| /* |
| * (C) Copyright 2003 |
| * Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #define DEBUG |
| |
| #include <common.h> |
| #include <exports.h> |
| #include <s3c2400.h> |
| #include "tsc2000.h" |
| #include "rs485.h" |
| |
| /* |
| * define, to wait for the touch to be pressed, before reading coordinates in |
| * command do_touch. If not defined, an error message is printed, when the |
| * command do_touch is invoked and the touch is not pressed within an specific |
| * interval. |
| */ |
| #undef CONFIG_TOUCH_WAIT_PRESSED 1 |
| |
| /* max time to wait for touch is pressed */ |
| #ifndef CONFIG_TOUCH_WAIT_PRESSED |
| #define TOUCH_TIMEOUT 5 |
| #endif /* !CONFIG_TOUCH_WAIT_PRESSED */ |
| |
| /* assignment of CPU internal ADC channels with TRAB hardware */ |
| #define VCC5V 2 |
| #define VCC12V 3 |
| |
| /* CPLD-Register for controlling TRAB hardware functions */ |
| #define CPLD_BUTTONS ((volatile unsigned long *)0x04020000) |
| #define CPLD_FILL_LEVEL ((volatile unsigned long *)0x04008000) |
| #define CPLD_ROTARY_SWITCH ((volatile unsigned long *)0x04018000) |
| #define CPLD_RS485_RE ((volatile unsigned long *)0x04028000) |
| |
| /* timer configuration bits for buzzer and PWM */ |
| #define START2 (1 << 12) |
| #define UPDATE2 (1 << 13) |
| #define INVERT2 (1 << 14) |
| #define RELOAD2 (1 << 15) |
| #define START3 (1 << 16) |
| #define UPDATE3 (1 << 17) |
| #define INVERT3 (1 << 18) |
| #define RELOAD3 (1 << 19) |
| |
| #define PCLK 66000000 |
| #define BUZZER_FREQ 1000 /* frequency in Hz */ |
| #define PWM_FREQ 500 |
| |
| |
| /* definitions of I2C EEPROM device address */ |
| #define I2C_EEPROM_DEV_ADDR 0x54 |
| |
| /* definition for touch panel calibration points */ |
| #define CALIB_TL 0 /* calibration point in (T)op (L)eft corner */ |
| #define CALIB_DR 1 /* calibration point in (D)own (R)ight corner */ |
| |
| /* EEPROM address map */ |
| #define SERIAL_NUMBER 8 |
| #define TOUCH_X0 52 |
| #define TOUCH_Y0 54 |
| #define TOUCH_X1 56 |
| #define TOUCH_Y1 58 |
| #define CRC16 60 |
| |
| /* EEPROM stuff */ |
| #define EEPROM_MAX_CRC_BUF 64 |
| |
| /* RS485 stuff */ |
| #define RS485_MAX_RECEIVE_BUF_LEN 100 |
| |
| /* Bit definitions for ADCCON */ |
| #define ADC_ENABLE_START 0x1 |
| #define ADC_READ_START 0x2 |
| #define ADC_STDBM 0x4 |
| #define ADC_INP_AIN0 (0x0 << 3) |
| #define ADC_INP_AIN1 (0x1 << 3) |
| #define ADC_INP_AIN2 (0x2 << 3) |
| #define ADC_INP_AIN3 (0x3 << 3) |
| #define ADC_INP_AIN4 (0x4 << 3) |
| #define ADC_INP_AIN5 (0x5 << 3) |
| #define ADC_INP_AIN6 (0x6 << 3) |
| #define ADC_INP_AIN7 (0x7 << 3) |
| #define ADC_PRSCEN 0x4000 |
| #define ADC_ECFLG 0x8000 |
| |
| /* function test functions */ |
| int do_dip (void); |
| int do_info (void); |
| int do_vcc5v (void); |
| int do_vcc12v (void); |
| int do_buttons (void); |
| int do_fill_level (void); |
| int do_rotary_switch (void); |
| int do_pressure (void); |
| int do_v_bat (void); |
| int do_vfd_id (void); |
| int do_buzzer (char **); |
| int do_led (char **); |
| int do_full_bridge (char **); |
| int do_dac (char **); |
| int do_motor_contact (void); |
| int do_motor (char **); |
| int do_pwm (char **); |
| int do_thermo (char **); |
| int do_touch (char **); |
| int do_rs485 (char **); |
| int do_serial_number (char **); |
| int do_crc16 (void); |
| int do_power_switch (void); |
| int do_gain (char **); |
| int do_eeprom (char **); |
| |
| /* helper functions */ |
| static void adc_init (void); |
| static int adc_read (unsigned int channel); |
| static void print_identifier (void); |
| |
| #ifdef CONFIG_TOUCH_WAIT_PRESSED |
| static void touch_wait_pressed (void); |
| #else |
| static int touch_check_pressed (void); |
| #endif /* CONFIG_TOUCH_WAIT_PRESSED */ |
| |
| static void touch_read_x_y (int *x, int *y); |
| static int touch_write_clibration_values (int calib_point, int x, int y); |
| static int rs485_send_line (const char *data); |
| static int rs485_receive_chars (char *data, int timeout); |
| static unsigned short updcrc(unsigned short icrc, unsigned char *icp, |
| unsigned int icnt); |
| |
| #if (CONFIG_COMMANDS & CFG_CMD_I2C) |
| static int trab_eeprom_read (char **argv); |
| static int trab_eeprom_write (char **argv); |
| int i2c_write_multiple (uchar chip, uint addr, int alen, uchar *buffer, |
| int len); |
| int i2c_read_multiple ( uchar chip, uint addr, int alen, uchar *buffer, |
| int len); |
| #endif /* CFG_CMD_I2C */ |
| |
| /* |
