| /* |
| * (C) Copyright 2001 |
| * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| /* |
| * I2C Functions similar to the standard memory functions. |
| * |
| * There are several parameters in many of the commands that bear further |
| * explanations: |
| * |
| * {i2c_chip} is the I2C chip address (the first byte sent on the bus). |
| * Each I2C chip on the bus has a unique address. On the I2C data bus, |
| * the address is the upper seven bits and the LSB is the "read/write" |
| * bit. Note that the {i2c_chip} address specified on the command |
| * line is not shifted up: e.g. a typical EEPROM memory chip may have |
| * an I2C address of 0x50, but the data put on the bus will be 0xA0 |
| * for write and 0xA1 for read. This "non shifted" address notation |
| * matches at least half of the data sheets :-/. |
| * |
| * {addr} is the address (or offset) within the chip. Small memory |
| * chips have 8 bit addresses. Large memory chips have 16 bit |
| * addresses. Other memory chips have 9, 10, or 11 bit addresses. |
| * Many non-memory chips have multiple registers and {addr} is used |
| * as the register index. Some non-memory chips have only one register |
| * and therefore don't need any {addr} parameter. |
| * |
| * The default {addr} parameter is one byte (.1) which works well for |
| * memories and registers with 8 bits of address space. |
| * |
| * You can specify the length of the {addr} field with the optional .0, |
| * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are |
| * manipulating a single register device which doesn't use an address |
| * field, use "0.0" for the address and the ".0" length field will |
| * suppress the address in the I2C data stream. This also works for |
| * successive reads using the I2C auto-incrementing memory pointer. |
| * |
| * If you are manipulating a large memory with 2-byte addresses, use |
| * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal). |
| * |
| * Then there are the unfortunate memory chips that spill the most |
| * significant 1, 2, or 3 bits of address into the chip address byte. |
| * This effectively makes one chip (logically) look like 2, 4, or |
| * 8 chips. This is handled (awkwardly) by #defining |
| * CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the |
| * {addr} field (since .1 is the default, it doesn't actually have to |
| * be specified). Examples: given a memory chip at I2C chip address |
| * 0x50, the following would happen... |
| * i2c md 50 0 10 display 16 bytes starting at 0x000 |
| * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd> |
| * i2c md 50 100 10 display 16 bytes starting at 0x100 |
| * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd> |
| * i2c md 50 210 10 display 16 bytes starting at 0x210 |
| * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd> |
| * This is awfully ugly. It would be nice if someone would think up |
| * a better way of handling this. |
| * |
| * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de). |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <environment.h> |
| #include <i2c.h> |
| #include <malloc.h> |
| #include <asm/byteorder.h> |
| |
| /* Display values from last command. |
| * Memory modify remembered values are different from display memory. |
| */ |
| static uchar i2c_dp_last_chip; |
| static uint i2c_dp_last_addr; |
| static uint i2c_dp_last_alen; |
| static uint i2c_dp_last_length = 0x10; |
| |
| static uchar i2c_mm_last_chip; |
| static uint i2c_mm_last_addr; |
| static uint i2c_mm_last_alen; |
| |
| /* If only one I2C bus is present, the list of devices to ignore when |
| * the probe command is issued is represented by a 1D array of addresses. |
| * When multiple buses are present, the list is an array of bus-address |
| * pairs. The following macros take care of this */ |
| |
| #if defined(CONFIG_SYS_I2C_NOPROBES) |
| #if defined(CONFIG_I2C_MULTI_BUS) |
| static struct |
| { |
| uchar bus; |
| uchar addr; |
| } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES; |
| #define GET_BUS_NUM i2c_get_bus_num() |
| #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b)) |
| #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a)) |
| #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr |
| #else /* single bus */ |
| static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES; |
| #define GET_BUS_NUM 0 |
| #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */ |
| #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a)) |
| #define NO_PROBE_ADDR(i) i2c_no_probes[(i)] |
| #endif /* CONFIG_MULTI_BUS */ |
| |
| #define NUM_ELEMENTS_NOPROBE (sizeof(i2c_no_probes)/sizeof(i2c_no_probes[0])) |
| #endif |
| |
| #if defined(CONFIG_I2C_MUX) |
| static I2C_MUX_DEVICE *i2c_mux_devices = NULL; |
| static int i2c_mux_busid = CONFIG_SYS_MAX_I2C_BUS; |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #endif |
| |
| /* TODO: Implement architecture-specific get/set functions */ |
| unsigned int __def_i2c_get_bus_speed(void) |
| { |
| return CONFIG_SYS_I2C_SPEED; |
| } |
| unsigned int i2c_get_bus_speed(void) |
| __attribute__((weak, alias("__def_i2c_get_bus_speed"))); |
| |
| int __def_i2c_set_bus_speed(unsigned int speed) |
| { |
| if (speed != CONFIG_SYS_I2C_SPEED) |
| return -1; |
| |
| return 0; |
| } |
| int i2c_set_bus_speed(unsigned int) |
| __attribute__((weak, alias("__def_i2c_set_bus_speed"))); |
