blob: 58e065cdcc2fb6dc50bfb18a382ca29210115bdb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Micrel KS8851_MLL 16bit Network driver
* Copyright (c) 2011 Roberto Cerati <roberto.cerati@bticino.it>
*/
#include <log.h>
#include <asm/io.h>
#include <common.h>
#include <command.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include <linux/delay.h>
#include "ks8851_mll.h"
#define DRIVERNAME "ks8851_mll"
#define RX_BUF_SIZE 2000
/*
* struct ks_net - KS8851 driver private data
* @dev : legacy non-DM ethernet device structure
* @iobase : register base
* @bus_width : i/o bus width.
* @sharedbus : Multipex(addr and data bus) mode indicator.
* @extra_byte : number of extra byte prepended rx pkt.
*/
struct ks_net {
#ifndef CONFIG_DM_ETH
struct eth_device dev;
#endif
phys_addr_t iobase;
int bus_width;
u16 sharedbus;
u16 rxfc;
u8 extra_byte;
};
#define BE3 0x8000 /* Byte Enable 3 */
#define BE2 0x4000 /* Byte Enable 2 */
#define BE1 0x2000 /* Byte Enable 1 */
#define BE0 0x1000 /* Byte Enable 0 */
static u8 ks_rdreg8(struct ks_net *ks, u16 offset)
{
u8 shift_bit = offset & 0x03;
u8 shift_data = (offset & 1) << 3;
writew(offset | (BE0 << shift_bit), ks->iobase + 2);
return (u8)(readw(ks->iobase) >> shift_data);
}
static u16 ks_rdreg16(struct ks_net *ks, u16 offset)
{
writew(offset | ((BE1 | BE0) << (offset & 0x02)), ks->iobase + 2);
return readw(ks->iobase);
}
static void ks_wrreg16(struct ks_net *ks, u16 offset, u16 val)
{
writew(offset | ((BE1 | BE0) << (offset & 0x02)), ks->iobase + 2);
writew(val, ks->iobase);
}
/*
* ks_inblk - read a block of data from QMU. This is called after sudo DMA mode
* enabled.
* @ks: The chip state
* @wptr: buffer address to save data
* @len: length in byte to read
*/
static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
*wptr++ = readw(ks->iobase);
}
/*
* ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
* @ks: The chip information
* @wptr: buffer address
* @len: length in byte to write
*/
static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
writew(*wptr++, ks->iobase);
}
static void ks_enable_int(struct ks_net *ks)
{
ks_wrreg16(ks, KS_IER, IRQ_LCI | IRQ_TXI | IRQ_RXI);
}
static void ks_set_powermode(struct ks_net *ks, unsigned int pwrmode)
{
unsigned int pmecr;
ks_rdreg16(ks, KS_GRR);
pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_PM_MASK;
pmecr |= pwrmode;
ks_wrreg16(ks, KS_PMECR, pmecr);
}
/*
* ks_read_config - read chip configuration of bus width.
* @ks: The chip information
*/
static void ks_read_config(struct ks_net *ks)
{
u16 reg_data = 0;
/* Regardless of bus width, 8 bit read should always work. */
reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
reg_data |= ks_rdreg8(ks, KS_CCR + 1) << 8;
/* addr/data bus are multiplexed */
ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
/*
* There are garbage data when reading data from QMU,
* depending on bus-width.
*/
if (reg_data & CCR_8BIT) {
ks->bus_width = ENUM_BUS_8BIT;
ks->extra_byte = 1;
} else if (reg_data & CCR_16BIT) {
ks->bus_width = ENUM_BUS_16BIT;
ks->extra_byte = 2;
} else {
ks->bus_width = ENUM_BUS_32BIT;
ks->extra_byte = 4;
}
}
/*
* ks_soft_reset - issue one of the soft reset to the device
* @ks: The device state.
* @op: The bit(s) to set in the GRR
*
* Issue the relevant soft-reset command to the device's GRR register
* specified by @op.
*
* Note, the delays are in there as a caution to ensure that the reset
* has time to take effect and then complete. Since the datasheet does
* not currently specify the exact sequence, we have chosen something
* that seems to work with our device.