| * TRAB board specific commands. Especially commands for burn-in and function |
| * test. |
| */ |
| |
| int trab_fkt (int argc, char *argv[]) |
| { |
| int i; |
| |
| app_startup(argv); |
| if (get_version () != XF_VERSION) { |
| printf ("Wrong XF_VERSION. Please re-compile with actual " |
| "u-boot sources\n"); |
| printf ("Example expects ABI version %d\n", XF_VERSION); |
| printf ("Actual U-Boot ABI version %d\n", (int)get_version()); |
| return 1; |
| } |
| |
| debug ("argc = %d\n", argc); |
| |
| for (i=0; i<=argc; ++i) { |
| debug ("argv[%d] = \"%s\"\n", i, argv[i] ? argv[i] : "<NULL>"); |
| } |
| |
| adc_init (); |
| |
| switch (argc) { |
| |
| case 0: |
| case 1: |
| break; |
| |
| case 2: |
| if (strcmp (argv[1], "info") == 0) { |
| return (do_info ()); |
| } |
| if (strcmp (argv[1], "dip") == 0) { |
| return (do_dip ()); |
| } |
| if (strcmp (argv[1], "vcc5v") == 0) { |
| return (do_vcc5v ()); |
| } |
| if (strcmp (argv[1], "vcc12v") == 0) { |
| return (do_vcc12v ()); |
| } |
| if (strcmp (argv[1], "buttons") == 0) { |
| return (do_buttons ()); |
| } |
| if (strcmp (argv[1], "fill_level") == 0) { |
| return (do_fill_level ()); |
| } |
| if (strcmp (argv[1], "rotary_switch") == 0) { |
| return (do_rotary_switch ()); |
| } |
| if (strcmp (argv[1], "pressure") == 0) { |
| return (do_pressure ()); |
| } |
| if (strcmp (argv[1], "v_bat") == 0) { |
| return (do_v_bat ()); |
| } |
| if (strcmp (argv[1], "vfd_id") == 0) { |
| return (do_vfd_id ()); |
| } |
| if (strcmp (argv[1], "motor_contact") == 0) { |
| return (do_motor_contact ()); |
| } |
| if (strcmp (argv[1], "crc16") == 0) { |
| return (do_crc16 ()); |
| } |
| if (strcmp (argv[1], "power_switch") == 0) { |
| return (do_power_switch ()); |
| } |
| break; |
| |
| case 3: |
| if (strcmp (argv[1], "full_bridge") == 0) { |
| return (do_full_bridge (argv)); |
| } |
| if (strcmp (argv[1], "dac") == 0) { |
| return (do_dac (argv)); |
| } |
| if (strcmp (argv[1], "motor") == 0) { |
| return (do_motor (argv)); |
| } |
| if (strcmp (argv[1], "pwm") == 0) { |
| return (do_pwm (argv)); |
| } |
| if (strcmp (argv[1], "thermo") == 0) { |
| return (do_thermo (argv)); |
| } |
| if (strcmp (argv[1], "touch") == 0) { |
| return (do_touch (argv)); |
| } |
| if (strcmp (argv[1], "serial_number") == 0) { |
| return (do_serial_number (argv)); |
| } |
| if (strcmp (argv[1], "buzzer") == 0) { |
| return (do_buzzer (argv)); |
| } |
| if (strcmp (argv[1], "gain") == 0) { |
| return (do_gain (argv)); |
| } |
| break; |
| |
| case 4: |
| if (strcmp (argv[1], "led") == 0) { |
| return (do_led (argv)); |
| } |
| if (strcmp (argv[1], "rs485") == 0) { |
| return (do_rs485 (argv)); |
| } |
| if (strcmp (argv[1], "serial_number") == 0) { |
| return (do_serial_number (argv)); |
| } |
| break; |
| |
| case 5: |
| if (strcmp (argv[1], "eeprom") == 0) { |
| return (do_eeprom (argv)); |
| } |
| break; |
| |
| case 6: |
| if (strcmp (argv[1], "eeprom") == 0) { |
| return (do_eeprom (argv)); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| printf ("Usage:\n<command> <parameter1> <parameter2> ...\n"); |
| return 1; |
| } |
| |
| int do_info (void) |
| { |
| printf ("Stand-alone application for TRAB board function test\n"); |
| printf ("Built: %s at %s\n", __DATE__ , __TIME__ ); |
| |
| return 0; |
| } |
| |
| int do_dip (void) |
| { |
| unsigned int result = 0; |
| int adc_val; |
| int i; |
| |
| /*********************************************************** |
| DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3): |
| SW1 - AIN4 |
| SW2 - AIN5 |
| SW3 - AIN6 |
| SW4 - AIN7 |
| |
| "On" DIP switch position short-circuits the voltage from |
| the input channel (i.e. '0' conversion result means "on"). |
| *************************************************************/ |
| |
| for (i = 7; i > 3; i--) { |
| |
| if ((adc_val = adc_read (i)) == -1) { |
| printf ("Channel %d could not be read\n", i); |
| return 1; |
| } |
| |
| /* |
| * Input voltage (switch open) is 1.8 V. |
| * (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736 |
| * Set trigger at halve that value. |
| */ |
| if (adc_val < 368) |
| result |= (1 << (i-4)); |
| } |
| |
| /* print result to console */ |
| print_identifier (); |
| for (i = 0; i < 4; i++) { |
| if ((result & (1 << i)) == 0) |
| printf("0"); |
| else |
| printf("1"); |
| } |
| printf("\n"); |
| |
| return 0; |
| } |
| |
| |
| int do_vcc5v (void) |
| { |
| int result; |
| |
| /* VCC5V is connected to channel 2 */ |
| |
