=%u, tWH=%u, tWP=%u, tRH=%u, tRP=%u, tR=%u, tWHR=%u, tAR=%u.\n", tCH, tCS, tWH, tWP, tRH, tRP, tR, tWHR, tAR); |
| |
| /* tRP value is split in the register */ |
| if(tRP & (1 << 4)) { |
| tRP_high = 1; |
| tRP &= ~(1 << 4); |
| } else { |
| tRP_high = 0; |
| } |
| |
| NDTR0CS0 = (tCH << 19) | |
| (tCS << 16) | |
| (tWH << 11) | |
| (tWP << 8) | |
| (tRP_high << 6) | |
| (tRH << 3) | |
| (tRP << 0); |
| |
| NDTR1CS0 = (tR << 16) | |
| (tWHR << 4) | |
| (tAR << 0); |
| |
| |
| |
| /* If it doesn't work (unlikely) think about: |
| * - ecc enable |
| * - chip select don't care |
| * - read id byte count |
| * |
| * Intentionally enabled by not setting bits: |
| * - dma (DMA_EN) |
| * - page size = 512 |
| * - cs don't care, see if we can enable later! |
| * - row address start position (after second cycle) |
| * - pages per block = 32 |
| * - ND_RDY : clears command buffer |
| */ |
| /* NDCR_NCSX | /\* Chip select busy don't care *\/ */ |
| |
| NDCR = (NDCR_SPARE_EN | /* use the spare area */ |
| NDCR_DWIDTH_C | /* 16bit DFC data bus width */ |
| NDCR_DWIDTH_M | /* 16 bit Flash device data bus width */ |
| (7 << 16) | /* read id count = 7 ???? mk@tbd */ |
| NDCR_ND_ARB_EN | /* enable bus arbiter */ |
| NDCR_RDYM | /* flash device ready ir masked */ |
| NDCR_CS0_PAGEDM | /* ND_nCSx page done ir masked */ |
| NDCR_CS1_PAGEDM | |
| NDCR_CS0_CMDDM | /* ND_CSx command done ir masked */ |
| NDCR_CS1_CMDDM | |
| NDCR_CS0_BBDM | /* ND_CSx bad block detect ir masked */ |
| NDCR_CS1_BBDM | |
| NDCR_DBERRM | /* double bit error ir masked */ |
| NDCR_SBERRM | /* single bit error ir masked */ |
| NDCR_WRDREQM | /* write data request ir masked */ |
| NDCR_RDDREQM | /* read data request ir masked */ |
| NDCR_WRCMDREQM); /* write command request ir masked */ |
| |
| |
| /* wait 10 us due to cmd buffer clear reset */ |
| /* wait(10); */ |
| |
| |
| nand->hwcontrol = delta_hwcontrol; |
| /* nand->dev_ready = delta_device_ready; */ |
| nand->eccmode = NAND_ECC_SOFT; |
| nand->chip_delay = NAND_DELAY_US; |
| nand->options = NAND_BUSWIDTH_16; |
| nand->waitfunc = delta_wait; |
| nand->read_byte = delta_read_byte; |
| nand->write_byte = delta_write_byte; |
| nand->read_word = delta_read_word; |
| nand->write_word = delta_write_word; |
| nand->read_buf = delta_read_buf; |
| nand->write_buf = delta_write_buf; |
| |
| nand->cmdfunc = delta_cmdfunc; |
| nand->autooob = &delta_oob; |
| nand->badblock_pattern = &delta_bbt_descr; |
| } |
| |
| #else |
| #error "U-Boot legacy NAND support not available for delta board." |
| #endif |
| #endif |