*/
static void ks_soft_reset(struct ks_net *ks, unsigned int op)
{
/* Disable interrupt first */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_GRR, op);
mdelay(10); /* wait a short time to effect reset */
ks_wrreg16(ks, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
void ks_enable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Enables QMU Transmit (TXCR). */
ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
/* Enable RX Frame Count Threshold and Auto-Dequeue RXQ Frame */
w = ks_rdreg16(ks, KS_RXQCR);
ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
/* Enables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
}
static void ks_disable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Disables QMU Transmit (TXCR). */
w &= ~TXCR_TXE;
ks_wrreg16(ks, KS_TXCR, w);
/* Disables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
w &= ~RXCR1_RXE;
ks_wrreg16(ks, KS_RXCR1, w);
}
static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
{
u32 r = ks->extra_byte & 0x1;
u32 w = ks->extra_byte - r;
/* 1. set sudo DMA mode */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_SDA);
/*
* 2. read prepend data
*
* read 4 + extra bytes and discard them.
* extra bytes for dummy, 2 for status, 2 for len
*/
if (r)
ks_rdreg8(ks, 0);
ks_inblk(ks, buf, w + 2 + 2);
/* 3. read pkt data */
ks_inblk(ks, buf, ALIGN(len, 4));
/* 4. reset sudo DMA Mode */
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL);
}
static int ks_rcv(struct ks_net *ks, uchar *data)
{
u16 sts, len;
if (!ks->rxfc)
ks->rxfc = ks_rdreg16(ks, KS_RXFCTR) >> 8;
if (!ks->rxfc)
return 0;
/* Checking Received packet status */
sts = ks_rdreg16(ks, KS_RXFHSR);
/* Get packet len from hardware */
len = ks_rdreg16(ks, KS_RXFHBCR);
if ((sts & RXFSHR_RXFV) && len && (len < RX_BUF_SIZE)) {
/* read data block including CRC 4 bytes */
ks_read_qmu(ks, (u16 *)data, len);
ks->rxfc--;
return len - 4;
}
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_RRXEF);
printf(DRIVERNAME ": bad packet\n");
return 0;
}
/*
* ks_read_selftest - read the selftest memory info.
* @ks: The device state
*
* Read and check the TX/RX memory selftest information.
*/
static int ks_read_selftest(struct ks_net *ks)
{
u16 both_done = MBIR_TXMBF | MBIR_RXMBF;
u16 mbir;
int ret = 0;
mbir = ks_rdreg16(ks, KS_MBIR);
if ((mbir & both_done) != both_done) {
printf(DRIVERNAME ": Memory selftest not finished\n");
return 0;
}
if (mbir & MBIR_TXMBFA) {
printf(DRIVERNAME ": TX memory selftest fails\n");
ret |= 1;
}
if (mbir & MBIR_RXMBFA) {
printf(DRIVERNAME ": RX memory selftest fails\n");
ret |= 2;
}
debug(DRIVERNAME ": the selftest passes\n");
return ret;
}
static void ks_setup(struct ks_net *ks)
{
u16 w;
/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
/* Setup Receive Frame Data Pointer Auto-Increment */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
/* Setup RxQ Command Control (RXQCR) */
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL);
/*
* set the force mode to half duplex, default is full duplex
* because if the auto-negotiation fails, most switch uses
* half-duplex.
*/
w = ks_rdreg16(ks, KS_P1MBCR);
w &= ~P1MBCR_FORCE_FDX;
ks_wrreg16(ks, KS_P1MBCR, w);
w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
ks_wrreg16(ks, KS_TXCR, w);
w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
/* Normal mode */
w |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, w);
}
static void ks_setup_int(struct ks_net *ks)
{
/* Clear the interrupts status of the hardware. */
ks_wrreg16(ks, KS_ISR, 0xffff);
}
static int ks8851_mll_detect_chip(struct ks_net *ks)
{
unsigned short val;
ks_read_config(ks);
val = ks_rdreg16(ks, KS_CIDER);
if (val == 0xffff) {
/* Special case -- no chip present */
printf(DRIVERNAME ": is chip mounted ?\n");
return -1;
} else if ((val & 0xfff0) != CIDER_ID) {