| if ((result = adc_read (VCC5V)) == -1) { |
| printf ("VCC5V could not be read\n"); |
| return 1; |
| } |
| |
| /* |
| * Calculate voltage value. Split in two parts because there is no |
| * floating point support. VCC5V is connected over an resistor divider: |
| * VCC5V=ADCval*2,5V/1023*(10K+30K)/10K. |
| */ |
| print_identifier (); |
| printf ("%d", (result & 0x3FF)* 10 / 1023); |
| printf (".%d", ((result & 0x3FF)* 10 % 1023)* 10 / 1023); |
| printf ("%d V\n", (((result & 0x3FF) * 10 % 1023 ) * 10 % 1023) |
| * 10 / 1024); |
| |
| return 0; |
| } |
| |
| |
| int do_vcc12v (void) |
| { |
| int result; |
| |
| if ((result = adc_read (VCC12V)) == -1) { |
| printf ("VCC12V could not be read\n"); |
| return 1; |
| } |
| |
| /* |
| * Calculate voltage value. Split in two parts because there is no |
| * floating point support. VCC5V is connected over an resistor divider: |
| * VCC12V=ADCval*2,5V/1023*(30K+270K)/30K. |
| */ |
| print_identifier (); |
| printf ("%d", (result & 0x3FF)* 25 / 1023); |
| printf (".%d V\n", ((result & 0x3FF)* 25 % 1023) * 10 / 1023); |
| |
| return 0; |
| } |
| |
| static int adc_read (unsigned int channel) |
| { |
| int j = 1000; /* timeout value for wait loop in us */ |
| int result; |
| S3C2400_ADC *padc; |
| |
| padc = S3C2400_GetBase_ADC(); |
| channel &= 0x7; |
| |
| padc->ADCCON &= ~ADC_STDBM; /* select normal mode */ |
| padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */ |
| padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START); |
| |
| while (j--) { |
| if ((padc->ADCCON & ADC_ENABLE_START) == 0) |
| break; |
| udelay (1); |
| } |
| |
| if (j == 0) { |
| printf("%s: ADC timeout\n", __FUNCTION__); |
| padc->ADCCON |= ADC_STDBM; /* select standby mode */ |
| return -1; |
| } |
| |
| result = padc->ADCDAT & 0x3FF; |
| |
| padc->ADCCON |= ADC_STDBM; /* select standby mode */ |
| |
| debug ("%s: channel %d, result[DIGIT]=%d\n", __FUNCTION__, |
| (padc->ADCCON >> 3) & 0x7, result); |
| |
| /* |
| * Wait for ADC to be ready for next conversion. This delay value was |
| * estimated, because the datasheet does not specify a value. |
| */ |
| udelay (1000); |
| |
| return (result); |
| } |
| |
| |
| static void adc_init (void) |
| { |
| S3C2400_ADC *padc; |
| |
| padc = S3C2400_GetBase_ADC(); |
| |
| padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */ |
| padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */ |
| |
| /* |
| * Wait some time to avoid problem with very first call of |
| * adc_read(). Without * this delay, sometimes the first read adc |
| * value is 0. Perhaps because the * adjustment of prescaler takes |
| * some clock cycles? |
| */ |
| udelay (1000); |
| |
| return; |
| } |
| |
| |
| int do_buttons (void) |
| { |
| int result; |
| int i; |
| |
| result = *CPLD_BUTTONS; /* read CPLD */ |
| debug ("%s: cpld_taster (32 bit) %#x\n", __FUNCTION__, result); |
| |
| /* print result to console */ |
| print_identifier (); |
| for (i = 16; i <= 19; i++) { |
| if ((result & (1 << i)) == 0) |
| printf("0"); |
| else |
| printf("1"); |
| } |
| printf("\n"); |
| return 0; |
| } |
| |
| |
| int do_power_switch (void) |
| { |
| int result; |
| |
| S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); |
| |
| /* configure GPE7 as input */ |
| gpio->PECON &= ~(0x3 << (2 * 7)); |
| |
| /* signal GPE7 from power switch is low active: 0=on , 1=off */ |
| result = ((gpio->PEDAT & (1 << 7)) == (1 << 7)) ? 0 : 1; |
| |
| print_identifier (); |
| printf("%d\n", result); |
| return 0; |
| } |
| |
| |
| int do_fill_level (void) |
| { |
| int result; |
| |
| result = *CPLD_FILL_LEVEL; /* read CPLD */ |
| debug ("%s: cpld_fuellstand (32 bit) %#x\n", __FUNCTION__, result); |
| |
| /* print result to console */ |
| print_identifier (); |
| if ((result & (1 << 16)) == 0) |
| printf("0\n"); |
| else |
| printf("1\n"); |
| return 0; |
| } |
| |
| |
| int do_rotary_switch (void) |
| { |
| int result; |
| /* |
| * Please note, that the default values of the direction bits are |
| * undefined after reset. So it is a good idea, to make first a dummy |
| * call to this function, to clear the direction bits and set so to |
| * proper values. |
| */ |
| |
| result = *CPLD_ROTARY_SWITCH; /* read CPLD */ |
| debug ("%s: cpld_inc (32 bit) %#x\n", __FUNCTION__, result); |
| |
| *CPLD_ROTARY_SWITCH |= (3 << 16); /* clear direction bits in CPLD */ |
| |
| /* print result to console */ |
| print_identifier (); |
| if ((result & (1 << 16)) == (1 << 16)) |
