blob: 924070a76b59f107d4f46b0de7242531ea215f43 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* PRU-RTU remoteproc driver for various SoCs
*
* Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
* Keerthy <j-keerthy@ti.com>
*/
#include <common.h>
#include <dm.h>
#include <elf.h>
#include <dm/of_access.h>
#include <remoteproc.h>
#include <errno.h>
#include <clk.h>
#include <reset.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <power-domain.h>
#include <linux/pruss_driver.h>
#include <dm/device_compat.h>
/* PRU_ICSS_PRU_CTRL registers */
#define PRU_CTRL_CTRL 0x0000
#define PRU_CTRL_STS 0x0004
#define PRU_CTRL_WAKEUP_EN 0x0008
#define PRU_CTRL_CYCLE 0x000C
#define PRU_CTRL_STALL 0x0010
#define PRU_CTRL_CTBIR0 0x0020
#define PRU_CTRL_CTBIR1 0x0024
#define PRU_CTRL_CTPPR0 0x0028
#define PRU_CTRL_CTPPR1 0x002C
/* CTRL register bit-fields */
#define CTRL_CTRL_SOFT_RST_N BIT(0)
#define CTRL_CTRL_EN BIT(1)
#define CTRL_CTRL_SLEEPING BIT(2)
#define CTRL_CTRL_CTR_EN BIT(3)
#define CTRL_CTRL_SINGLE_STEP BIT(8)
#define CTRL_CTRL_RUNSTATE BIT(15)
#define RPROC_FLAGS_SHIFT 16
#define RPROC_FLAGS_NONE 0
#define RPROC_FLAGS_ELF_PHDR BIT(0 + RPROC_FLAGS_SHIFT)
#define RPROC_FLAGS_ELF_SHDR BIT(1 + RPROC_FLAGS_SHIFT)
/**
* enum pru_mem - PRU core memory range identifiers
*/
enum pru_mem {
PRU_MEM_IRAM = 0,
PRU_MEM_CTRL,
PRU_MEM_DEBUG,
PRU_MEM_MAX,
};
struct pru_privdata {
phys_addr_t pru_iram;
phys_addr_t pru_ctrl;
phys_addr_t pru_debug;
fdt_size_t pru_iramsz;
fdt_size_t pru_ctrlsz;
fdt_size_t pru_debugsz;
const char *fw_name;
u32 iram_da;
u32 pdram_da;
u32 sdram_da;
u32 shrdram_da;
u32 bootaddr;
int id;
struct pruss *prusspriv;
};
static inline u32 pru_control_read_reg(struct pru_privdata *pru, unsigned int reg)
{
return readl(pru->pru_ctrl + reg);
}
static inline
void pru_control_write_reg(struct pru_privdata *pru, unsigned int reg, u32 val)
{
writel(val, pru->pru_ctrl + reg);
}
static inline
void pru_control_set_reg(struct pru_privdata *pru, unsigned int reg,
u32 mask, u32 set)
{
u32 val;
val = pru_control_read_reg(pru, reg);
val &= ~mask;
val |= (set & mask);
pru_control_write_reg(pru, reg, val);
}
/**
* pru_rproc_set_ctable() - set the constant table index for the PRU
* @rproc: the rproc instance of the PRU
* @c: constant table index to set
* @addr: physical address to set it to
*/
static int pru_rproc_set_ctable(struct pru_privdata *pru, enum pru_ctable_idx c, u32 addr)
{
unsigned int reg;
u32 mask, set;
u16 idx;
u16 idx_mask;
/* pointer is 16 bit and index is 8-bit so mask out the rest */
idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF;
/* ctable uses bit 8 and upwards only */
idx = (addr >> 8) & idx_mask;
/* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */
reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1);
mask = idx_mask << (16 * (c & 1));
set = idx << (16 * (c & 1));
pru_control_set_reg(pru, reg, mask, set);
return 0;
}
/**
* pru_start() - start the pru processor
* @dev: corresponding k3 remote processor device
*
* Return: 0 if all goes good, else appropriate error message.
*/
static int pru_start(struct udevice *dev)
{
struct pru_privdata *priv;
int val = 0;
priv = dev_get_priv(dev);
pru_rproc_set_ctable(priv, PRU_C28, 0x100 << 8);
val = CTRL_CTRL_EN | ((priv->bootaddr >> 2) << 16);
writel(val, priv->pru_ctrl + PRU_CTRL_CTRL);
return 0;
}
/**
* pru_stop() - Stop pru processor
* @dev: corresponding k3 remote processor device
*
* Return: 0 if all goes good, else appropriate error message.
