| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2014 Freescale Semiconductor, Inc. |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <env.h> |
| #include <i2c.h> |
| #include <irq_func.h> |
| #include <log.h> |
| #include <asm/io.h> |
| #ifdef CONFIG_FSL_LSCH2 |
| #include <asm/arch/immap_lsch2.h> |
| #elif defined(CONFIG_FSL_LSCH3) |
| #include <asm/arch/immap_lsch3.h> |
| #else |
| #include <asm/immap_85xx.h> |
| #endif |
| #include <linux/delay.h> |
| #include "vid.h" |
| |
| int __weak i2c_multiplexer_select_vid_channel(u8 channel) |
| { |
| return 0; |
| } |
| |
| /* |
| * Compensate for a board specific voltage drop between regulator and SoC |
| * return a value in mV |
| */ |
| int __weak board_vdd_drop_compensation(void) |
| { |
| return 0; |
| } |
| |
| /* |
| * Board specific settings for specific voltage value |
| */ |
| int __weak board_adjust_vdd(int vdd) |
| { |
| return 0; |
| } |
| |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| /* |
| * Get the i2c address configuration for the IR regulator chip |
| * |
| * There are some variance in the RDB HW regarding the I2C address configuration |
| * for the IR regulator chip, which is likely a problem of external resistor |
| * accuracy. So we just check each address in a hopefully non-intrusive mode |
| * and use the first one that seems to work |
| * |
| * The IR chip can show up under the following addresses: |
| * 0x08 (Verified on T1040RDB-PA,T4240RDB-PB,X-T4240RDB-16GPA) |
| * 0x09 (Verified on T1040RDB-PA) |
| * 0x38 (Verified on T2080QDS, T2081QDS, T4240RDB) |
| */ |
| static int find_ir_chip_on_i2c(void) |
| { |
| int i2caddress; |
| int ret; |
| u8 byte; |
| int i; |
| const int ir_i2c_addr[] = {0x38, 0x08, 0x09}; |
| #ifdef CONFIG_DM_I2C |
| struct udevice *dev; |
| #endif |
| |
| /* Check all the address */ |
| for (i = 0; i < (sizeof(ir_i2c_addr)/sizeof(ir_i2c_addr[0])); i++) { |
| i2caddress = ir_i2c_addr[i]; |
| #ifndef CONFIG_DM_I2C |
| ret = i2c_read(i2caddress, |
| IR36021_MFR_ID_OFFSET, 1, (void *)&byte, |
| sizeof(byte)); |
| #else |
| ret = i2c_get_chip_for_busnum(0, i2caddress, 1, &dev); |
| if (!ret) |
| ret = dm_i2c_read(dev, IR36021_MFR_ID_OFFSET, |
| (void *)&byte, sizeof(byte)); |
| #endif |
| if ((ret >= 0) && (byte == IR36021_MFR_ID)) |
| return i2caddress; |
| } |
| return -1; |
| } |
| #endif |
| |
| /* Maximum loop count waiting for new voltage to take effect */ |
| #define MAX_LOOP_WAIT_NEW_VOL 100 |
| /* Maximum loop count waiting for the voltage to be stable */ |
| #define MAX_LOOP_WAIT_VOL_STABLE 100 |
| /* |
| * read_voltage from sensor on I2C bus |
| * We use average of 4 readings, waiting for WAIT_FOR_ADC before |
| * another reading |
| */ |
| #define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */ |
| |
| /* If an INA220 chip is available, we can use it to read back the voltage |
| * as it may have a higher accuracy than the IR chip for the same purpose |
| */ |
| #ifdef CONFIG_VOL_MONITOR_INA220 |
| #define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */ |
| #define ADC_MIN_ACCURACY 4 |
| #else |
| #define WAIT_FOR_ADC 138 /* wait for 138 microseconds for ADC */ |
