| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2009-2012 Freescale Semiconductor, Inc. |
| * Copyright 2020 NXP |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <env.h> |
| #include <fdt_support.h> |
| #include <i2c.h> |
| #include <image.h> |
| #include <init.h> |
| #include <irq_func.h> |
| #include <log.h> |
| #include <netdev.h> |
| #include <linux/compiler.h> |
| #include <asm/mmu.h> |
| #include <asm/processor.h> |
| #include <asm/cache.h> |
| #include <asm/immap_85xx.h> |
| #include <asm/fsl_law.h> |
| #include <asm/fsl_serdes.h> |
| #include <asm/fsl_liodn.h> |
| #include <fm_eth.h> |
| #include <linux/delay.h> |
| |
| #include "../common/qixis.h" |
| #include "../common/vsc3316_3308.h" |
| #include "t4qds.h" |
| #include "t4240qds_qixis.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static int8_t vsc3316_fsm1_tx[8][2] = { {0, 0}, {1, 1}, {6, 6}, {7, 7}, |
| {8, 8}, {9, 9}, {14, 14}, {15, 15} }; |
| |
| static int8_t vsc3316_fsm2_tx[8][2] = { {2, 2}, {3, 3}, {4, 4}, {5, 5}, |
| {10, 10}, {11, 11}, {12, 12}, {13, 13} }; |
| |
| static int8_t vsc3316_fsm1_rx[8][2] = { {2, 12}, {3, 13}, {4, 5}, {5, 4}, |
| {10, 11}, {11, 10}, {12, 2}, {13, 3} }; |
| |
| static int8_t vsc3316_fsm2_rx[8][2] = { {0, 15}, {1, 14}, {6, 7}, {7, 6}, |
| {8, 9}, {9, 8}, {14, 1}, {15, 0} }; |
| |
| int checkboard(void) |
| { |
| char buf[64]; |
| u8 sw; |
| struct cpu_type *cpu = gd->arch.cpu; |
| unsigned int i; |
| |
| printf("Board: %sQDS, ", cpu->name); |
| printf("Sys ID: 0x%02x, Sys Ver: 0x%02x, ", |
| QIXIS_READ(id), QIXIS_READ(arch)); |
| |
| sw = QIXIS_READ(brdcfg[0]); |
| sw = (sw & QIXIS_LBMAP_MASK) >> QIXIS_LBMAP_SHIFT; |
| |
| if (sw < 0x8) |
| printf("vBank: %d\n", sw); |
| else if (sw == 0x8) |
| puts("Promjet\n"); |
| else if (sw == 0x9) |
| puts("NAND\n"); |
| else |
| printf("invalid setting of SW%u\n", QIXIS_LBMAP_SWITCH); |
| |
| printf("FPGA: v%d (%s), build %d", |
| (int)QIXIS_READ(scver), qixis_read_tag(buf), |
| (int)qixis_read_minor()); |
| /* the timestamp string contains "\n" at the end */ |
| printf(" on %s", qixis_read_time(buf)); |
| |
| /* |
| * Display the actual SERDES reference clocks as configured by the |
| * dip switches on the board. Note that the SWx registers could |
| * technically be set to force the reference clocks to match the |
| * values that the SERDES expects (or vice versa). For now, however, |
| * we just display both values and hope the user notices when they |
| * don't match. |
| */ |
| puts("SERDES Reference Clocks: "); |
| sw = QIXIS_READ(brdcfg[2]); |
| for (i = 0; i < MAX_SERDES; i++) { |
| static const char * const freq[] = { |
| "100", "125", "156.25", "161.1328125"}; |
| unsigned int clock = (sw >> (6 - 2 * i)) & 3; |
| |
| printf("SERDES%u=%sMHz ", i+1, freq[clock]); |
| } |
| puts("\n"); |
| |
| return 0; |
| } |
| |
| int select_i2c_ch_pca9547(u8 ch, int bus_num) |
| { |
| int ret; |
| |
| #ifdef CONFIG_DM_I2C |
| struct udevice *dev; |
| |
| ret = i2c_get_chip_for_busnum(bus_num, I2C_MUX_PCA_ADDR_PRI, |
| 1, &dev); |
| if (ret) { |