printf(DRIVERNAME ": Invalid chip id 0x%04x\n", val);
return -1;
}
debug("Read back KS8851 id 0x%x\n", val);
if ((val & 0xfff0) != CIDER_ID) {
printf(DRIVERNAME ": Unknown chip ID %04x\n", val);
return -1;
}
return 0;
}
static void ks8851_mll_reset(struct ks_net *ks)
{
/* wake up powermode to normal mode */
ks_set_powermode(ks, PMECR_PM_NORMAL);
mdelay(1); /* wait for normal mode to take effect */
/* Disable interrupt and reset */
ks_soft_reset(ks, GRR_GSR);
/* turn off the IRQs and ack any outstanding */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_ISR, 0xffff);
/* shutdown RX/TX QMU */
ks_disable_qmu(ks);
}
static void ks8851_mll_phy_configure(struct ks_net *ks)
{
u16 data;
ks_setup(ks);
ks_setup_int(ks);
/* Probing the phy */
data = ks_rdreg16(ks, KS_OBCR);
ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
debug(DRIVERNAME ": phy initialized\n");
}
static void ks8851_mll_enable(struct ks_net *ks)
{
ks_wrreg16(ks, KS_ISR, 0xffff);
ks_enable_int(ks);
ks_enable_qmu(ks);
}
static int ks8851_mll_init_common(struct ks_net *ks)
{
if (ks_read_selftest(ks)) {
printf(DRIVERNAME ": Selftest failed\n");
return -1;
}
ks8851_mll_reset(ks);
/* Configure the PHY, initialize the link state */
ks8851_mll_phy_configure(ks);
ks->rxfc = 0;
/* Turn on Tx + Rx */
ks8851_mll_enable(ks);
return 0;
}
static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
{
__le16 txw[2];
/* start header at txb[0] to align txw entries */
txw[0] = 0;
txw[1] = cpu_to_le16(len);
/* 1. set sudo-DMA mode */
ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_SDA);
/* 2. write status/length info */
ks_outblk(ks, txw, 4);
/* 3. write pkt data */
ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
/* 4. reset sudo-DMA mode */
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL);
/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
/* 6. wait until TXQCR_METFE is auto-cleared */
do { } while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE);
}
static int ks8851_mll_send_common(struct ks_net *ks, void *packet, int length)
{
u8 *data = (u8 *)packet;
u16 tmplen = (u16)length;
u16 retv;
/*
* Extra space are required:
* 4 byte for alignment, 4 for status/length, 4 for CRC
*/
retv = ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
if (retv >= tmplen + 12) {
ks_write_qmu(ks, data, tmplen);
return 0;
}
printf(DRIVERNAME ": failed to send packet: No buffer\n");
return -1;
}
static void ks8851_mll_halt_common(struct ks_net *ks)
{
ks8851_mll_reset(ks);
}
/*
* Maximum receive ring size; that is, the number of packets
* we can buffer before overflow happens. Basically, this just
* needs to be enough to prevent a packet being discarded while
* we are processing the previous one.
*/
static int ks8851_mll_recv_common(struct ks_net *ks, uchar *data)
{
u16 status;
int ret = 0;
status = ks_rdreg16(ks, KS_ISR);
ks_wrreg16(ks, KS_ISR, status);
if (ks->rxfc || (status & IRQ_RXI))
ret = ks_rcv(ks, data);
if (status & IRQ_LDI) {
u16 pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_WKEVT_MASK;
ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
}
return ret;
}
static void ks8851_mll_write_hwaddr_common(struct ks_net *ks, u8 enetaddr[6])
{
u16 addrl, addrm, addrh;
addrh = (enetaddr[0] << 8) | enetaddr[1];
addrm = (enetaddr[2] << 8) | enetaddr[3];
addrl = (enetaddr[4] << 8) | enetaddr[5];
ks_wrreg16(ks, KS_MARH, addrh);
ks_wrreg16(ks, KS_MARM, addrm);
ks_wrreg16(ks, KS_MARL, addrl);
}
#ifndef CONFIG_DM_ETH
static int ks8851_mll_init(struct eth_device *dev, struct bd_info *bd)
{
struct ks_net *ks = container_of(dev, struct ks_net, dev);
return ks8851_mll_init_common(ks);
}
static void ks8851_mll_halt(struct eth_device *dev)
{
struct ks_net *ks = container_of(dev, struct ks_net, dev);
ks8851_mll_halt_common(ks);
}
static int ks8851_mll_send(struct eth_device *dev, void *packet, int length)
{