| #define ADC_MIN_ACCURACY 4 |
| #endif |
| |
| #ifdef CONFIG_VOL_MONITOR_INA220 |
| static int read_voltage_from_INA220(int i2caddress) |
| { |
| int i, ret, voltage_read = 0; |
| u16 vol_mon; |
| u8 buf[2]; |
| #ifdef CONFIG_DM_I2C |
| struct udevice *dev; |
| #endif |
| |
| for (i = 0; i < NUM_READINGS; i++) { |
| #ifndef CONFIG_DM_I2C |
| ret = i2c_read(I2C_VOL_MONITOR_ADDR, |
| I2C_VOL_MONITOR_BUS_V_OFFSET, 1, |
| (void *)&buf, 2); |
| #else |
| ret = i2c_get_chip_for_busnum(0, I2C_VOL_MONITOR_ADDR, 1, &dev); |
| if (!ret) |
| ret = dm_i2c_read(dev, I2C_VOL_MONITOR_BUS_V_OFFSET, |
| (void *)&buf, 2); |
| #endif |
| if (ret) { |
| printf("VID: failed to read core voltage\n"); |
| return ret; |
| } |
| vol_mon = (buf[0] << 8) | buf[1]; |
| if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) { |
| printf("VID: Core voltage sensor error\n"); |
| return -1; |
| } |
| debug("VID: bus voltage reads 0x%04x\n", vol_mon); |
| /* LSB = 4mv */ |
| voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4; |
| udelay(WAIT_FOR_ADC); |
| } |
| /* calculate the average */ |
| voltage_read /= NUM_READINGS; |
| |
| return voltage_read; |
| } |
| #endif |
| |
| /* read voltage from IR */ |
| #ifdef CONFIG_VOL_MONITOR_IR36021_READ |
| static int read_voltage_from_IR(int i2caddress) |
| { |
| int i, ret, voltage_read = 0; |
| u16 vol_mon; |
| u8 buf; |
| #ifdef CONFIG_DM_I2C |
| struct udevice *dev; |
| #endif |
| |
| for (i = 0; i < NUM_READINGS; i++) { |
| #ifndef CONFIG_DM_I2C |
| ret = i2c_read(i2caddress, |
| IR36021_LOOP1_VOUT_OFFSET, |
| 1, (void *)&buf, 1); |
| #else |
| ret = i2c_get_chip_for_busnum(0, i2caddress, 1, &dev); |
| if (!ret) |
| ret = dm_i2c_read(dev, IR36021_LOOP1_VOUT_OFFSET, |
| (void *)&buf, 1); |
| #endif |
| if (ret) { |
| printf("VID: failed to read vcpu\n"); |
| return ret; |
| } |
| vol_mon = buf; |
| if (!vol_mon) { |
| printf("VID: Core voltage sensor error\n"); |
| return -1; |
| } |
| debug("VID: bus voltage reads 0x%02x\n", vol_mon); |
| /* Resolution is 1/128V. We scale up here to get 1/128mV |
| * and divide at the end |
| */ |
| voltage_read += vol_mon * 1000; |
| udelay(WAIT_FOR_ADC); |
| } |
| /* Scale down to the real mV as IR resolution is 1/128V, rounding up */ |
| voltage_read = DIV_ROUND_UP(voltage_read, 128); |
| |
| /* calculate the average */ |
| voltage_read /= NUM_READINGS; |
| |
| /* Compensate for a board specific voltage drop between regulator and |
| * SoC before converting into an IR VID value |
| */ |
| voltage_read -= board_vdd_drop_compensation(); |
| |
| return voltage_read; |
| } |
| #endif |
| |
| #ifdef CONFIG_VOL_MONITOR_LTC3882_READ |
| /* read the current value of the LTC Regulator Voltage */ |
| static int read_voltage_from_LTC(int i2caddress) |
| { |
| int ret, vcode = 0; |
| u8 chan = PWM_CHANNEL0; |
| |
| #ifndef CONFIG_DM_I2C |
| /* select the PAGE 0 using PMBus commands PAGE for VDD*/ |
| ret = i2c_write(I2C_VOL_MONITOR_ADDR, |
| PMBUS_CMD_PAGE, 1, &chan, 1); |
| #else |
| struct udevice *dev; |
| |
| ret = i2c_get_chip_for_busnum(0, I2C_VOL_MONITOR_ADDR, 1, &dev); |
| if (!ret) |
| ret = dm_i2c_write(dev, PMBUS_CMD_PAGE, &chan, 1); |
