| // SPDX-License-Identifier: GPL-2.0+ |
| |
| /* |
| * Freescale QuadSPI driver. |
| * |
| * Copyright (C) 2013 Freescale Semiconductor, Inc. |
| * Copyright (C) 2018 Bootlin |
| * Copyright (C) 2018 exceet electronics GmbH |
| * Copyright (C) 2018 Kontron Electronics GmbH |
| * Copyright 2019-2020 NXP |
| * |
| * This driver is a ported version of Linux Freescale QSPI driver taken from |
| * v5.5-rc1 tag having following information. |
| * |
| * Transition to SPI MEM interface: |
| * Authors: |
| * Boris Brezillon <bbrezillon@kernel.org> |
| * Frieder Schrempf <frieder.schrempf@kontron.de> |
| * Yogesh Gaur <yogeshnarayan.gaur@nxp.com> |
| * Suresh Gupta <suresh.gupta@nxp.com> |
| * |
| * Based on the original fsl-quadspi.c spi-nor driver. |
| * Transition to spi-mem in spi-fsl-qspi.c |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <dm.h> |
| #include <linux/iopoll.h> |
| #include <linux/sizes.h> |
| #include <linux/err.h> |
| #include <spi.h> |
| #include <spi-mem.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* |
| * The driver only uses one single LUT entry, that is updated on |
| * each call of exec_op(). Index 0 is preset at boot with a basic |
| * read operation, so let's use the last entry (15). |
| */ |
| #define SEQID_LUT 15 |
| |
| /* Registers used by the driver */ |
| #define QUADSPI_MCR 0x00 |
| #define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16) |
| #define QUADSPI_MCR_MDIS_MASK BIT(14) |
| #define QUADSPI_MCR_CLR_TXF_MASK BIT(11) |
| #define QUADSPI_MCR_CLR_RXF_MASK BIT(10) |
| #define QUADSPI_MCR_DDR_EN_MASK BIT(7) |
| #define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2) |
| #define QUADSPI_MCR_SWRSTHD_MASK BIT(1) |
| #define QUADSPI_MCR_SWRSTSD_MASK BIT(0) |
| |
| #define QUADSPI_IPCR 0x08 |
| #define QUADSPI_IPCR_SEQID(x) ((x) << 24) |
| #define QUADSPI_FLSHCR 0x0c |
| #define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0) |
| #define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8) |
| #define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16) |
| |
| #define QUADSPI_BUF3CR 0x1c |
| #define QUADSPI_BUF3CR_ALLMST_MASK BIT(31) |
| #define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8) |
| #define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8) |
| |
| #define QUADSPI_BFGENCR 0x20 |
| #define QUADSPI_BFGENCR_SEQID(x) ((x) << 12) |
| |
| #define QUADSPI_BUF0IND 0x30 |
| #define QUADSPI_BUF1IND 0x34 |
| #define QUADSPI_BUF2IND 0x38 |
| #define QUADSPI_SFAR 0x100 |
| |
| #define QUADSPI_SMPR 0x108 |
| #define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16) |
| #define QUADSPI_SMPR_FSDLY_MASK BIT(6) |
| #define QUADSPI_SMPR_FSPHS_MASK BIT(5) |
| #define QUADSPI_SMPR_HSENA_MASK BIT(0) |
| |
| #define QUADSPI_RBCT 0x110 |
| #define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0) |
| #define QUADSPI_RBCT_RXBRD_USEIPS BIT(8) |
| |
| #define QUADSPI_TBDR 0x154 |
| |
| #define QUADSPI_SR 0x15c |
| #define QUADSPI_SR_IP_ACC_MASK BIT(1) |
| #define QUADSPI_SR_AHB_ACC_MASK BIT(2) |
| |
| #define QUADSPI_FR 0x160 |
| #define QUADSPI_FR_TFF_MASK BIT(0) |
| |
| #define QUADSPI_RSER 0x164 |
| #define QUADSPI_RSER_TFIE BIT(0) |
| |
| #define QUADSPI_SPTRCLR 0x16c |
| #define QUADSPI_SPTRCLR_IPPTRC BIT(8) |
| #define QUADSPI_SPTRCLR_BFPTRC BIT(0) |
| |
| #define QUADSPI_SFA1AD 0x180 |
| #define QUADSPI_SFA2AD 0x184 |
| #define QUADSPI_SFB1AD 0x188 |
| #define QUADSPI_SFB2AD 0x18c |