| printf("%s: Cannot find udev for a bus %d\n", __func__, |
| bus_num); |
| return ret; |
| } |
| |
| ret = dm_i2c_write(dev, 0, &ch, 1); |
| #else |
| ret = i2c_write(I2C_MUX_PCA_ADDR_PRI, 0, 1, &ch, 1); |
| #endif |
| if (ret) { |
| puts("PCA: failed to select proper channel\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * read_voltage from sensor on I2C bus |
| * We use average of 4 readings, waiting for 532us befor another reading |
| */ |
| #define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */ |
| #define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */ |
| |
| static inline int read_voltage(void) |
| { |
| int i, ret, voltage_read = 0; |
| u16 vol_mon; |
| #ifdef CONFIG_DM_I2C |
| struct udevice *dev; |
| int bus_num = 0; |
| #endif |
| |
| for (i = 0; i < NUM_READINGS; i++) { |
| #ifdef CONFIG_DM_I2C |
| ret = i2c_get_chip_for_busnum(bus_num, I2C_VOL_MONITOR_ADDR, |
| 1, &dev); |
| if (ret) { |
| printf("%s: Cannot find udev for a bus %d\n", __func__, |
| bus_num); |
| return ret; |
| } |
| |
| ret = dm_i2c_read(dev, |
| I2C_VOL_MONITOR_BUS_V_OFFSET, |
| (void *)&vol_mon, 2); |
| #else |
| ret = i2c_read(I2C_VOL_MONITOR_ADDR, |
| I2C_VOL_MONITOR_BUS_V_OFFSET, 1, (void *)&vol_mon, 2); |
| #endif |
| if (ret) { |
| printf("VID: failed to read core voltage\n"); |
| return ret; |
| } |
| if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) { |
| printf("VID: Core voltage sensor error\n"); |
| return -1; |
| } |
| debug("VID: bus voltage reads 0x%04x\n", vol_mon); |
| /* LSB = 4mv */ |
| voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4; |
| udelay(WAIT_FOR_ADC); |
| } |
| /* calculate the average */ |
| voltage_read /= NUM_READINGS; |
| |
| return voltage_read; |
| } |
| |
| /* |
| * We need to calculate how long before the voltage starts to drop or increase |
| * It returns with the loop count. Each loop takes several readings (532us) |
| */ |
| static inline int wait_for_voltage_change(int vdd_last) |
| { |
| int timeout, vdd_current; |
| |
| vdd_current = read_voltage(); |
| /* wait until voltage starts to drop */ |
| for (timeout = 0; abs(vdd_last - vdd_current) <= 4 && |
| timeout < 100; timeout++) { |
| vdd_current = read_voltage(); |
| } |
| if (timeout >= 100) { |
| printf("VID: Voltage adjustment timeout\n"); |
| return -1; |
| } |
| return timeout; |
| } |
| |
| /* |
| * argument 'wait' is the time we know the voltage difference can be measured |
| * this function keeps reading the voltage until it is stable |
| */ |
| static inline int wait_for_voltage_stable(int wait) |
| { |
| int timeout, vdd_current, vdd_last; |
| |
| vdd_last = read_voltage(); |
| udelay(wait * NUM_READINGS * WAIT_FOR_ADC); |
| /* wait until voltage is stable */ |
| vdd_current = read_voltage(); |
| for (timeout = 0; abs(vdd_last - vdd_current) >= 4 && |
| timeout < 100; timeout++) { |
| vdd_last = vdd_current; |
| udelay(wait * NUM_READINGS * WAIT_FOR_ADC); |
| vdd_current = read_voltage(); |
| } |
| if (timeout >= 100) { |
| printf("VID: Voltage adjustment timeout\n"); |
| return -1; |
| } |