*/
static int pru_stop(struct udevice *dev)
{
struct pru_privdata *priv;
int val = 0;
priv = dev_get_priv(dev);
val = readl(priv->pru_ctrl + PRU_CTRL_CTRL);
val &= ~CTRL_CTRL_EN;
writel(val, priv->pru_ctrl + PRU_CTRL_CTRL);
return 0;
}
/**
* pru_init() - Initialize the remote processor
* @dev: rproc device pointer
*
* Return: 0 if all went ok, else return appropriate error
*/
static int pru_init(struct udevice *dev)
{
return 0;
}
/*
* Convert PRU device address (data spaces only) to kernel virtual address
*
* Each PRU has access to all data memories within the PRUSS, accessible at
* different ranges. So, look through both its primary and secondary Data
* RAMs as well as any shared Data RAM to convert a PRU device address to
* kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
* RAM1 is primary Data RAM for PRU1.
*/
static void *pru_d_da_to_pa(struct pru_privdata *priv, u32 da, int len)
{
u32 offset;
void *pa = NULL;
phys_addr_t dram0, dram1, shrdram2;
u32 dram0sz, dram1sz, shrdram2sz;
if (len <= 0)
return NULL;
dram0 = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM0].pa;
dram1 = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM1].pa;
shrdram2 = priv->prusspriv->mem_regions[PRUSS_MEM_SHRD_RAM2].pa;
dram0sz = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM0].size;
dram1sz = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM1].size;
shrdram2sz = priv->prusspriv->mem_regions[PRUSS_MEM_SHRD_RAM2].size;
/* PRU1 has its local RAM addresses reversed */
if (priv->id == 1) {
dram1 = dram0;
dram1sz = dram0sz;
dram0 = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM1].pa;
dram0sz = priv->prusspriv->mem_regions[PRUSS_MEM_DRAM1].size;
}
if (da >= priv->pdram_da && da + len <= priv->pdram_da + dram0sz) {
offset = da - priv->pdram_da;
pa = (__force void *)(dram0 + offset);
} else if (da >= priv->sdram_da &&
da + len <= priv->sdram_da + dram1sz) {
offset = da - priv->sdram_da;
pa = (__force void *)(dram1 + offset);
} else if (da >= priv->shrdram_da &&
da + len <= priv->shrdram_da + shrdram2sz) {
offset = da - priv->shrdram_da;
pa = (__force void *)(shrdram2 + offset);
}
return pa;
}
/*
* Convert PRU device address (instruction space) to kernel virtual address
*
* A PRU does not have an unified address space. Each PRU has its very own
* private Instruction RAM, and its device address is identical to that of
* its primary Data RAM device address.
*/
static void *pru_i_da_to_pa(struct pru_privdata *priv, u32 da, int len)
{
u32 offset;
void *pa = NULL;
if (len <= 0)
return NULL;
if (da >= priv->iram_da &&
da + len <= priv->iram_da + priv->pru_iramsz) {
offset = da - priv->iram_da;
pa = (__force void *)(priv->pru_iram + offset);
}
return pa;
}
/* PRU-specific address translator */
static void *pru_da_to_pa(struct pru_privdata *priv, u64 da, int len, u32 flags)
{
void *pa;
u32 exec_flag;
exec_flag = ((flags & RPROC_FLAGS_ELF_SHDR) ? flags & SHF_EXECINSTR :
((flags & RPROC_FLAGS_ELF_PHDR) ? flags & PF_X : 0));
if (exec_flag)
pa = pru_i_da_to_pa(priv, da, len);
else
pa = pru_d_da_to_pa(priv, da, len);
return pa;
}
/*
* Custom memory copy implementation for ICSSG PRU/RTU Cores
*
* The ICSSG PRU/RTU cores have a memory copying issue with IRAM memories, that
* is not seen on previous generation SoCs. The data is reflected properly in
* the IRAM memories only for integer (4-byte) copies. Any unaligned copies
* result in all the other pre-existing bytes zeroed out within that 4-byte
* boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
* IRAM memory port interface does not allow any 8-byte copies (as commonly
* used by ARM64 memcpy implementation) and throws an exception. The DRAM
* memory ports do not show this behavior. Use this custom copying function
* to properly load the PRU/RTU firmware images on all memories for simplicity.
*
* TODO: Improve the function to deal with additional corner cases like
* unaligned copy sizes or sub-integer trailing bytes when the need arises.