| #define QUADSPI_RBDR(x) (0x200 + ((x) * 4)) |
| |
| #define QUADSPI_LUTKEY 0x300 |
| #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 |
| |
| #define QUADSPI_LCKCR 0x304 |
| #define QUADSPI_LCKER_LOCK BIT(0) |
| #define QUADSPI_LCKER_UNLOCK BIT(1) |
| |
| #define QUADSPI_LUT_BASE 0x310 |
| #define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) |
| #define QUADSPI_LUT_REG(idx) \ |
| (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4) |
| |
| /* Instruction set for the LUT register */ |
| #define LUT_STOP 0 |
| #define LUT_CMD 1 |
| #define LUT_ADDR 2 |
| #define LUT_DUMMY 3 |
| #define LUT_MODE 4 |
| #define LUT_MODE2 5 |
| #define LUT_MODE4 6 |
| #define LUT_FSL_READ 7 |
| #define LUT_FSL_WRITE 8 |
| #define LUT_JMP_ON_CS 9 |
| #define LUT_ADDR_DDR 10 |
| #define LUT_MODE_DDR 11 |
| #define LUT_MODE2_DDR 12 |
| #define LUT_MODE4_DDR 13 |
| #define LUT_FSL_READ_DDR 14 |
| #define LUT_FSL_WRITE_DDR 15 |
| #define LUT_DATA_LEARN 16 |
| |
| /* |
| * The PAD definitions for LUT register. |
| * |
| * The pad stands for the number of IO lines [0:3]. |
| * For example, the quad read needs four IO lines, |
| * so you should use LUT_PAD(4). |
| */ |
| #define LUT_PAD(x) (fls(x) - 1) |
| |
| /* |
| * Macro for constructing the LUT entries with the following |
| * register layout: |
| * |
| * --------------------------------------------------- |
| * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | |
| * --------------------------------------------------- |
| */ |
| #define LUT_DEF(idx, ins, pad, opr) \ |
| ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16)) |
| |
| /* Controller needs driver to swap endianness */ |
| #define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0) |
| |
| /* Controller needs 4x internal clock */ |
| #define QUADSPI_QUIRK_4X_INT_CLK BIT(1) |
| |
| /* |
| * TKT253890, the controller needs the driver to fill the txfifo with |
| * 16 bytes at least to trigger a data transfer, even though the extra |
| * data won't be transferred. |
| */ |
| #define QUADSPI_QUIRK_TKT253890 BIT(2) |
| |
| /* TKT245618, the controller cannot wake up from wait mode */ |
| #define QUADSPI_QUIRK_TKT245618 BIT(3) |
| |
| /* |
| * Controller adds QSPI_AMBA_BASE (base address of the mapped memory) |
| * internally. No need to add it when setting SFXXAD and SFAR registers |
| */ |
| #define QUADSPI_QUIRK_BASE_INTERNAL BIT(4) |
| |
| /* |
| * Controller uses TDH bits in register QUADSPI_FLSHCR. |
| * They need to be set in accordance with the DDR/SDR mode. |
| */ |
| #define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5) |
| |
| struct fsl_qspi_devtype_data { |
| unsigned int rxfifo; |
| unsigned int txfifo; |
| unsigned int ahb_buf_size; |
| unsigned int quirks; |
| bool little_endian; |
| }; |
| |
| static const struct fsl_qspi_devtype_data vybrid_data = { |
| .rxfifo = SZ_128, |
| .txfifo = SZ_64, |
| .ahb_buf_size = SZ_1K, |
| .quirks = QUADSPI_QUIRK_SWAP_ENDIAN, |
| .little_endian = true, |
| }; |
| |
| static const struct fsl_qspi_devtype_data imx6sx_data = { |
| .rxfifo = SZ_128, |
| .txfifo = SZ_512, |
| .ahb_buf_size = SZ_1K, |
| .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618, |
| .little_endian = true, |
| }; |
| |
| static const struct fsl_qspi_devtype_data imx7d_data = { |
| .rxfifo = SZ_128, |
| .txfifo = SZ_512, |
| .ahb_buf_size = SZ_1K, |
| .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK | |
| QUADSPI_QUIRK_USE_TDH_SETTING, |