| |
| return vdd_current; |
| } |
| |
| static inline int set_voltage(u8 vid) |
| { |
| int wait, vdd_last; |
| |
| vdd_last = read_voltage(); |
| QIXIS_WRITE(brdcfg[6], vid); |
| wait = wait_for_voltage_change(vdd_last); |
| if (wait < 0) |
| return -1; |
| debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC); |
| wait = wait ? wait : 1; |
| |
| vdd_last = wait_for_voltage_stable(wait); |
| if (vdd_last < 0) |
| return -1; |
| debug("VID: Current voltage is %d mV\n", vdd_last); |
| |
| return vdd_last; |
| } |
| |
| |
| static int adjust_vdd(ulong vdd_override) |
| { |
| int re_enable = disable_interrupts(); |
| ccsr_gur_t __iomem *gur = |
| (void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| u32 fusesr; |
| u8 vid, vid_current; |
| int vdd_target, vdd_current, vdd_last; |
| int ret; |
| unsigned long vdd_string_override; |
| char *vdd_string; |
| static const uint16_t vdd[32] = { |
| 0, /* unused */ |
| 9875, /* 0.9875V */ |
| 9750, |
| 9625, |
| 9500, |
| 9375, |
| 9250, |
| 9125, |
| 9000, |
| 8875, |
| 8750, |
| 8625, |
| 8500, |
| 8375, |
| 8250, |
| 8125, |
| 10000, /* 1.0000V */ |
| 10125, |
| 10250, |
| 10375, |
| 10500, |
| 10625, |
| 10750, |
| 10875, |
| 11000, |
| 0, /* reserved */ |
| }; |
| struct vdd_drive { |
| u8 vid; |
| unsigned voltage; |
| }; |
| |
| ret = select_i2c_ch_pca9547(I2C_MUX_CH_VOL_MONITOR, 0); |
| if (ret) { |
| debug("VID: I2c failed to switch channel\n"); |
| ret = -1; |
| goto exit; |
| } |
| |
| /* get the voltage ID from fuse status register */ |
| fusesr = in_be32(&gur->dcfg_fusesr); |
| vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) & |
| FSL_CORENET_DCFG_FUSESR_VID_MASK; |
| if (vid == FSL_CORENET_DCFG_FUSESR_VID_MASK) { |
| vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) & |
| FSL_CORENET_DCFG_FUSESR_ALTVID_MASK; |
| } |
| vdd_target = vdd[vid]; |
| |
| /* check override variable for overriding VDD */ |
| vdd_string = env_get("t4240qds_vdd_mv"); |
| if (vdd_override == 0 && vdd_string && |
| !strict_strtoul(vdd_string, 10, &vdd_string_override)) |
| vdd_override = vdd_string_override; |
| if (vdd_override >= 819 && vdd_override <= 1212) { |
| vdd_target = vdd_override * 10; /* convert to 1/10 mV */ |
| debug("VDD override is %lu\n", vdd_override); |
| } else if (vdd_override != 0) { |
| printf("Invalid value.\n"); |
| } |
| |
| if (vdd_target == 0) { |
| debug("VID: VID not used\n"); |
| ret = 0; |
| goto exit; |
| } else { |
| /* round up and divice by 10 to get a value in mV */ |
| vdd_target = DIV_ROUND_UP(vdd_target, 10); |
| debug("VID: vid = %d mV\n", vdd_target); |
| } |
| |
| /* |
| * Check current board VID setting |
| * Voltage regulator support output to 6.250mv step |
| * The highes voltage allowed for this board is (vid=0x40) 1.21250V |
| * the lowest is (vid=0x7f) 0.81875V |
| */ |
| vid_current = QIXIS_READ(brdcfg[6]); |
| vdd_current = 121250 - (vid_current - 0x40) * 625; |
| debug("VID: Current vid setting is (0x%x) %d mV\n", |
| vid_current, vdd_current/100); |
| |
| /* |
| * Read voltage monitor to check real voltage. |