| #endif |
| if (ret) { |
| printf("VID: failed to select VDD Page 0\n"); |
| return ret; |
| } |
| |
| #ifndef CONFIG_DM_I2C |
| /*read the output voltage using PMBus command READ_VOUT*/ |
| ret = i2c_read(I2C_VOL_MONITOR_ADDR, |
| PMBUS_CMD_READ_VOUT, 1, (void *)&vcode, 2); |
| #else |
| ret = dm_i2c_read(dev, PMBUS_CMD_READ_VOUT, (void *)&vcode, 2); |
| if (ret) { |
| printf("VID: failed to read the volatge\n"); |
| return ret; |
| } |
| #endif |
| if (ret) { |
| printf("VID: failed to read the volatge\n"); |
| return ret; |
| } |
| |
| /* Scale down to the real mV as LTC resolution is 1/4096V,rounding up */ |
| vcode = DIV_ROUND_UP(vcode * 1000, 4096); |
| |
| return vcode; |
| } |
| #endif |
| |
| static int read_voltage(int i2caddress) |
| { |
| int voltage_read; |
| #ifdef CONFIG_VOL_MONITOR_INA220 |
| voltage_read = read_voltage_from_INA220(i2caddress); |
| #elif defined CONFIG_VOL_MONITOR_IR36021_READ |
| voltage_read = read_voltage_from_IR(i2caddress); |
| #elif defined CONFIG_VOL_MONITOR_LTC3882_READ |
| voltage_read = read_voltage_from_LTC(i2caddress); |
| #else |
| return -1; |
| #endif |
| return voltage_read; |
| } |
| |
| #ifdef CONFIG_VOL_MONITOR_IR36021_SET |
| /* |
| * We need to calculate how long before the voltage stops to drop |
| * or increase. It returns with the loop count. Each loop takes |
| * several readings (WAIT_FOR_ADC) |
| */ |
| static int wait_for_new_voltage(int vdd, int i2caddress) |
| { |
| int timeout, vdd_current; |
| |
| vdd_current = read_voltage(i2caddress); |
| /* wait until voltage starts to reach the target. Voltage slew |
| * rates by typical regulators will always lead to stable readings |
| * within each fairly long ADC interval in comparison to the |
| * intended voltage delta change until the target voltage is |
| * reached. The fairly small voltage delta change to any target |
| * VID voltage also means that this function will always complete |
| * within few iterations. If the timeout was ever reached, it would |
| * point to a serious failure in the regulator system. |
| */ |
| for (timeout = 0; |
| abs(vdd - vdd_current) > (IR_VDD_STEP_UP + IR_VDD_STEP_DOWN) && |
| timeout < MAX_LOOP_WAIT_NEW_VOL; timeout++) { |
| vdd_current = read_voltage(i2caddress); |
| } |
| if (timeout >= MAX_LOOP_WAIT_NEW_VOL) { |
| printf("VID: Voltage adjustment timeout\n"); |
| return -1; |
| } |
| return timeout; |
| } |
| |
| /* |
| * this function keeps reading the voltage until it is stable or until the |
| * timeout expires |
| */ |
| static int wait_for_voltage_stable(int i2caddress) |
| { |
| int timeout, vdd_current, vdd; |
| |
| vdd = read_voltage(i2caddress); |
| udelay(NUM_READINGS * WAIT_FOR_ADC); |
| |
| /* wait until voltage is stable */ |
| vdd_current = read_voltage(i2caddress); |
| /* The maximum timeout is |
| * MAX_LOOP_WAIT_VOL_STABLE * NUM_READINGS * WAIT_FOR_ADC |
| */ |
| for (timeout = MAX_LOOP_WAIT_VOL_STABLE; |
| abs(vdd - vdd_current) > ADC_MIN_ACCURACY && |
| timeout > 0; timeout--) { |
| vdd = vdd_current; |
| udelay(NUM_READINGS * WAIT_FOR_ADC); |
| vdd_current = read_voltage(i2caddress); |
| } |
| if (timeout == 0) |