| .little_endian = true, |
| }; |
| |
| static const struct fsl_qspi_devtype_data imx6ul_data = { |
| .rxfifo = SZ_128, |
| .txfifo = SZ_512, |
| .ahb_buf_size = SZ_1K, |
| .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK | |
| QUADSPI_QUIRK_USE_TDH_SETTING, |
| .little_endian = true, |
| }; |
| |
| static const struct fsl_qspi_devtype_data ls1021a_data = { |
| .rxfifo = SZ_128, |
| .txfifo = SZ_64, |
| .ahb_buf_size = SZ_1K, |
| .quirks = 0, |
| .little_endian = false, |
| }; |
| |
| static const struct fsl_qspi_devtype_data ls1088a_data = { |
| .rxfifo = SZ_128, |
| .txfifo = SZ_128, |
| .ahb_buf_size = SZ_1K, |
| .quirks = QUADSPI_QUIRK_TKT253890, |
| .little_endian = true, |
| }; |
| |
| static const struct fsl_qspi_devtype_data ls2080a_data = { |
| .rxfifo = SZ_128, |
| .txfifo = SZ_64, |
| .ahb_buf_size = SZ_1K, |
| .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL, |
| .little_endian = true, |
| }; |
| |
| struct fsl_qspi { |
| struct udevice *dev; |
| void __iomem *iobase; |
| void __iomem *ahb_addr; |
| u32 memmap_phy; |
| const struct fsl_qspi_devtype_data *devtype_data; |
| int selected; |
| }; |
| |
| static inline int needs_swap_endian(struct fsl_qspi *q) |
| { |
| return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; |
| } |
| |
| static inline int needs_4x_clock(struct fsl_qspi *q) |
| { |
| return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; |
| } |
| |
| static inline int needs_fill_txfifo(struct fsl_qspi *q) |
| { |
| return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; |
| } |
| |
| static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) |
| { |
| return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618; |
| } |
| |
| static inline int needs_amba_base_offset(struct fsl_qspi *q) |
| { |
| return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL); |
| } |
| |
| static inline int needs_tdh_setting(struct fsl_qspi *q) |
| { |
| return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING; |
| } |
| |
| /* |
| * An IC bug makes it necessary to rearrange the 32-bit data. |
| * Later chips, such as IMX6SLX, have fixed this bug. |
| */ |
| static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) |
| { |
| return needs_swap_endian(q) ? __swab32(a) : a; |
| } |
| |
| /* |
| * R/W functions for big- or little-endian registers: |
| * The QSPI controller's endianness is independent of |
| * the CPU core's endianness. So far, although the CPU |
| * core is little-endian the QSPI controller can use |
| * big-endian or little-endian. |
| */ |
| static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr) |
| { |
| if (q->devtype_data->little_endian) |
| out_le32(addr, val); |
| else |
| out_be32(addr, val); |
| } |
| |
| static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) |
| { |
| if (q->devtype_data->little_endian) |
| return in_le32(addr); |
| |
| return in_be32(addr); |
| } |
| |
| static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) |
| { |
| switch (width) { |
| case 1: |
| case 2: |
| case 4: |
| return 0; |
| } |
| |
| return -ENOTSUPP; |
| } |
| |
| static bool fsl_qspi_supports_op(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| struct fsl_qspi *q = dev_get_priv(slave->dev->parent); |
| int ret; |
| |
| ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth); |
| |
| if (op->addr.nbytes) |
| ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth); |
| |
| if (op->dummy.nbytes) |
| ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth); |
| |
| if (op->data.nbytes) |
| ret |= fsl_qspi_check_buswidth(q, op->data.buswidth); |
| |
| if (ret) |
| return false; |
| |
| /* |
| * The number of instructions needed for the op, needs |
| * to fit into a single LUT entry. |
| */ |
| if (op->addr.nbytes + |
| (op->dummy.nbytes ? 1 : 0) + |
| (op->data.nbytes ? 1 : 0) > 6) |
| return false; |
| |
| /* Max 64 dummy clock cycles supported */ |
| if (op->dummy.nbytes && |
| (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) |
| return false; |
| |
| /* Max data length, check controller limits and alignment */ |
| if (op->data.dir == SPI_MEM_DATA_IN && |
| (op->data.nbytes > q->devtype_data->ahb_buf_size || |
| (op->data.nbytes > q->devtype_data->rxfifo - 4 && |
| !IS_ALIGNED(op->data.nbytes, 8)))) |
| return false; |
| |
| if (op->data.dir == SPI_MEM_DATA_OUT && |
| op->data.nbytes > q->devtype_data->txfifo) |
| return false; |
| |
| return true; |
| } |
| |
| static void fsl_qspi_prepare_lut(struct fsl_qspi *q, |
| const struct spi_mem_op *op) |
| { |
| void __iomem *base = q->iobase; |
| u32 lutval[4] = {}; |
| int lutidx = 1, i; |
| |
| lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), |
| op->cmd.opcode); |
| |
| /* |
| * For some unknown reason, using LUT_ADDR doesn't work in some |
| * cases (at least with only one byte long addresses), so |
| * let's use LUT_MODE to write the address bytes one by one |
| */ |
| for (i = 0; i < op->addr.nbytes; i++) { |
| u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); |
| |
| lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE, |
| LUT_PAD(op->addr.buswidth), |
| addrbyte); |
| lutidx++; |
| } |
| |
| if (op->dummy.nbytes) { |
| lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, |
| LUT_PAD(op->dummy.buswidth), |
| op->dummy.nbytes * 8 / |
| op->dummy.buswidth); |
| lutidx++; |
| } |
| |
| if (op->data.nbytes) { |
| lutval[lutidx / 2] |= LUT_DEF(lutidx, |
| op->data.dir == SPI_MEM_DATA_IN ? |
| LUT_FSL_READ : LUT_FSL_WRITE, |
| LUT_PAD(op->data.buswidth), |
| 0); |
| lutidx++; |
| } |
| |
| lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); |
| |
| /* unlock LUT */ |
| qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); |
| qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); |
| |
| dev_dbg(q->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", |
| op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); |
| |
| /* fill LUT */ |
| for (i = 0; i < ARRAY_SIZE(lutval); i++) |
| qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i)); |
| |
| /* lock LUT */ |
| qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); |
| qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); |
| } |
| |
| /* |
| * If we have changed the content of the flash by writing or erasing, or if we |
| * read from flash with a different offset into the page buffer, we need to |
| * invalidate the AHB buffer. If we do not do so, we may read out the wrong |
| * data. The spec tells us reset the AHB domain and Serial Flash domain at |
| * the same time. |
| */ |
| static void fsl_qspi_invalidate(struct fsl_qspi *q) |
| { |
| u32 reg; |
| |
| reg = qspi_readl(q, q->iobase + QUADSPI_MCR); |
| reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; |
| qspi_writel(q, reg, q->iobase + QUADSPI_MCR); |
| |
| /* |
| * The minimum delay : 1 AHB + 2 SFCK clocks. |
| * Delay 1 us is enough. |
| */ |
| udelay(1); |
| |
| reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); |
| qspi_writel(q, reg, q->iobase + QUADSPI_MCR); |
| } |
| |
| static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_slave *slave) |
| { |
| struct dm_spi_slave_platdata *plat = |
| dev_get_parent_platdata(slave->dev); |
| |
| if (q->selected == plat->cs) |
| return; |
| |
| q->selected = plat->cs; |
| fsl_qspi_invalidate(q); |
| } |
| |
| static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op) |
| { |
| memcpy_fromio(op->data.buf.in, |
| q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size, |
| op->data.nbytes); |
| } |
| |
| static void fsl_qspi_fill_txfifo(struct fsl_qspi *q, |
| const struct spi_mem_op *op) |
| { |
| void __iomem *base = q->iobase; |
| int i; |
| u32 val; |
| |
| for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { |
| memcpy(&val, op->data.buf.out + i, 4); |
| val = fsl_qspi_endian_xchg(q, val); |
| qspi_writel(q, val, base + QUADSPI_TBDR); |
| } |
| |
| if (i < op->data.nbytes) { |
| memcpy(&val, op->data.buf.out + i, op->data.nbytes - i); |
| val = fsl_qspi_endian_xchg(q, val); |
| qspi_writel(q, val, base + QUADSPI_TBDR); |
| } |
| |
| if (needs_fill_txfifo(q)) { |
| for (i = op->data.nbytes; i < 16; i += 4) |
| qspi_writel(q, 0, base + QUADSPI_TBDR); |
| } |
| } |
| |
| static void fsl_qspi_read_rxfifo(struct fsl_qspi *q, |
| const struct spi_mem_op *op) |
| { |
| void __iomem *base = q->iobase; |
| int i; |
| u8 *buf = op->data.buf.in; |
| u32 val; |
| |
| for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { |
| val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); |
| val = fsl_qspi_endian_xchg(q, val); |
| memcpy(buf + i, &val, 4); |
| } |
| |
| if (i < op->data.nbytes) { |
| val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); |
| val = fsl_qspi_endian_xchg(q, val); |
| memcpy(buf + i, &val, op->data.nbytes - i); |
| } |
| } |
| |
| static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base, |
| u32 mask, u32 delay_us, u32 timeout_us) |
| { |
| u32 reg; |
| |
| if (!q->devtype_data->little_endian) |
| mask = (u32)cpu_to_be32(mask); |
| |
| return readl_poll_timeout(base, reg, !(reg & mask), timeout_us); |
| } |
| |
| static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op) |
| { |
| void __iomem *base = q->iobase; |
| int err = 0; |
| |
| /* |
| * Always start the sequence at the same index since we update |
| * the LUT at each exec_op() call. And also specify the DATA |
| * length, since it's has not been specified in the LUT. |
| */ |
| qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT), |
| base + QUADSPI_IPCR); |
| |
| /* wait for the controller being ready */ |
| err = fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, |
| (QUADSPI_SR_IP_ACC_MASK | |
| QUADSPI_SR_AHB_ACC_MASK), |
| 10, 1000); |
| |
| if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) |
| fsl_qspi_read_rxfifo(q, op); |
| |
| return err; |
| } |
| |
| static int fsl_qspi_exec_op(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| struct fsl_qspi *q = dev_get_priv(slave->dev->parent); |
| void __iomem *base = q->iobase; |
| u32 addr_offset = 0; |
| int err = 0; |
| |
| /* wait for the controller being ready */ |
| fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK | |
| QUADSPI_SR_AHB_ACC_MASK), 10, 1000); |
| |
| fsl_qspi_select_mem(q, slave); |
| |
| if (needs_amba_base_offset(q)) |
| addr_offset = q->memmap_phy; |
| |
| qspi_writel(q, |