| * Voltage monitor LSB is 4mv. |
| */ |
| vdd_last = read_voltage(); |
| if (vdd_last < 0) { |
| printf("VID: Could not read voltage sensor abort VID adjustment\n"); |
| ret = -1; |
| goto exit; |
| } |
| debug("VID: Core voltage is at %d mV\n", vdd_last); |
| /* |
| * Adjust voltage to at or 8mV above target. |
| * Each step of adjustment is 6.25mV. |
| * Stepping down too fast may cause over current. |
| */ |
| while (vdd_last > 0 && vid_current < 0x80 && |
| vdd_last > (vdd_target + 8)) { |
| vid_current++; |
| vdd_last = set_voltage(vid_current); |
| } |
| /* |
| * Check if we need to step up |
| * This happens when board voltage switch was set too low |
| */ |
| while (vdd_last > 0 && vid_current >= 0x40 && |
| vdd_last < vdd_target + 2) { |
| vid_current--; |
| vdd_last = set_voltage(vid_current); |
| } |
| if (vdd_last > 0) |
| printf("VID: Core voltage %d mV\n", vdd_last); |
| else |
| ret = -1; |
| |
| exit: |
| if (re_enable) |
| enable_interrupts(); |
| return ret; |
| } |
| |
| /* Configure Crossbar switches for Front-Side SerDes Ports */ |
| int config_frontside_crossbar_vsc3316(void) |
| { |
| ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| u32 srds_prtcl_s1, srds_prtcl_s2; |
| int ret; |
| |
| ret = select_i2c_ch_pca9547(I2C_MUX_CH_VSC3316_FS, 0); |
| if (ret) |
| return ret; |
| |
| srds_prtcl_s1 = in_be32(&gur->rcwsr[4]) & |
| FSL_CORENET2_RCWSR4_SRDS1_PRTCL; |
| srds_prtcl_s1 >>= FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT; |
| switch (srds_prtcl_s1) { |
| case 37: |
| case 38: |
| /* swap first lane and third lane on slot1 */ |
| vsc3316_fsm1_tx[0][1] = 14; |
| vsc3316_fsm1_tx[6][1] = 0; |
| vsc3316_fsm1_rx[1][1] = 2; |
| vsc3316_fsm1_rx[6][1] = 13; |
| case 39: |
| case 40: |
| case 45: |
| case 46: |
| case 47: |
| case 48: |
| /* swap first lane and third lane on slot2 */ |
| vsc3316_fsm1_tx[2][1] = 8; |
| vsc3316_fsm1_tx[4][1] = 6; |
| vsc3316_fsm1_rx[2][1] = 10; |
| vsc3316_fsm1_rx[5][1] = 5; |
| default: |
| ret = vsc3316_config(VSC3316_FSM_TX_ADDR, vsc3316_fsm1_tx, 8); |
| if (ret) |
| return ret; |
| ret = vsc3316_config(VSC3316_FSM_RX_ADDR, vsc3316_fsm1_rx, 8); |
| if (ret) |
| return ret; |
| break; |
| } |
| |
| srds_prtcl_s2 = in_be32(&gur->rcwsr[4]) & |
| FSL_CORENET2_RCWSR4_SRDS2_PRTCL; |
| srds_prtcl_s2 >>= FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT; |
| switch (srds_prtcl_s2) { |
| case 37: |
| case 38: |
| /* swap first lane and third lane on slot3 */ |
| vsc3316_fsm2_tx[2][1] = 11; |
| vsc3316_fsm2_tx[5][1] = 4; |
| vsc3316_fsm2_rx[2][1] = 9; |
| vsc3316_fsm2_rx[4][1] = 7; |
| case 39: |
| case 40: |
| case 45: |
| case 46: |
| case 47: |
| case 48: |
| case 49: |
| case 50: |
| case 51: |
| case 52: |
| case 53: |
| case 54: |
| /* swap first lane and third lane on slot4 */ |
| vsc3316_fsm2_tx[6][1] = 3; |
| vsc3316_fsm2_tx[1][1] = 12; |
| vsc3316_fsm2_rx[0][1] = 1; |
| vsc3316_fsm2_rx[6][1] = 15; |
| default: |
| ret = vsc3316_config(VSC3316_FSM_TX_ADDR, vsc3316_fsm2_tx, 8); |
| if (ret) |
| return ret; |