| return -1; |
| return vdd_current; |
| } |
| |
| /* Set the voltage to the IR chip */ |
| static int set_voltage_to_IR(int i2caddress, int vdd) |
| { |
| int wait, vdd_last; |
| int ret; |
| u8 vid; |
| |
| /* Compensate for a board specific voltage drop between regulator and |
| * SoC before converting into an IR VID value |
| */ |
| vdd += board_vdd_drop_compensation(); |
| #ifdef CONFIG_FSL_LSCH2 |
| vid = DIV_ROUND_UP(vdd - 265, 5); |
| #else |
| vid = DIV_ROUND_UP(vdd - 245, 5); |
| #endif |
| |
| #ifndef CONFIG_DM_I2C |
| ret = i2c_write(i2caddress, IR36021_LOOP1_MANUAL_ID_OFFSET, |
| 1, (void *)&vid, sizeof(vid)); |
| #else |
| struct udevice *dev; |
| |
| ret = i2c_get_chip_for_busnum(0, i2caddress, 1, &dev); |
| if (!ret) |
| ret = dm_i2c_write(dev, IR36021_LOOP1_MANUAL_ID_OFFSET, |
| (void *)&vid, sizeof(vid)); |
| |
| #endif |
| if (ret) { |
| printf("VID: failed to write VID\n"); |
| return -1; |
| } |
| wait = wait_for_new_voltage(vdd, i2caddress); |
| if (wait < 0) |
| return -1; |
| debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC); |
| |
| vdd_last = wait_for_voltage_stable(i2caddress); |
| if (vdd_last < 0) |
| return -1; |
| debug("VID: Current voltage is %d mV\n", vdd_last); |
| return vdd_last; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_VOL_MONITOR_LTC3882_SET |
| /* this function sets the VDD and returns the value set */ |
| static int set_voltage_to_LTC(int i2caddress, int vdd) |
| { |
| int ret, vdd_last, vdd_target = vdd; |
| int count = 100, temp = 0; |
| |
| /* Scale up to the LTC resolution is 1/4096V */ |
| vdd = (vdd * 4096) / 1000; |
| |
| /* 5-byte buffer which needs to be sent following the |
| * PMBus command PAGE_PLUS_WRITE. |
| */ |
| u8 buff[5] = {0x04, PWM_CHANNEL0, PMBUS_CMD_VOUT_COMMAND, |
| vdd & 0xFF, (vdd & 0xFF00) >> 8}; |
| |
| /* Write the desired voltage code to the regulator */ |
| #ifndef CONFIG_DM_I2C |
| ret = i2c_write(I2C_VOL_MONITOR_ADDR, |
| PMBUS_CMD_PAGE_PLUS_WRITE, 1, (void *)&buff, 5); |
| #else |
| struct udevice *dev; |
| |
| ret = i2c_get_chip_for_busnum(0, I2C_VOL_MONITOR_ADDR, 1, &dev); |
| if (!ret) |
| ret = dm_i2c_write(dev, PMBUS_CMD_PAGE_PLUS_WRITE, |
| (void *)&buff, 5); |
| #endif |
| if (ret) { |
| printf("VID: I2C failed to write to the volatge regulator\n"); |
| return -1; |
| } |
| |
| /* Wait for the volatge to get to the desired value */ |
| do { |
| vdd_last = read_voltage_from_LTC(i2caddress); |
| if (vdd_last < 0) { |
| printf("VID: Couldn't read sensor abort VID adjust\n"); |
| return -1; |
| } |
| count--; |
| temp = vdd_last - vdd_target; |
| } while ((abs(temp) > 2) && (count > 0)); |
| |
| return vdd_last; |
| } |
| #endif |
| |
| static int set_voltage(int i2caddress, int vdd) |
| { |
| int vdd_last = -1; |
| |
| #ifdef CONFIG_VOL_MONITOR_IR36021_SET |
| vdd_last = set_voltage_to_IR(i2caddress, vdd); |
| #elif defined CONFIG_VOL_MONITOR_LTC3882_SET |
| vdd_last = set_voltage_to_LTC(i2caddress, vdd); |
| #else |
| #error Specific voltage monitor must be defined |
| #endif |
| return vdd_last; |
| } |
| |
| #ifdef CONFIG_FSL_LSCH3 |
| int adjust_vdd(ulong vdd_override) |
| { |