| printf("R"); |
| if ((result & (1 << 17)) == (1 << 17)) |
| printf("L"); |
| if (((result & (1 << 16)) == 0) && ((result & (1 << 17)) == 0)) |
| printf("0"); |
| if ((result & (1 << 18)) == 0) |
| printf("0\n"); |
| else |
| printf("1\n"); |
| return 0; |
| } |
| |
| |
| int do_vfd_id (void) |
| { |
| int i; |
| long int pcup_old, pccon_old; |
| int vfd_board_id; |
| S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); |
| |
| /* try to red vfd board id from the value defined by pull-ups */ |
| |
| pcup_old = gpio->PCUP; |
| pccon_old = gpio->PCCON; |
| |
| gpio->PCUP = (gpio->PCUP & 0xFFF0); /* activate GPC0...GPC3 pull-ups */ |
| gpio->PCCON = (gpio->PCCON & 0xFFFFFF00); /* configure GPC0...GPC3 as |
| * inputs */ |
| udelay (10); /* allow signals to settle */ |
| vfd_board_id = (~gpio->PCDAT) & 0x000F; /* read GPC0...GPC3 port pins */ |
| |
| gpio->PCCON = pccon_old; |
| gpio->PCUP = pcup_old; |
| |
| /* print vfd_board_id to console */ |
| print_identifier (); |
| for (i = 0; i < 4; i++) { |
| if ((vfd_board_id & (1 << i)) == 0) |
| printf("0"); |
| else |
| printf("1"); |
| } |
| printf("\n"); |
| return 0; |
| } |
| |
| int do_buzzer (char **argv) |
| { |
| int counter; |
| |
| S3C24X0_TIMERS * const timers = S3C24X0_GetBase_TIMERS(); |
| S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); |
| |
| /* set prescaler for timer 2, 3 and 4 */ |
| timers->TCFG0 &= ~0xFF00; |
| timers->TCFG0 |= 0x0F00; |
| |
| /* set divider for timer 2 */ |
| timers->TCFG1 &= ~0xF00; |
| timers->TCFG1 |= 0x300; |
| |
| /* set frequency */ |
| counter = (PCLK / BUZZER_FREQ) >> 9; |
| timers->ch[2].TCNTB = counter; |
| timers->ch[2].TCMPB = counter / 2; |
| |
| if (strcmp (argv[2], "on") == 0) { |
| debug ("%s: frequency: %d\n", __FUNCTION__, |
| BUZZER_FREQ); |
| |
| /* configure pin GPD7 as TOUT2 */ |
| gpio->PDCON &= ~0xC000; |
| gpio->PDCON |= 0x8000; |
| |
| /* start */ |
| timers->TCON = (timers->TCON | UPDATE2 | RELOAD2) & |
| ~INVERT2; |
| timers->TCON = (timers->TCON | START2) & ~UPDATE2; |
| return (0); |
| } |
| else if (strcmp (argv[2], "off") == 0) { |
| /* stop */ |
| timers->TCON &= ~(START2 | RELOAD2); |
| |
| /* configure GPD7 as output and set to low */ |
| gpio->PDCON &= ~0xC000; |
| gpio->PDCON |= 0x4000; |
| gpio->PDDAT &= ~0x80; |
| return (0); |
| } |
| |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); |
| return 1; |
| } |
| |
| |
| int do_led (char **argv) |
| { |
| S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); |
| |
| /* configure PC14 and PC15 as output */ |
| gpio->PCCON &= ~(0xF << 28); |
| gpio->PCCON |= (0x5 << 28); |
| |
| /* configure PD0 and PD4 as output */ |
| gpio->PDCON &= ~((0x3 << 8) | 0x3); |
| gpio->PDCON |= ((0x1 << 8) | 0x1); |
| |
| switch (simple_strtoul(argv[2], NULL, 10)) { |
| |
| case 0: |
| case 1: |
| break; |
| |
| case 2: |
| if (strcmp (argv[3], "on") == 0) |
| gpio->PCDAT |= (1 << 14); |
| else |
| gpio->PCDAT &= ~(1 << 14); |
| return 0; |
| |
| case 3: |
| if (strcmp (argv[3], "on") == 0) |
| gpio->PCDAT |= (1 << 15); |
| else |
| gpio->PCDAT &= ~(1 << 15); |
| return 0; |
| |
| case 4: |
| if (strcmp (argv[3], "on") == 0) |
| gpio->PDDAT |= (1 << 0); |
| else |
| gpio->PDDAT &= ~(1 << 0); |
| return 0; |
| |
| case 5: |
| if (strcmp (argv[3], "on") == 0) |
| gpio->PDDAT |= (1 << 4); |
| else |
| gpio->PDDAT &= ~(1 << 4); |
| return 0; |
| |
| default: |
| break; |
| |
| } |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); |
| return 1; |
| } |
| |
| |
| int do_full_bridge (char **argv) |
| { |
| S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); |
| |
| /* configure PD5 and PD6 as output */ |
| gpio->PDCON &= ~((0x3 << 5*2) | (0x3 << 6*2)); |
| gpio->PDCON |= ((0x1 << 5*2) | (0x1 << 6*2)); |
| |
| if (strcmp (argv[2], "+") == 0) { |
| gpio->PDDAT |= (1 << 5); |
| gpio->PDDAT |= (1 << 6); |
| return 0; |
| } |
| else if (strcmp (argv[2], "-") == 0) { |
| gpio->PDDAT &= ~(1 << 5); |
| gpio->PDDAT |= (1 << 6); |
| return 0; |
| } |
| else if (strcmp (argv[2], "off") == 0) { |
| gpio->PDDAT &= ~(1 << 5); |
| gpio->PDDAT &= ~(1 << 6); |
| return 0; |
| } |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); |
| return 1; |
| } |
| |
| /* val must be in [0, 4095] */ |
| static inline unsigned long tsc2000_to_uv (u16 val) |
| { |
| return ((250000 * val) / 4096) * 10; |
| } |
| |
| |
| int do_dac (char **argv) |
| { |
| int brightness; |
| |
| /* initialize SPI */ |
| spi_init (); |
| |