struct ks_net *ks = container_of(dev, struct ks_net, dev);
return ks8851_mll_send_common(ks, packet, length);
}
static int ks8851_mll_recv(struct eth_device *dev)
{
struct ks_net *ks = container_of(dev, struct ks_net, dev);
int ret;
ret = ks8851_mll_recv_common(ks, net_rx_packets[0]);
if (ret)
net_process_received_packet(net_rx_packets[0], ret);
return ret;
}
static int ks8851_mll_write_hwaddr(struct eth_device *dev)
{
struct ks_net *ks = container_of(dev, struct ks_net, dev);
ks8851_mll_write_hwaddr_common(ks, ks->dev.enetaddr);
return 0;
}
int ks8851_mll_initialize(u8 dev_num, int base_addr)
{
struct ks_net *ks;
ks = calloc(1, sizeof(*ks));
if (!ks)
return -ENOMEM;
ks->iobase = base_addr;
/* Try to detect chip. Will fail if not present. */
if (ks8851_mll_detect_chip(ks)) {
free(ks);
return -1;
}
ks->dev.init = ks8851_mll_init;
ks->dev.halt = ks8851_mll_halt;
ks->dev.send = ks8851_mll_send;
ks->dev.recv = ks8851_mll_recv;
ks->dev.write_hwaddr = ks8851_mll_write_hwaddr;
sprintf(ks->dev.name, "%s-%hu", DRIVERNAME, dev_num);
eth_register(&ks->dev);
return 0;
}
#else /* ifdef CONFIG_DM_ETH */
static int ks8851_start(struct udevice *dev)
{
struct ks_net *ks = dev_get_priv(dev);
return ks8851_mll_init_common(ks);
}
static void ks8851_stop(struct udevice *dev)
{
struct ks_net *ks = dev_get_priv(dev);
ks8851_mll_halt_common(ks);
}
static int ks8851_send(struct udevice *dev, void *packet, int length)
{
struct ks_net *ks = dev_get_priv(dev);
int ret;
ret = ks8851_mll_send_common(ks, packet, length);
return ret ? 0 : -ETIMEDOUT;
}
static int ks8851_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct ks_net *ks = dev_get_priv(dev);
uchar *data = net_rx_packets[0];
int ret;
ret = ks8851_mll_recv_common(ks, data);
if (ret)
*packetp = (void *)data;
return ret ? ret : -EAGAIN;
}
static int ks8851_write_hwaddr(struct udevice *dev)
{
struct ks_net *ks = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
ks8851_mll_write_hwaddr_common(ks, pdata->enetaddr);
return 0;
}
static int ks8851_read_rom_hwaddr(struct udevice *dev)
{
struct ks_net *ks = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
u16 addrl, addrm, addrh;
/* No EEPROM means no valid MAC address. */
if (!(ks_rdreg16(ks, KS_CCR) & CCR_EEPROM))
return -EINVAL;
/*
* If the EEPROM contains valid MAC address, it is loaded into
* the NIC on power on. Read the MAC out of the NIC registers.
*/
addrl = ks_rdreg16(ks, KS_MARL);
addrm = ks_rdreg16(ks, KS_MARM);
addrh = ks_rdreg16(ks, KS_MARH);
pdata->enetaddr[0] = (addrh >> 8) & 0xff;
pdata->enetaddr[1] = addrh & 0xff;
pdata->enetaddr[2] = (addrm >> 8) & 0xff;
pdata->enetaddr[3] = addrm & 0xff;
pdata->enetaddr[4] = (addrl >> 8) & 0xff;
pdata->enetaddr[5] = addrl & 0xff;
return !is_valid_ethaddr(pdata->enetaddr);
}
static int ks8851_bind(struct udevice *dev)
{
return device_set_name(dev, dev->name);
}
static int ks8851_probe(struct udevice *dev)
{
struct ks_net *ks = dev_get_priv(dev);
/* Try to detect chip. Will fail if not present. */
ks8851_mll_detect_chip(ks);
return 0;
}
static int ks8851_ofdata_to_platdata(struct udevice *dev)
{
struct ks_net *ks = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
pdata->iobase = dev_read_addr(dev);
ks->iobase = pdata->iobase;
return 0;
}
static const struct eth_ops ks8851_ops = {
.start = ks8851_start,
.stop = ks8851_stop,
.send = ks8851_send,
.recv = ks8851_recv,
.write_hwaddr = ks8851_write_hwaddr,
.read_rom_hwaddr = ks8851_read_rom_hwaddr,
};
static const struct udevice_id ks8851_ids[] = {
{ .compatible = "micrel,ks8851-mll" },
{ }
};
U_BOOT_DRIVER(ks8851) = {
.name = "eth_ks8851",
.id = UCLASS_ETH,
.of_match = ks8851_ids,
.bind = ks8851_bind,
.ofdata_to_platdata = ks8851_ofdata_to_platdata,
.probe = ks8851_probe,
.ops = &ks8851_ops,
.priv_auto_alloc_size = sizeof(struct ks_net),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};
#endif