| ret = vsc3316_config(VSC3316_FSM_RX_ADDR, vsc3316_fsm2_rx, 8); |
| if (ret) |
| return ret; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int config_backside_crossbar_mux(void) |
| { |
| ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); |
| u32 srds_prtcl_s3, srds_prtcl_s4; |
| u8 brdcfg; |
| |
| srds_prtcl_s3 = in_be32(&gur->rcwsr[4]) & |
| FSL_CORENET2_RCWSR4_SRDS3_PRTCL; |
| srds_prtcl_s3 >>= FSL_CORENET2_RCWSR4_SRDS3_PRTCL_SHIFT; |
| switch (srds_prtcl_s3) { |
| case 0: |
| /* SerDes3 is not enabled */ |
| break; |
| case 1: |
| case 2: |
| case 9: |
| case 10: |
| /* SD3(0:7) => SLOT5(0:7) */ |
| brdcfg = QIXIS_READ(brdcfg[12]); |
| brdcfg &= ~BRDCFG12_SD3MX_MASK; |
| brdcfg |= BRDCFG12_SD3MX_SLOT5; |
| QIXIS_WRITE(brdcfg[12], brdcfg); |
| break; |
| case 3: |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| case 8: |
| case 11: |
| case 12: |
| case 13: |
| case 14: |
| case 15: |
| case 16: |
| case 17: |
| case 18: |
| case 19: |
| case 20: |
| /* SD3(4:7) => SLOT6(0:3) */ |
| brdcfg = QIXIS_READ(brdcfg[12]); |
| brdcfg &= ~BRDCFG12_SD3MX_MASK; |
| brdcfg |= BRDCFG12_SD3MX_SLOT6; |
| QIXIS_WRITE(brdcfg[12], brdcfg); |
| break; |
| default: |
| printf("WARNING: unsupported for SerDes3 Protocol %d\n", |
| srds_prtcl_s3); |
| return -1; |
| } |
| |
| srds_prtcl_s4 = in_be32(&gur->rcwsr[4]) & |
| FSL_CORENET2_RCWSR4_SRDS4_PRTCL; |
| srds_prtcl_s4 >>= FSL_CORENET2_RCWSR4_SRDS4_PRTCL_SHIFT; |
| switch (srds_prtcl_s4) { |
| case 0: |
| /* SerDes4 is not enabled */ |
| break; |
| case 1: |
| case 2: |
| /* 10b, SD4(0:7) => SLOT7(0:7) */ |
| brdcfg = QIXIS_READ(brdcfg[12]); |
| brdcfg &= ~BRDCFG12_SD4MX_MASK; |
| brdcfg |= BRDCFG12_SD4MX_SLOT7; |
| QIXIS_WRITE(brdcfg[12], brdcfg); |
| break; |
| case 3: |
| case 4: |
| case 5: |
| case 6: |
| case 7: |
| case 8: |
| /* x1b, SD4(4:7) => SLOT8(0:3) */ |
| brdcfg = QIXIS_READ(brdcfg[12]); |
| brdcfg &= ~BRDCFG12_SD4MX_MASK; |
| brdcfg |= BRDCFG12_SD4MX_SLOT8; |
| QIXIS_WRITE(brdcfg[12], brdcfg); |
| break; |
| case 9: |
| case 10: |
| case 11: |
| case 12: |
| case 13: |
| case 14: |
| case 15: |
| case 16: |
| case 18: |
| /* 00b, SD4(4:5) => AURORA, SD4(6:7) => SATA */ |
| brdcfg = QIXIS_READ(brdcfg[12]); |
| brdcfg &= ~BRDCFG12_SD4MX_MASK; |
| brdcfg |= BRDCFG12_SD4MX_AURO_SATA; |
| QIXIS_WRITE(brdcfg[12], brdcfg); |
| break; |
| default: |
| printf("WARNING: unsupported for SerDes4 Protocol %d\n", |
| srds_prtcl_s4); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int board_early_init_r(void) |
| { |
| const unsigned int flashbase = CONFIG_SYS_FLASH_BASE; |
| int flash_esel = find_tlb_idx((void *)flashbase, 1); |
| |
| /* |
| * Remap Boot flash + PROMJET region to caching-inhibited |
| * so that flash can be erased properly. |
| */ |
| |
| /* Flush d-cache and invalidate i-cache of any FLASH data */ |
| flush_dcache(); |
| invalidate_icache(); |
| |
| if (flash_esel == -1) { |
| /* very unlikely unless something is messed up */ |
| puts("Error: Could not find TLB for FLASH BASE\n"); |
| flash_esel = 2; /* give our best effort to continue */ |