| if (((brightness = simple_strtoul (argv[2], NULL, 10)) < 0) || |
| (brightness > 255)) { |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); |
| return 1; |
| } |
| tsc2000_write(TSC2000_REG_DACCTL, 0x0); /* Power up DAC */ |
| tsc2000_write(TSC2000_REG_DAC, brightness & 0xff); |
| |
| return 0; |
| } |
| |
| |
| int do_v_bat (void) |
| { |
| unsigned long ret, res; |
| |
| /* initialize SPI */ |
| spi_init (); |
| |
| tsc2000_write(TSC2000_REG_ADC, 0x1836); |
| |
| /* now wait for data available */ |
| adc_wait_conversion_done(); |
| |
| ret = tsc2000_read(TSC2000_REG_BAT1); |
| res = (tsc2000_to_uv(ret) + 1250) / 2500; |
| res += (ERROR_BATTERY * res) / 1000; |
| |
| print_identifier (); |
| printf ("%ld", (res / 100)); |
| printf (".%ld", ((res % 100) / 10)); |
| printf ("%ld V\n", (res % 10)); |
| return 0; |
| } |
| |
| |
| int do_pressure (void) |
| { |
| /* initialize SPI */ |
| spi_init (); |
| |
| tsc2000_write(TSC2000_REG_ADC, 0x2436); |
| |
| /* now wait for data available */ |
| adc_wait_conversion_done(); |
| |
| print_identifier (); |
| printf ("%d\n", tsc2000_read(TSC2000_REG_AUX2)); |
| return 0; |
| } |
| |
| |
| int do_motor_contact (void) |
| { |
| int result; |
| |
| result = *CPLD_FILL_LEVEL; /* read CPLD */ |
| debug ("%s: cpld_fuellstand (32 bit) %#x\n", __FUNCTION__, result); |
| |
| /* print result to console */ |
| print_identifier (); |
| if ((result & (1 << 17)) == 0) |
| printf("0\n"); |
| else |
| printf("1\n"); |
| return 0; |
| } |
| |
| int do_motor (char **argv) |
| { |
| S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); |
| |
| /* Configure I/O port */ |
| gpio->PGCON &= ~(0x3 << 0); |
| gpio->PGCON |= (0x1 << 0); |
| |
| if (strcmp (argv[2], "on") == 0) { |
| gpio->PGDAT &= ~(1 << 0); |
| return 0; |
| } |
| if (strcmp (argv[2], "off") == 0) { |
| gpio->PGDAT |= (1 << 0); |
| return 0; |
| } |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); |
| return 1; |
| } |
| |
| static void print_identifier (void) |
| { |
| printf ("## FKT: "); |
| } |
| |
| int do_pwm (char **argv) |
| { |
| int counter; |
| S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); |
| S3C24X0_TIMERS * const timers = S3C24X0_GetBase_TIMERS(); |
| |
| if (strcmp (argv[2], "on") == 0) { |
| /* configure pin GPD8 as TOUT3 */ |
| gpio->PDCON &= ~(0x3 << 8*2); |
| gpio->PDCON |= (0x2 << 8*2); |
| |
| /* set prescaler for timer 2, 3 and 4 */ |
| timers->TCFG0 &= ~0xFF00; |
| timers->TCFG0 |= 0x0F00; |
| |
| /* set divider for timer 3 */ |
| timers->TCFG1 &= ~(0xf << 12); |
| timers->TCFG1 |= (0x3 << 12); |
| |
| /* set frequency */ |
| counter = (PCLK / PWM_FREQ) >> 9; |
| timers->ch[3].TCNTB = counter; |
| timers->ch[3].TCMPB = counter / 2; |
| |
| /* start timer */ |
| timers->TCON = (timers->TCON | UPDATE3 | RELOAD3) & ~INVERT3; |
| timers->TCON = (timers->TCON | START3) & ~UPDATE3; |
| return 0; |
| } |
| if (strcmp (argv[2], "off") == 0) { |
| |
| /* stop timer */ |
| timers->TCON &= ~(START2 | RELOAD2); |
| |
| /* configure pin GPD8 as output and set to 0 */ |
| gpio->PDCON &= ~(0x3 << 8*2); |
| gpio->PDCON |= (0x1 << 8*2); |
| gpio->PDDAT &= ~(1 << 8); |
| return 0; |
| } |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); |
| return 1; |
| } |
| |
| |
| int do_thermo (char **argv) |
| { |
| int channel, res; |
| |
| tsc2000_reg_init (); |
| |
| if (strcmp (argv[2], "all") == 0) { |
| int i; |
| for (i=0; i <= 15; i++) { |
| res = tsc2000_read_channel(i); |
| print_identifier (); |
| printf ("c%d: %d\n", i, res); |
| } |
| return 0; |
| } |
| channel = simple_strtoul (argv[2], NULL, 10); |
| res = tsc2000_read_channel(channel); |
| print_identifier (); |
| printf ("%d\n", res); |
| return 0; /* return OK */ |
| } |
| |
| |
| int do_touch (char **argv) |
| { |
| int x, y; |
| |
| if (strcmp (argv[2], "tl") == 0) { |
| #if CONFIG_TOUCH_WAIT_PRESSED |
| touch_wait_pressed(); |
| #else |
| { |
| int i; |
| for (i = 0; i < (TOUCH_TIMEOUT * 1000); i++) { |
| if (touch_check_pressed ()) { |
| break; |
| } |
| udelay (1000); /* pause 1 ms */ |
| } |
| } |
| if (!touch_check_pressed()) { |
| print_identifier (); |
| printf ("error: touch not pressed\n"); |
| return 1; |
| } |
| #endif /* CONFIG_TOUCH_WAIT_PRESSED */ |
| touch_read_x_y (&x, &y); |
| |
| print_identifier (); |
| printf ("x=%d y=%d\n", x, y); |
| return touch_write_clibration_values (CALIB_TL, x, y); |
| } |
| else if (strcmp (argv[2], "dr") == 0) { |
| #if CONFIG_TOUCH_WAIT_PRESSED |