| int re_enable = disable_interrupts(); |
| struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| u32 fusesr; |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| u8 vid, buf; |
| #else |
| u8 vid; |
| #endif |
| int vdd_target, vdd_current, vdd_last; |
| int ret, i2caddress; |
| unsigned long vdd_string_override; |
| char *vdd_string; |
| #ifdef CONFIG_ARCH_LX2160A |
| static const u16 vdd[32] = { |
| 8250, |
| 7875, |
| 7750, |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 8000, |
| 8125, |
| 8250, |
| 0, /* reserved */ |
| 8500, |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| }; |
| #else |
| #ifdef CONFIG_ARCH_LS1088A |
| static const uint16_t vdd[32] = { |
| 10250, |
| 9875, |
| 9750, |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 9000, |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 10000, /* 1.0000V */ |
| 10125, |
| 10250, |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| }; |
| |
| #else |
| static const uint16_t vdd[32] = { |
| 10500, |
| 0, /* reserved */ |
| 9750, |
| 0, /* reserved */ |
| 9500, |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 9000, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 10000, /* 1.0000V */ |
| 0, /* reserved */ |
| 10250, |
| 0, /* reserved */ |
| 10500, |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| 0, /* reserved */ |
| }; |
| #endif |
| #endif |
| struct vdd_drive { |
| u8 vid; |
| unsigned voltage; |
| }; |
| |
| ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR); |
| if (ret) { |
| debug("VID: I2C failed to switch channel\n"); |
| ret = -1; |
| goto exit; |
| } |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| ret = find_ir_chip_on_i2c(); |
| if (ret < 0) { |
| printf("VID: Could not find voltage regulator on I2C.\n"); |
| ret = -1; |
| goto exit; |
| } else { |
| i2caddress = ret; |
| debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress); |
| } |
| |
| /* check IR chip work on Intel mode*/ |
| #ifndef CONFIG_DM_I2C |
| ret = i2c_read(i2caddress, |
| IR36021_INTEL_MODE_OOFSET, |
| 1, (void *)&buf, 1); |
| #else |
| struct udevice *dev; |
| |
| ret = i2c_get_chip_for_busnum(0, i2caddress, 1, &dev); |
| if (!ret) |
| ret = dm_i2c_read(dev, IR36021_INTEL_MODE_OOFSET, |
| (void *)&buf, 1); |
| #endif |
| if (ret) { |
| printf("VID: failed to read IR chip mode.\n"); |
| ret = -1; |
| goto exit; |
| } |
| |
| if ((buf & IR36021_MODE_MASK) != IR36021_INTEL_MODE) { |
| printf("VID: IR Chip is not used in Intel mode.\n"); |
| ret = -1; |
| goto exit; |
| } |
| #endif |
| |
| /* get the voltage ID from fuse status register */ |
| fusesr = in_le32(&gur->dcfg_fusesr); |
| vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_ALTVID_SHIFT) & |
| FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK; |
| if ((vid == 0) || (vid == FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK)) { |
| vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_VID_SHIFT) & |
| FSL_CHASSIS3_DCFG_FUSESR_VID_MASK; |
| } |
| vdd_target = vdd[vid]; |
| |
| /* check override variable for overriding VDD */ |
| vdd_string = env_get(CONFIG_VID_FLS_ENV); |
| if (vdd_override == 0 && vdd_string && |