*/
static int pru_rproc_memcpy(void *dest, void *src, size_t count)
{
const int *s = src;
int *d = dest;
int size = count / 4;
int *tmp_src = NULL;
/* limited to 4-byte aligned addresses and copy sizes */
if ((long)dest % 4 || count % 4)
return -EINVAL;
/* src offsets in ELF firmware image can be non-aligned */
if ((long)src % 4) {
tmp_src = malloc(count);
if (!tmp_src)
return -ENOMEM;
memcpy(tmp_src, src, count);
s = tmp_src;
}
while (size--)
*d++ = *s++;
kfree(tmp_src);
return 0;
}
/**
* pru_load() - Load pru firmware
* @dev: corresponding k3 remote processor device
* @addr: Address on the RAM from which firmware is to be loaded
* @size: Size of the pru firmware in bytes
*
* Return: 0 if all goes good, else appropriate error message.
*/
static int pru_load(struct udevice *dev, ulong addr, ulong size)
{
struct pru_privdata *priv;
Elf32_Ehdr *ehdr;
Elf32_Phdr *phdr;
int i, ret = 0;
priv = dev_get_priv(dev);
ehdr = (Elf32_Ehdr *)addr;
phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff);
/* go through the available ELF segments */
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
u32 da = phdr->p_paddr;
u32 memsz = phdr->p_memsz;
u32 filesz = phdr->p_filesz;
u32 offset = phdr->p_offset;
void *ptr;
if (phdr->p_type != PT_LOAD)
continue;
dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
phdr->p_type, da, memsz, filesz);
if (filesz > memsz) {
dev_dbg(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
filesz, memsz);
ret = -EINVAL;
break;
}
if (offset + filesz > size) {
dev_dbg(dev, "truncated fw: need 0x%x avail 0x%zx\n",
offset + filesz, size);
ret = -EINVAL;
break;
}
/* grab the kernel address for this device address */
ptr = pru_da_to_pa(priv, da, memsz,
RPROC_FLAGS_ELF_PHDR | phdr->p_flags);
if (!ptr) {
dev_dbg(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
ret = -EINVAL;
break;
}
/* skip the memzero logic performed by remoteproc ELF loader */
if (!phdr->p_filesz)
continue;
ret = pru_rproc_memcpy(ptr,
(void *)addr + phdr->p_offset, filesz);
if (ret) {
dev_dbg(dev, "PRU custom memory copy failed for da 0x%x memsz 0x%x\n",
da, memsz);
break;
}
}
priv->bootaddr = ehdr->e_entry;
return ret;
}
static const struct dm_rproc_ops pru_ops = {
.init = pru_init,
.start = pru_start,
.stop = pru_stop,
.load = pru_load,
};
static void pru_set_id(struct pru_privdata *priv, struct udevice *dev)
{
u32 mask2 = 0x38000;
if (device_is_compatible(dev, "ti,am654-rtu"))
mask2 = 0x6000;
if (device_is_compatible(dev, "ti,am654-tx-pru"))
mask2 = 0xc000;
if ((priv->pru_iram & mask2) == mask2)
priv->id = 1;
else
priv->id = 0;
}
/**
* pru_probe() - Basic probe
* @dev: corresponding k3 remote processor device
*
* Return: 0 if all goes good, else appropriate error message.
*/
static int pru_probe(struct udevice *dev)
{
struct pru_privdata *priv;
ofnode node;
node = dev_ofnode(dev);
priv = dev_get_priv(dev);
priv->prusspriv = dev_get_priv(dev->parent);
priv->pru_iram = devfdt_get_addr_size_index(dev, PRU_MEM_IRAM,
&priv->pru_iramsz);
priv->pru_ctrl = devfdt_get_addr_size_index(dev, PRU_MEM_CTRL,
&priv->pru_ctrlsz);
priv->pru_debug = devfdt_get_addr_size_index(dev, PRU_MEM_DEBUG,
&priv->pru_debugsz);
priv->iram_da = 0;
priv->pdram_da = 0;
priv->sdram_da = 0x2000;
priv->shrdram_da = 0x10000;
pru_set_id(priv, dev);
return 0;
}
static const struct udevice_id pru_ids[] = {
{ .compatible = "ti,am654-pru"},
{ .compatible = "ti,am654-rtu"},
{ .compatible = "ti,am654-tx-pru" },
{}
};
U_BOOT_DRIVER(pru) = {
.name = "pru",
.of_match = pru_ids,
.id = UCLASS_REMOTEPROC,
.ops = &pru_ops,
.probe = pru_probe,
.priv_auto = sizeof(struct pru_privdata),
};