| touch_wait_pressed(); |
| #else |
| { |
| int i; |
| for (i = 0; i < (TOUCH_TIMEOUT * 1000); i++) { |
| if (touch_check_pressed ()) { |
| break; |
| } |
| udelay (1000); /* pause 1 ms */ |
| } |
| } |
| if (!touch_check_pressed()) { |
| print_identifier (); |
| printf ("error: touch not pressed\n"); |
| return 1; |
| } |
| #endif /* CONFIG_TOUCH_WAIT_PRESSED */ |
| touch_read_x_y (&x, &y); |
| |
| print_identifier (); |
| printf ("x=%d y=%d\n", x, y); |
| |
| return touch_write_clibration_values (CALIB_DR, x, y); |
| } |
| return 1; /* not "tl", nor "dr", so return error */ |
| } |
| |
| |
| #ifdef CONFIG_TOUCH_WAIT_PRESSED |
| static void touch_wait_pressed (void) |
| { |
| while (!(tsc2000_read(TSC2000_REG_ADC) & TC_PSM)); |
| } |
| |
| #else |
| static int touch_check_pressed (void) |
| { |
| return (tsc2000_read(TSC2000_REG_ADC) & TC_PSM); |
| } |
| #endif /* CONFIG_TOUCH_WAIT_PRESSED */ |
| |
| static int touch_write_clibration_values (int calib_point, int x, int y) |
| { |
| #if (CONFIG_COMMANDS & CFG_CMD_I2C) |
| int x_verify = 0; |
| int y_verify = 0; |
| |
| tsc2000_reg_init (); |
| |
| if (calib_point == CALIB_TL) { |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X0, 1, |
| (char *)&x, 2)) { |
| return 1; |
| } |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y0, 1, |
| (char *)&y, 2)) { |
| return 1; |
| } |
| |
| /* verify written values */ |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X0, 1, |
| (char *)&x_verify, 2)) { |
| return 1; |
| } |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y0, 1, |
| (char *)&y_verify, 2)) { |
| return 1; |
| } |
| if ((y != y_verify) || (x != x_verify)) { |
| print_identifier (); |
| printf ("error: verify error\n"); |
| return 1; |
| } |
| return 0; /* no error */ |
| } |
| else if (calib_point == CALIB_DR) { |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X1, 1, |
| (char *)&x, 2)) { |
| return 1; |
| } |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y1, 1, |
| (char *)&y, 2)) { |
| return 1; |
| } |
| |
| /* verify written values */ |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X1, 1, |
| (char *)&x_verify, 2)) { |
| return 1; |
| } |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y1, 1, |
| (char *)&y_verify, 2)) { |
| return 1; |
| } |
| if ((y != y_verify) || (x != x_verify)) { |
| print_identifier (); |
| printf ("error: verify error\n"); |
| return 1; |
| } |
| return 0; |
| } |
| return 1; |
| #else |
| printf ("No I2C support enabled (CFG_CMD_I2C), could not write " |
| "to EEPROM\n"); |
| return (1); |
| #endif /* CFG_CMD_I2C */ |
| } |
| |
| |
| static void touch_read_x_y (int *px, int *py) |
| { |
| tsc2000_write(TSC2000_REG_ADC, DEFAULT_ADC | TC_AD0 | TC_AD1); |
| adc_wait_conversion_done(); |
| *px = tsc2000_read(TSC2000_REG_X); |
| |
| tsc2000_write(TSC2000_REG_ADC, DEFAULT_ADC | TC_AD2); |
| adc_wait_conversion_done(); |
| *py = tsc2000_read(TSC2000_REG_Y); |
| } |
| |
| |
| int do_rs485 (char **argv) |
| { |
| int timeout; |
| char data[RS485_MAX_RECEIVE_BUF_LEN]; |
| |
| if (strcmp (argv[2], "send") == 0) { |
| return (rs485_send_line (argv[3])); |
| } |
| else if (strcmp (argv[2], "receive") == 0) { |
| timeout = simple_strtoul(argv[3], NULL, 10); |
| if (rs485_receive_chars (data, timeout) != 0) { |
| print_identifier (); |
| printf ("## nothing received\n"); |
| return (1); |
| } |
| else { |
| print_identifier (); |
| printf ("%s\n", data); |
| return (0); |
| } |
| } |
| printf ("%s: unknown command %s\n", __FUNCTION__, argv[2]); |
| return (1); /* unknown command, return error */ |
| } |
| |
| |
| static int rs485_send_line (const char *data) |
| { |
| rs485_init (); |
| trab_rs485_enable_tx (); |
| rs485_puts (data); |
| rs485_putc ('\n'); |
| |
| return (0); |
| } |
| |
| |
| static int rs485_receive_chars (char *data, int timeout) |
| { |
| int i; |
| int receive_count = 0; |
| |
| rs485_init (); |
| trab_rs485_enable_rx (); |
| |
| /* test every 1 ms for received characters to avoid a receive FIFO |
| * overrun (@ 38.400 Baud) */ |
| for (i = 0; i < (timeout * 1000); i++) { |
| while (rs485_tstc ()) { |
| if (receive_count >= RS485_MAX_RECEIVE_BUF_LEN-1) |
| break; |
| *data++ = rs485_getc (); |
| receive_count++; |
| } |
| udelay (1000); /* pause 1 ms */ |
| } |
| *data = '\0'; /* terminate string */ |
| |
| if (receive_count == 0) |
| return (1); |
| else |
| return (0); |
| } |
| |
| |
| int do_serial_number (char **argv) |
| { |