| q->selected * q->devtype_data->ahb_buf_size + addr_offset, |
| base + QUADSPI_SFAR); |
| |
| qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) | |
| QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK, |
| base + QUADSPI_MCR); |
| |
| qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC, |
| base + QUADSPI_SPTRCLR); |
| |
| fsl_qspi_prepare_lut(q, op); |
| |
| /* |
| * If we have large chunks of data, we read them through the AHB bus |
| * by accessing the mapped memory. In all other cases we use |
| * IP commands to access the flash. |
| */ |
| if (op->data.nbytes > (q->devtype_data->rxfifo - 4) && |
| op->data.dir == SPI_MEM_DATA_IN) { |
| fsl_qspi_read_ahb(q, op); |
| } else { |
| qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | |
| QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT); |
| |
| if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) |
| fsl_qspi_fill_txfifo(q, op); |
| |
| err = fsl_qspi_do_op(q, op); |
| } |
| |
| /* Invalidate the data in the AHB buffer. */ |
| fsl_qspi_invalidate(q); |
| |
| return err; |
| } |
| |
| static int fsl_qspi_adjust_op_size(struct spi_slave *slave, |
| struct spi_mem_op *op) |
| { |
| struct fsl_qspi *q = dev_get_priv(slave->dev->parent); |
| |
| if (op->data.dir == SPI_MEM_DATA_OUT) { |
| if (op->data.nbytes > q->devtype_data->txfifo) |
| op->data.nbytes = q->devtype_data->txfifo; |
| } else { |
| if (op->data.nbytes > q->devtype_data->ahb_buf_size) |
| op->data.nbytes = q->devtype_data->ahb_buf_size; |
| else if (op->data.nbytes > (q->devtype_data->rxfifo - 4)) |
| op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_qspi_default_setup(struct fsl_qspi *q) |
| { |
| void __iomem *base = q->iobase; |
| u32 reg, addr_offset = 0; |
| |
| /* Reset the module */ |
| qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, |
| base + QUADSPI_MCR); |
| udelay(1); |
| |
| /* Disable the module */ |
| qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, |
| base + QUADSPI_MCR); |
| |
| /* |
| * Previous boot stages (BootROM, bootloader) might have used DDR |
| * mode and did not clear the TDH bits. As we currently use SDR mode |
| * only, clear the TDH bits if necessary. |
| */ |
| if (needs_tdh_setting(q)) |
| qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) & |
| ~QUADSPI_FLSHCR_TDH_MASK, |
| base + QUADSPI_FLSHCR); |
| |
| reg = qspi_readl(q, base + QUADSPI_SMPR); |
| qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK |
| | QUADSPI_SMPR_FSPHS_MASK |
| | QUADSPI_SMPR_HSENA_MASK |
| | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); |
| |
| /* We only use the buffer3 for AHB read */ |
| qspi_writel(q, 0, base + QUADSPI_BUF0IND); |
| qspi_writel(q, 0, base + QUADSPI_BUF1IND); |
| qspi_writel(q, 0, base + QUADSPI_BUF2IND); |
| |
| qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT), |
| q->iobase + QUADSPI_BFGENCR); |
| qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT); |
| qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | |
| QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8), |
| base + QUADSPI_BUF3CR); |
| |
| if (needs_amba_base_offset(q)) |
| addr_offset = q->memmap_phy; |
| |
| /* |
| * In HW there can be a maximum of four chips on two buses with |
| * two chip selects on each bus. We use four chip selects in SW |
| * to differentiate between the four chips. |
| * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD, |
| * SFB2AD accordingly. |
| */ |
| qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset, |