| } else { |
| /* invalidate existing TLB entry for flash + promjet */ |
| disable_tlb(flash_esel); |
| } |
| |
| set_tlb(1, flashbase, CONFIG_SYS_FLASH_BASE_PHYS, |
| MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G, |
| 0, flash_esel, BOOKE_PAGESZ_256M, 1); |
| |
| /* Disable remote I2C connection to qixis fpga */ |
| QIXIS_WRITE(brdcfg[5], QIXIS_READ(brdcfg[5]) & ~BRDCFG5_IRE); |
| |
| /* |
| * Adjust core voltage according to voltage ID |
| * This function changes I2C mux to channel 2. |
| */ |
| if (adjust_vdd(0)) |
| printf("Warning: Adjusting core voltage failed.\n"); |
| |
| /* Configure board SERDES ports crossbar */ |
| config_frontside_crossbar_vsc3316(); |
| config_backside_crossbar_mux(); |
| select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT, 0); |
| |
| return 0; |
| } |
| |
| unsigned long get_board_sys_clk(void) |
| { |
| u8 sysclk_conf = QIXIS_READ(brdcfg[1]); |
| #ifdef CONFIG_FSL_QIXIS_CLOCK_MEASUREMENT |
| /* use accurate clock measurement */ |
| int freq = QIXIS_READ(clk_freq[0]) << 8 | QIXIS_READ(clk_freq[1]); |
| int base = QIXIS_READ(clk_base[0]) << 8 | QIXIS_READ(clk_base[1]); |
| u32 val; |
| |
| val = freq * base; |
| if (val) { |
| debug("SYS Clock measurement is: %d\n", val); |
| return val; |
| } else { |
| printf("Warning: SYS clock measurement is invalid, using value from brdcfg1.\n"); |
| } |
| #endif |
| |
| switch (sysclk_conf & 0x0F) { |
| case QIXIS_SYSCLK_83: |
| return 83333333; |
| case QIXIS_SYSCLK_100: |
| return 100000000; |
| case QIXIS_SYSCLK_125: |
| return 125000000; |
| case QIXIS_SYSCLK_133: |
| return 133333333; |
| case QIXIS_SYSCLK_150: |
| return 150000000; |
| case QIXIS_SYSCLK_160: |
| return 160000000; |
| case QIXIS_SYSCLK_166: |
| return 166666666; |
| } |
| return 66666666; |
| } |
| |
| unsigned long get_board_ddr_clk(void) |
| { |
| u8 ddrclk_conf = QIXIS_READ(brdcfg[1]); |
| #ifdef CONFIG_FSL_QIXIS_CLOCK_MEASUREMENT |
| /* use accurate clock measurement */ |
| int freq = QIXIS_READ(clk_freq[2]) << 8 | QIXIS_READ(clk_freq[3]); |
| int base = QIXIS_READ(clk_base[0]) << 8 | QIXIS_READ(clk_base[1]); |
| u32 val; |
| |
| val = freq * base; |
| if (val) { |
| debug("DDR Clock measurement is: %d\n", val); |
| return val; |
| } else { |
| printf("Warning: DDR clock measurement is invalid, using value from brdcfg1.\n"); |
| } |
| #endif |
| |
| switch ((ddrclk_conf & 0x30) >> 4) { |
| case QIXIS_DDRCLK_100: |
| return 100000000; |
| case QIXIS_DDRCLK_125: |
| return 125000000; |
| case QIXIS_DDRCLK_133: |
| return 133333333; |
| } |
| return 66666666; |
| } |
| |
| int misc_init_r(void) |
| { |
| u8 sw; |
| void *srds_base = (void *)CONFIG_SYS_FSL_CORENET_SERDES_ADDR; |
| serdes_corenet_t *srds_regs; |
| u32 actual[MAX_SERDES]; |
| u32 pllcr0, expected; |
| unsigned int i; |
| |
| sw = QIXIS_READ(brdcfg[2]); |
| for (i = 0; i < MAX_SERDES; i++) { |
| unsigned int clock = (sw >> (6 - 2 * i)) & 3; |
| switch (clock) { |
| case 0: |
| actual[i] = SRDS_PLLCR0_RFCK_SEL_100; |
| break; |
| case 1: |
| actual[i] = SRDS_PLLCR0_RFCK_SEL_125; |