| #if (CONFIG_COMMANDS & CFG_CMD_I2C) |
| unsigned int serial_number; |
| |
| if (strcmp (argv[2], "read") == 0) { |
| if (i2c_read (I2C_EEPROM_DEV_ADDR, SERIAL_NUMBER, 1, |
| (char *)&serial_number, 4)) { |
| printf ("could not read from eeprom\n"); |
| return (1); |
| } |
| print_identifier (); |
| printf ("%08d\n", serial_number); |
| return (0); |
| } |
| else if (strcmp (argv[2], "write") == 0) { |
| serial_number = simple_strtoul(argv[3], NULL, 10); |
| if (i2c_write (I2C_EEPROM_DEV_ADDR, SERIAL_NUMBER, 1, |
| (char *)&serial_number, 4)) { |
| printf ("could not write to eeprom\n"); |
| return (1); |
| } |
| return (0); |
| } |
| printf ("%s: unknown command %s\n", __FUNCTION__, argv[2]); |
| return (1); /* unknown command, return error */ |
| #else |
| printf ("No I2C support enabled (CFG_CMD_I2C), could not write " |
| "to EEPROM\n"); |
| return (1); |
| #endif /* CFG_CMD_I2C */ |
| } |
| |
| |
| int do_crc16 (void) |
| { |
| #if (CONFIG_COMMANDS & CFG_CMD_I2C) |
| int crc; |
| char buf[EEPROM_MAX_CRC_BUF]; |
| |
| if (i2c_read (I2C_EEPROM_DEV_ADDR, 0, 1, buf, 60)) { |
| printf ("could not read from eeprom\n"); |
| return (1); |
| } |
| crc = 0; /* start value of crc calculation */ |
| crc = updcrc (crc, buf, 60); |
| |
| print_identifier (); |
| printf ("crc16=%#04x\n", crc); |
| |
| if (i2c_write (I2C_EEPROM_DEV_ADDR, CRC16, 1, (char *)&crc, |
| sizeof (crc))) { |
| printf ("could not read from eeprom\n"); |
| return (1); |
| } |
| return (0); |
| #else |
| printf ("No I2C support enabled (CFG_CMD_I2C), could not write " |
| "to EEPROM\n"); |
| return (1); |
| #endif /* CFG_CMD_I2C */ |
| } |
| |
| |
| /* |
| * Calculate, intelligently, the CRC of a dataset incrementally given a |
| * buffer full at a time. |
| * Initialize crc to 0 for XMODEM, -1 for CCITT. |
| * |
| * Usage: |
| * newcrc = updcrc( oldcrc, bufadr, buflen ) |
| * unsigned int oldcrc, buflen; |
| * char *bufadr; |
| * |
| * Compile with -DTEST to generate program that prints CRC of stdin to stdout. |
| * Compile with -DMAKETAB to print values for crctab to stdout |
| */ |
| |
| /* the CRC polynomial. This is used by XMODEM (almost CCITT). |
| * If you change P, you must change crctab[]'s initial value to what is |
| * printed by initcrctab() |
| */ |
| #define P 0x1021 |
| |
| /* number of bits in CRC: don't change it. */ |
| #define W 16 |
| |
| /* this the number of bits per char: don't change it. */ |
| #define B 8 |
| |
| static unsigned short crctab[1<<B] = { /* as calculated by initcrctab() */ |
| 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, |
| 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, |
| 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, |
| 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, |
| 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, |
| 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, |
| 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, |
| 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, |
| 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, |
| 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, |
| 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, |
| 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, |
| 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, |
| 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, |
| 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, |
| 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, |
| 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, |
| 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, |
| 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, |
| 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, |
| 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, |
| 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, |
| 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, |
| 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, |
| 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, |
| 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, |
| 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, |
| 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, |
| 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, |
| 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, |
| 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, |
| 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 |
| }; |
| |