| !strict_strtoul(vdd_string, 10, &vdd_string_override)) |
| vdd_override = vdd_string_override; |
| |
| if (vdd_override >= VDD_MV_MIN && vdd_override <= VDD_MV_MAX) { |
| vdd_target = vdd_override * 10; /* convert to 1/10 mV */ |
| debug("VDD override is %lu\n", vdd_override); |
| } else if (vdd_override != 0) { |
| printf("Invalid value.\n"); |
| } |
| |
| /* divide and round up by 10 to get a value in mV */ |
| vdd_target = DIV_ROUND_UP(vdd_target, 10); |
| if (vdd_target == 0) { |
| debug("VID: VID not used\n"); |
| ret = 0; |
| goto exit; |
| } else if (vdd_target < VDD_MV_MIN || vdd_target > VDD_MV_MAX) { |
| /* Check vdd_target is in valid range */ |
| printf("VID: Target VID %d mV is not in range.\n", |
| vdd_target); |
| ret = -1; |
| goto exit; |
| } else { |
| debug("VID: vid = %d mV\n", vdd_target); |
| } |
| |
| /* |
| * Read voltage monitor to check real voltage. |
| */ |
| vdd_last = read_voltage(i2caddress); |
| if (vdd_last < 0) { |
| printf("VID: Couldn't read sensor abort VID adjustment\n"); |
| ret = -1; |
| goto exit; |
| } |
| vdd_current = vdd_last; |
| debug("VID: Core voltage is currently at %d mV\n", vdd_last); |
| |
| #ifdef CONFIG_VOL_MONITOR_LTC3882_SET |
| /* Set the target voltage */ |
| vdd_last = vdd_current = set_voltage(i2caddress, vdd_target); |
| #else |
| /* |
| * Adjust voltage to at or one step above target. |
| * As measurements are less precise than setting the values |
| * we may run through dummy steps that cancel each other |
| * when stepping up and then down. |
| */ |
| while (vdd_last > 0 && |
| vdd_last < vdd_target) { |
| vdd_current += IR_VDD_STEP_UP; |
| vdd_last = set_voltage(i2caddress, vdd_current); |
| } |
| while (vdd_last > 0 && |
| vdd_last > vdd_target + (IR_VDD_STEP_DOWN - 1)) { |
| vdd_current -= IR_VDD_STEP_DOWN; |
| vdd_last = set_voltage(i2caddress, vdd_current); |
| } |
| |
| #endif |
| if (board_adjust_vdd(vdd_target) < 0) { |
| ret = -1; |
| goto exit; |
| } |
| |
| if (vdd_last > 0) |
| printf("VID: Core voltage after adjustment is at %d mV\n", |
| vdd_last); |
| else |
| ret = -1; |
| exit: |
| if (re_enable) |
| enable_interrupts(); |
| i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT); |
| return ret; |
| } |
| #else /* !CONFIG_FSL_LSCH3 */ |
| int adjust_vdd(ulong vdd_override) |
| { |
| int re_enable = disable_interrupts(); |
| #if defined(CONFIG_FSL_LSCH2) |
| struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| #else |
| ccsr_gur_t __iomem *gur = |
| (void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| #endif |
| u32 fusesr; |
| u8 vid, buf; |
| int vdd_target, vdd_current, vdd_last; |
| int ret, i2caddress; |
| unsigned long vdd_string_override; |
| char *vdd_string; |
| static const uint16_t vdd[32] = { |
| 0, /* unused */ |
| 9875, /* 0.9875V */ |
| 9750, |
| 9625, |
| 9500, |
| 9375, |
| 9250, |
| 9125, |
| 9000, |
| 8875, |
| 8750, |
| 8625, |
| 8500, |
| 8375, |
| 8250, |
| 8125, |
| 10000, /* 1.0000V */ |
| 10125, |
| 10250, |
| 10375, |
| 10500, |
| 10625, |
| 10750, |
| 10875, |
| 11000, |
| 0, /* reserved */ |
| }; |
| struct vdd_drive { |
| u8 vid; |
| unsigned voltage; |
| }; |
| |
| ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR); |
| if (ret) { |
| debug("VID: I2C failed to switch channel\n"); |
| ret = -1; |
| goto exit; |
| } |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| ret = find_ir_chip_on_i2c(); |
| if (ret < 0) { |
| printf("VID: Could not find voltage regulator on I2C.\n"); |
| ret = -1; |
| goto exit; |
| } else { |
| i2caddress = ret; |
| debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress); |
| } |
| |
| /* check IR chip work on Intel mode*/ |
| #ifndef CONFIG_DM_I2C |
| ret = i2c_read(i2caddress, |
| IR36021_INTEL_MODE_OOFSET, |
| 1, (void *)&buf, 1); |
| #else |
| struct udevice *dev; |
| |
| ret = i2c_get_chip_for_busnum(0, i2caddress, 1, &dev); |
| if (!ret) |
| ret = dm_i2c_read(dev, IR36021_INTEL_MODE_OOFSET, |
| (void *)&buf, 1); |
| #endif |
| if (ret) { |
| printf("VID: failed to read IR chip mode.\n"); |
| ret = -1; |
| goto exit; |
| } |
| if ((buf & IR36021_MODE_MASK) != IR36021_INTEL_MODE) { |
| printf("VID: IR Chip is not used in Intel mode.\n"); |
| ret = -1; |
| goto exit; |
| } |
| #endif |
| |
| /* get the voltage ID from fuse status register */ |
| fusesr = in_be32(&gur->dcfg_fusesr); |
| /* |
| * VID is used according to the table below |
| * --------------------------------------- |
| * | DA_V | |
| * |-------------------------------------| |
| * | 5b00000 | 5b00001-5b11110 | 5b11111 | |
| * ---------------+---------+-----------------+---------| |
| * | D | 5b00000 | NO VID | VID = DA_V | NO VID | |
| * | A |----------+---------+-----------------+---------| |
| * | _ | 5b00001 |VID = | VID = |VID = | |
| * | V | ~ | DA_V_ALT| DA_V_ALT | DA_A_VLT| |
| * | _ | 5b11110 | | | | |
| * | A |----------+---------+-----------------+---------| |
| * | L | 5b11111 | No VID | VID = DA_V | NO VID | |
| * | T | | | | | |
| * ------------------------------------------------------ |
| */ |
| #ifdef CONFIG_FSL_LSCH2 |
| vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_ALTVID_SHIFT) & |
| FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK; |
| if ((vid == 0) || (vid == FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK)) { |
| vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_VID_SHIFT) & |
| FSL_CHASSIS2_DCFG_FUSESR_VID_MASK; |
| } |
| #else |
| vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) & |
| FSL_CORENET_DCFG_FUSESR_ALTVID_MASK; |
| if ((vid == 0) || (vid == FSL_CORENET_DCFG_FUSESR_ALTVID_MASK)) { |
| vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) & |
| FSL_CORENET_DCFG_FUSESR_VID_MASK; |
| } |
| #endif |
| vdd_target = vdd[vid]; |
| |
| /* check override variable for overriding VDD */ |
| vdd_string = env_get(CONFIG_VID_FLS_ENV); |
| if (vdd_override == 0 && vdd_string && |
| !strict_strtoul(vdd_string, 10, &vdd_string_override)) |
| vdd_override = vdd_string_override; |
| if (vdd_override >= VDD_MV_MIN && vdd_override <= VDD_MV_MAX) { |
| vdd_target = vdd_override * 10; /* convert to 1/10 mV */ |
| debug("VDD override is %lu\n", vdd_override); |
| } else if (vdd_override != 0) { |
| printf("Invalid value.\n"); |
| } |
| if (vdd_target == 0) { |
| debug("VID: VID not used\n"); |