| break; |
| case 2: |
| actual[i] = SRDS_PLLCR0_RFCK_SEL_156_25; |
| break; |
| case 3: |
| actual[i] = SRDS_PLLCR0_RFCK_SEL_161_13; |
| break; |
| } |
| } |
| |
| for (i = 0; i < MAX_SERDES; i++) { |
| srds_regs = srds_base + i * 0x1000; |
| pllcr0 = srds_regs->bank[0].pllcr0; |
| expected = pllcr0 & SRDS_PLLCR0_RFCK_SEL_MASK; |
| if (expected != actual[i]) { |
| printf("Warning: SERDES%u expects reference clock %sMHz, but actual is %sMHz\n", |
| i + 1, serdes_clock_to_string(expected), |
| serdes_clock_to_string(actual[i])); |
| } |
| } |
| |
| return 0; |
| } |
| |
| int ft_board_setup(void *blob, bd_t *bd) |
| { |
| phys_addr_t base; |
| phys_size_t size; |
| |
| ft_cpu_setup(blob, bd); |
| |
| base = env_get_bootm_low(); |
| size = env_get_bootm_size(); |
| |
| fdt_fixup_memory(blob, (u64)base, (u64)size); |
| |
| #ifdef CONFIG_PCI |
| pci_of_setup(blob, bd); |
| #endif |
| |
| fdt_fixup_liodn(blob); |
| fsl_fdt_fixup_dr_usb(blob, bd); |
| |
| #ifdef CONFIG_SYS_DPAA_FMAN |
| fdt_fixup_fman_ethernet(blob); |
| fdt_fixup_board_enet(blob); |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * This function is called by bdinfo to print detail board information. |
| * As an exmaple for future board, we organize the messages into |
| * several sections. If applicable, the message is in the format of |
| * <name> = <value> |
| * It should aligned with normal output of bdinfo command. |
| * |
| * Voltage: Core, DDR and another configurable voltages |
| * Clock : Critical clocks which are not printed already |
| * RCW : RCW source if not printed already |
| * Misc : Other important information not in above catagories |
| */ |
| void board_detail(void) |
| { |
| int i; |
| u8 brdcfg[16], dutcfg[16], rst_ctl; |
| int vdd, rcwsrc; |
| static const char * const clk[] = {"66.67", "100", "125", "133.33"}; |
| |
| for (i = 0; i < 16; i++) { |
| brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i); |
| dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i); |
| } |
| |
| /* Voltage secion */ |
| if (!select_i2c_ch_pca9547(I2C_MUX_CH_VOL_MONITOR, 0)) { |
| vdd = read_voltage(); |
| if (vdd > 0) |
| printf("Core voltage= %d mV\n", vdd); |
| select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT, 0); |
| } |
| |
| printf("XVDD = 1.%d V\n", ((brdcfg[8] & 0xf) - 4) * 5 + 25); |
| |
| /* clock section */ |
| printf("SYSCLK = %s MHz\nDDRCLK = %s MHz\n", |
| clk[(brdcfg[11] >> 2) & 0x3], clk[brdcfg[11] & 3]); |
| |
| /* RCW section */ |
| rcwsrc = (dutcfg[0] << 1) + (dutcfg[1] & 1); |
| puts("RCW source = "); |
| switch (rcwsrc) { |
| case 0x017: |
| case 0x01f: |
| puts("8-bit NOR\n"); |
| break; |
| case 0x027: |
| case 0x02F: |
| puts("16-bit NOR\n"); |
| break; |
| case 0x040: |
| puts("SDHC/eMMC\n"); |
| break; |
| case 0x044: |
| puts("SPI 16-bit addressing\n"); |
| break; |
| case 0x045: |
| puts("SPI 24-bit addressing\n"); |
| break; |
| case 0x048: |
| puts("I2C normal addressing\n"); |
| break; |
| case 0x049: |
| puts("I2C extended addressing\n"); |
| break; |
| case 0x108: |
| case 0x109: |