| static unsigned short updcrc(unsigned short icrc, unsigned char *icp, |
| unsigned int icnt ) |
| { |
| register unsigned short crc = icrc; |
| register unsigned char *cp = icp; |
| register unsigned int cnt = icnt; |
| |
| while (cnt--) |
| crc = (crc<<B) ^ crctab[(crc>>(W-B)) ^ *cp++]; |
| |
| return (crc); |
| } |
| |
| |
| int do_gain (char **argv) |
| { |
| int range; |
| |
| range = simple_strtoul (argv[2], NULL, 10); |
| if ((range < 1) || (range > 3)) |
| { |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); |
| return 1; |
| } |
| |
| tsc2000_set_range (range); |
| return (0); |
| } |
| |
| |
| int do_eeprom (char **argv) |
| { |
| #if (CONFIG_COMMANDS & CFG_CMD_I2C) |
| if (strcmp (argv[2], "read") == 0) { |
| return (trab_eeprom_read (argv)); |
| } |
| |
| else if (strcmp (argv[2], "write") == 0) { |
| return (trab_eeprom_write (argv)); |
| } |
| |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); |
| return (1); |
| #else |
| printf ("No I2C support enabled (CFG_CMD_I2C), could not write " |
| "to EEPROM\n"); |
| return (1); |
| #endif /* CFG_CMD_I2C */ |
| } |
| |
| #if (CONFIG_COMMANDS & CFG_CMD_I2C) |
| static int trab_eeprom_read (char **argv) |
| { |
| int i; |
| int len; |
| unsigned int addr; |
| long int value = 0; |
| uchar *buffer; |
| |
| buffer = (uchar *) &value; |
| addr = simple_strtoul (argv[3], NULL, 10); |
| addr &= 0xfff; |
| len = simple_strtoul (argv[4], NULL, 10); |
| if ((len < 1) || (len > 4)) { |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, |
| argv[4]); |
| return (1); |
| } |
| for (i = 0; i < len; i++) { |
| if (i2c_read (I2C_EEPROM_DEV_ADDR, addr+i, 1, buffer+i, 1)) { |
| printf ("%s: could not read from i2c device %#x" |
| ", addr %d\n", __FUNCTION__, |
| I2C_EEPROM_DEV_ADDR, addr); |
| return (1); |
| } |
| } |
| print_identifier (); |
| if (strcmp (argv[5], "-") == 0) { |
| if (len == 1) |
| printf ("%d\n", (signed char) value); |
| else if (len == 2) |
| printf ("%d\n", (signed short int) value); |
| else |
| printf ("%ld\n", value); |
| } |
| else { |
| if (len == 1) |
| printf ("%d\n", (unsigned char) value); |
| else if (len == 2) |
| printf ("%d\n", (unsigned short int) value); |
| else |
| printf ("%ld\n", (unsigned long int) value); |
| } |
| return (0); |
| } |
| |
| static int trab_eeprom_write (char **argv) |
| { |
| int i; |
| int len; |
| unsigned int addr; |
| long int value = 0; |
| uchar *buffer; |
| |
| buffer = (uchar *) &value; |
| addr = simple_strtoul (argv[3], NULL, 10); |
| addr &= 0xfff; |
| len = simple_strtoul (argv[4], NULL, 10); |
| if ((len < 1) || (len > 4)) { |
| printf ("%s: invalid parameter %s\n", __FUNCTION__, |
| argv[4]); |
| return (1); |
| } |
| value = simple_strtol (argv[5], NULL, 10); |
| debug ("value=%ld\n", value); |
| for (i = 0; i < len; i++) { |
| if (i2c_write (I2C_EEPROM_DEV_ADDR, addr+i, 1, buffer+i, 1)) { |
| printf ("%s: could not write to i2c device %d" |
| ", addr %d\n", __FUNCTION__, |
| I2C_EEPROM_DEV_ADDR, addr); |
| return (1); |
| } |
| #if 0 |
| printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i=" |
| "%#x+%d=%p=%#x \n",I2C_EEPROM_DEV_ADDR_DEV_ADDR , addr, |
| i, addr+i, 1, buffer, i, buffer+i, *(buffer+i)); |
| #endif |
| udelay (30000); /* wait for EEPROM ready */ |
| } |
| return (0); |
| } |
| |
| int i2c_write_multiple (uchar chip, uint addr, int alen, |
| uchar *buffer, int len) |
| { |
| int i; |
| |
| if (alen != 1) { |
| printf ("%s: addr len other than 1 not supported\n", |
| __FUNCTION__); |
| return (1); |
| } |
| |
| for (i = 0; i < len; i++) { |
| if (i2c_write (chip, addr+i, alen, buffer+i, 1)) { |
| printf ("%s: could not write to i2c device %d" |
| ", addr %d\n", __FUNCTION__, chip, addr); |
| return (1); |
| } |
| #if 0 |
| printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i=" |
| "%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i, |
| alen, buffer, i, buffer+i, buffer+i); |
| #endif |
| |
| udelay (30000); |
| } |
| return (0); |
| } |
| |
| int i2c_read_multiple ( uchar chip, uint addr, int alen, |
| uchar *buffer, int len) |
| { |
| int i; |
| |
| if (alen != 1) { |
| printf ("%s: addr len other than 1 not supported\n", |
| __FUNCTION__); |
| return (1); |
| } |
| |
| for (i = 0; i < len; i++) { |
| if (i2c_read (chip, addr+i, alen, buffer+i, 1)) { |
| printf ("%s: could not read from i2c device %#x" |
| ", addr %d\n", __FUNCTION__, chip, addr); |
| return (1); |
| } |
| } |
| return (0); |
| } |
| #endif /* CFG_CMD_I2C */ |