| ret = 0; |
| goto exit; |
| } else { |
| /* divide and round up by 10 to get a value in mV */ |
| vdd_target = DIV_ROUND_UP(vdd_target, 10); |
| debug("VID: vid = %d mV\n", vdd_target); |
| } |
| |
| /* |
| * Read voltage monitor to check real voltage. |
| */ |
| vdd_last = read_voltage(i2caddress); |
| if (vdd_last < 0) { |
| printf("VID: Couldn't read sensor abort VID adjustment\n"); |
| ret = -1; |
| goto exit; |
| } |
| vdd_current = vdd_last; |
| debug("VID: Core voltage is currently at %d mV\n", vdd_last); |
| /* |
| * Adjust voltage to at or one step above target. |
| * As measurements are less precise than setting the values |
| * we may run through dummy steps that cancel each other |
| * when stepping up and then down. |
| */ |
| while (vdd_last > 0 && |
| vdd_last < vdd_target) { |
| vdd_current += IR_VDD_STEP_UP; |
| vdd_last = set_voltage(i2caddress, vdd_current); |
| } |
| while (vdd_last > 0 && |
| vdd_last > vdd_target + (IR_VDD_STEP_DOWN - 1)) { |
| vdd_current -= IR_VDD_STEP_DOWN; |
| vdd_last = set_voltage(i2caddress, vdd_current); |
| } |
| |
| if (vdd_last > 0) |
| printf("VID: Core voltage after adjustment is at %d mV\n", |
| vdd_last); |
| else |
| ret = -1; |
| exit: |
| if (re_enable) |
| enable_interrupts(); |
| |
| i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT); |
| |
| return ret; |
| } |
| #endif |
| |
| static int print_vdd(void) |
| { |
| int vdd_last, ret, i2caddress; |
| |
| ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR); |
| if (ret) { |
| debug("VID : I2c failed to switch channel\n"); |
| return -1; |
| } |
| #if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \ |
| defined(CONFIG_VOL_MONITOR_IR36021_READ) |
| ret = find_ir_chip_on_i2c(); |
| if (ret < 0) { |
| printf("VID: Could not find voltage regulator on I2C.\n"); |
| goto exit; |
| } else { |
| i2caddress = ret; |
| debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress); |
| } |
| #endif |
| |
| /* |
| * Read voltage monitor to check real voltage. |
| */ |
| vdd_last = read_voltage(i2caddress); |
| if (vdd_last < 0) { |
| printf("VID: Couldn't read sensor abort VID adjustment\n"); |
| goto exit; |
| } |
| printf("VID: Core voltage is at %d mV\n", vdd_last); |
| exit: |
| i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT); |
| |
| return ret < 0 ? -1 : 0; |
| |
| } |
| |
| static int do_vdd_override(struct cmd_tbl *cmdtp, |
| int flag, int argc, |
| char *const argv[]) |
| { |
| ulong override; |
| |
| if (argc < 2) |
| return CMD_RET_USAGE; |
| |
| if (!strict_strtoul(argv[1], 10, &override)) |
| adjust_vdd(override); /* the value is checked by callee */ |
| else |
| return CMD_RET_USAGE; |
| return 0; |
| } |
| |
| static int do_vdd_read(struct cmd_tbl *cmdtp, int flag, int argc, |
| char *const argv[]) |
| { |
| if (argc < 1) |
| return CMD_RET_USAGE; |
| print_vdd(); |
| |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| vdd_override, 2, 0, do_vdd_override, |
| "override VDD", |
| " - override with the voltage specified in mV, eg. 1050" |
| ); |
| |
| U_BOOT_CMD( |
| vdd_read, 1, 0, do_vdd_read, |
| "read VDD", |
| " - Read the voltage specified in mV" |
| ) |