| case 0x10a: |
| case 0x10b: |
| puts("8-bit NAND, 2KB\n"); |
| break; |
| default: |
| if ((rcwsrc >= 0x080) && (rcwsrc <= 0x09f)) |
| puts("Hard-coded RCW\n"); |
| else if ((rcwsrc >= 0x110) && (rcwsrc <= 0x11f)) |
| puts("8-bit NAND, 4KB\n"); |
| else |
| puts("unknown\n"); |
| break; |
| } |
| |
| /* Misc section */ |
| rst_ctl = QIXIS_READ(rst_ctl); |
| puts("HRESET_REQ = "); |
| switch (rst_ctl & 0x30) { |
| case 0x00: |
| puts("Ignored\n"); |
| break; |
| case 0x10: |
| puts("Assert HRESET\n"); |
| break; |
| case 0x30: |
| puts("Reset system\n"); |
| break; |
| default: |
| puts("N/A\n"); |
| break; |
| } |
| } |
| |
| /* |
| * Reverse engineering switch settings. |
| * Some bits cannot be figured out. They will be displayed as |
| * underscore in binary format. mask[] has those bits. |
| * Some bits are calculated differently than the actual switches |
| * if booting with overriding by FPGA. |
| */ |
| void qixis_dump_switch(void) |
| { |
| int i; |
| u8 sw[9]; |
| |
| /* |
| * Any bit with 1 means that bit cannot be reverse engineered. |
| * It will be displayed as _ in binary format. |
| */ |
| static const u8 mask[] = {0, 0, 0, 0, 0, 0x1, 0xcf, 0x3f, 0x1f}; |
| char buf[10]; |
| u8 brdcfg[16], dutcfg[16]; |
| |
| for (i = 0; i < 16; i++) { |
| brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i); |
| dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i); |
| } |
| |
| sw[0] = dutcfg[0]; |
| sw[1] = (dutcfg[1] << 0x07) | |
| ((dutcfg[12] & 0xC0) >> 1) | |
| ((dutcfg[11] & 0xE0) >> 3) | |
| ((dutcfg[6] & 0x80) >> 6) | |
| ((dutcfg[1] & 0x80) >> 7); |
| sw[2] = ((brdcfg[1] & 0x0f) << 4) | |
| ((brdcfg[1] & 0x30) >> 2) | |
| ((brdcfg[1] & 0x40) >> 5) | |
| ((brdcfg[1] & 0x80) >> 7); |
| sw[3] = brdcfg[2]; |
| sw[4] = ((dutcfg[2] & 0x01) << 7) | |
| ((dutcfg[2] & 0x06) << 4) | |
| ((~QIXIS_READ(present)) & 0x10) | |
| ((brdcfg[3] & 0x80) >> 4) | |
| ((brdcfg[3] & 0x01) << 2) | |
| ((brdcfg[6] == 0x62) ? 3 : |
| ((brdcfg[6] == 0x5a) ? 2 : |
| ((brdcfg[6] == 0x5e) ? 1 : 0))); |
| sw[5] = ((brdcfg[0] & 0x0f) << 4) | |
| ((QIXIS_READ(rst_ctl) & 0x30) >> 2) | |
| ((brdcfg[0] & 0x40) >> 5); |
| sw[6] = (brdcfg[11] & 0x20) | |
| ((brdcfg[5] & 0x02) << 3); |
| sw[7] = (((~QIXIS_READ(rst_ctl)) & 0x40) << 1) | |
| ((brdcfg[5] & 0x10) << 2); |
| sw[8] = ((brdcfg[12] & 0x08) << 4) | |
| ((brdcfg[12] & 0x03) << 5); |
| |
| puts("DIP switch (reverse-engineering)\n"); |
| for (i = 0; i < 9; i++) { |
| printf("SW%d = 0b%s (0x%02x)\n", |
| i + 1, byte_to_binary_mask(sw[i], mask[i], buf), sw[i]); |
| } |
| } |
| |
| static int do_vdd_adjust(struct cmd_tbl *cmdtp, |
| int flag, int argc, |
| char *const argv[]) |
| { |
| ulong override; |
| |
| if (argc < 2) |
| return CMD_RET_USAGE; |
| if (!strict_strtoul(argv[1], 10, &override)) |
| adjust_vdd(override); /* the value is checked by callee */ |
| else |
| return CMD_RET_USAGE; |
| |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| vdd_override, 2, 0, do_vdd_adjust, |
| "Override VDD", |
| "- override with the voltage specified in mV, eg. 1050" |
| ); |