| base + QUADSPI_SFA1AD); |
| qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset, |
| base + QUADSPI_SFA2AD); |
| qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset, |
| base + QUADSPI_SFB1AD); |
| qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset, |
| base + QUADSPI_SFB2AD); |
| |
| q->selected = -1; |
| |
| /* Enable the module */ |
| qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, |
| base + QUADSPI_MCR); |
| return 0; |
| } |
| |
| static const struct spi_controller_mem_ops fsl_qspi_mem_ops = { |
| .adjust_op_size = fsl_qspi_adjust_op_size, |
| .supports_op = fsl_qspi_supports_op, |
| .exec_op = fsl_qspi_exec_op, |
| }; |
| |
| static int fsl_qspi_probe(struct udevice *bus) |
| { |
| struct dm_spi_bus *dm_bus = bus->uclass_priv; |
| struct fsl_qspi *q = dev_get_priv(bus); |
| const void *blob = gd->fdt_blob; |
| int node = dev_of_offset(bus); |
| struct fdt_resource res; |
| int ret; |
| |
| q->dev = bus; |
| q->devtype_data = (struct fsl_qspi_devtype_data *) |
| dev_get_driver_data(bus); |
| |
| /* find the resources */ |
| ret = fdt_get_named_resource(blob, node, "reg", "reg-names", "QuadSPI", |
| &res); |
| if (ret) { |
| dev_err(bus, "Can't get regs base addresses(ret = %d)!\n", ret); |
| return -ENOMEM; |
| } |
| |
| q->iobase = map_physmem(res.start, res.end - res.start, MAP_NOCACHE); |
| |
| ret = fdt_get_named_resource(blob, node, "reg", "reg-names", |
| "QuadSPI-memory", &res); |
| if (ret) { |
| dev_err(bus, "Can't get AMBA base addresses(ret = %d)!\n", ret); |
| return -ENOMEM; |
| } |
| |
| q->ahb_addr = map_physmem(res.start, res.end - res.start, MAP_NOCACHE); |
| q->memmap_phy = res.start; |
| |
| dm_bus->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency", |
| 66000000); |
| |
| fsl_qspi_default_setup(q); |
| |
| return 0; |
| } |
| |
| static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen, |
| const void *dout, void *din, unsigned long flags) |
| { |
| return 0; |
| } |
| |
| static int fsl_qspi_claim_bus(struct udevice *dev) |
| { |
| return 0; |
| } |
| |
| static int fsl_qspi_release_bus(struct udevice *dev) |
| { |
| return 0; |
| } |
| |
| static int fsl_qspi_set_speed(struct udevice *bus, uint speed) |
| { |
| return 0; |
| } |
| |
| static int fsl_qspi_set_mode(struct udevice *bus, uint mode) |
| { |
| return 0; |
| } |
| |
| static const struct dm_spi_ops fsl_qspi_ops = { |
| .claim_bus = fsl_qspi_claim_bus, |
| .release_bus = fsl_qspi_release_bus, |
| .xfer = fsl_qspi_xfer, |
| .set_speed = fsl_qspi_set_speed, |
| .set_mode = fsl_qspi_set_mode, |
| .mem_ops = &fsl_qspi_mem_ops, |
| }; |
| |
| static const struct udevice_id fsl_qspi_ids[] = { |
| { .compatible = "fsl,vf610-qspi", .data = (ulong)&vybrid_data, }, |
| { .compatible = "fsl,imx6sx-qspi", .data = (ulong)&imx6sx_data, }, |
| { .compatible = "fsl,imx6ul-qspi", .data = (ulong)&imx6ul_data, }, |
| { .compatible = "fsl,imx7d-qspi", .data = (ulong)&imx7d_data, }, |
| { .compatible = "fsl,ls1021a-qspi", .data = (ulong)&ls1021a_data, }, |
| { .compatible = "fsl,ls1088a-qspi", .data = (ulong)&ls1088a_data, }, |
| { .compatible = "fsl,ls2080a-qspi", .data = (ulong)&ls2080a_data, }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(fsl_qspi) = { |
| .name = "fsl_qspi", |
| .id = UCLASS_SPI, |
| .of_match = fsl_qspi_ids, |
| .ops = &fsl_qspi_ops, |
| .priv_auto_alloc_size = sizeof(struct fsl_qspi), |
| .probe = fsl_qspi_probe, |
| }; |