| |
| /* |
| * Syntax: |
| * i2c md {i2c_chip} {addr}{.0, .1, .2} {len} |
| */ |
| #define DISP_LINE_LEN 16 |
| |
| int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| u_char chip; |
| uint addr, alen, length; |
| int j, nbytes, linebytes; |
| |
| /* We use the last specified parameters, unless new ones are |
| * entered. |
| */ |
| chip = i2c_dp_last_chip; |
| addr = i2c_dp_last_addr; |
| alen = i2c_dp_last_alen; |
| length = i2c_dp_last_length; |
| |
| if (argc < 3) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| if ((flag & CMD_FLAG_REPEAT) == 0) { |
| /* |
| * New command specified. |
| */ |
| alen = 1; |
| |
| /* |
| * I2C chip address |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * I2C data address within the chip. This can be 1 or |
| * 2 bytes long. Some day it might be 3 bytes long :-). |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for (j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if (alen > 4) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') |
| break; |
| } |
| |
| /* |
| * If another parameter, it is the length to display. |
| * Length is the number of objects, not number of bytes. |
| */ |
| if (argc > 3) |
| length = simple_strtoul(argv[3], NULL, 16); |
| } |
| |
| /* |
| * Print the lines. |
| * |
| * We buffer all read data, so we can make sure data is read only |
| * once. |
| */ |
| nbytes = length; |
| do { |
| unsigned char linebuf[DISP_LINE_LEN]; |
| unsigned char *cp; |
| |
| linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes; |
| |
| if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0) |
| puts ("Error reading the chip.\n"); |
| else { |
| printf("%04x:", addr); |
| cp = linebuf; |
| for (j=0; j<linebytes; j++) { |
| printf(" %02x", *cp++); |
| addr++; |
| } |
| puts (" "); |
| cp = linebuf; |
| for (j=0; j<linebytes; j++) { |
| if ((*cp < 0x20) || (*cp > 0x7e)) |
| puts ("."); |
| else |
| printf("%c", *cp); |
| cp++; |
| } |
| putc ('\n'); |
| } |
| nbytes -= linebytes; |
| } while (nbytes > 0); |
| |
| i2c_dp_last_chip = chip; |
| i2c_dp_last_addr = addr; |
| i2c_dp_last_alen = alen; |
| i2c_dp_last_length = length; |
| |
| return 0; |
| } |
| |
| |
| /* Write (fill) memory |
| * |
| * Syntax: |
| * i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}] |
| */ |
| int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| uchar chip; |
| ulong addr; |
| uint alen; |
| uchar byte; |
| int count; |
| int j; |
| |
| if ((argc < 4) || (argc > 5)) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * Address is always specified. |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for (j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if (alen > 4) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') |
| break; |
| } |
| |
| /* |
| * Value to write is always specified. |
| */ |
| byte = simple_strtoul(argv[3], NULL, 16); |
| |
| /* |
| * Optional count |
| */ |
| if (argc == 5) |
| count = simple_strtoul(argv[4], NULL, 16); |
| else |
| count = 1; |
| |
| while (count-- > 0) { |
| if (i2c_write(chip, addr++, alen, &byte, 1) != 0) |
| puts ("Error writing the chip.\n"); |
| /* |
| * Wait for the write to complete. The write can take |
| * up to 10mSec (we allow a little more time). |
| * |
| * On some chips, while the write is in progress, the |
| * chip doesn't respond. This apparently isn't a |
| * universal feature so we don't take advantage of it. |
| */ |
| /* |
| * No write delay with FRAM devices. |
| */ |
| #if !defined(CONFIG_SYS_I2C_FRAM) |
| udelay(11000); |
| #endif |
| } |
| |
| return (0); |
| } |
| |
| /* Calculate a CRC on memory |
| * |
| * Syntax: |
| * i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count} |
| */ |
| int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| uchar chip; |
| ulong addr; |
| uint alen; |
| int count; |
| uchar byte; |
| ulong crc; |
| ulong err; |
| int j; |
| |
| if (argc < 4) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * Address is always specified. |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for (j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if (alen > 4) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') |
| break; |
| } |
| |
| /* |
| * Count is always specified |
| */ |
| count = simple_strtoul(argv[3], NULL, 16); |
| |
| printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1); |
| /* |
| * CRC a byte at a time. This is going to be slooow, but hey, the |
| * memories are small and slow too so hopefully nobody notices. |
| */ |
| crc = 0; |
| err = 0; |
| while (count-- > 0) { |
| if (i2c_read(chip, addr, alen, &byte, 1) != 0) |
| err++; |
| crc = crc32 (crc, &byte, 1); |
| addr++; |
| } |
| if (err > 0) |
| puts ("Error reading the chip,\n"); |
| else |
| printf ("%08lx\n", crc); |
| |
| return 0; |
| } |
| |
| /* Modify memory. |
| * |
| * Syntax: |
| * i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2} |
| * i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2} |
| */ |
| |
| static int |
| mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]) |
| { |
| uchar chip; |
| ulong addr; |
| uint alen; |
| ulong data; |
| int size = 1; |
| int nbytes; |
| int j; |
| extern char console_buffer[]; |
| |
| if (argc != 3) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| #ifdef CONFIG_BOOT_RETRY_TIME |
| reset_cmd_timeout(); /* got a good command to get here */ |
| #endif |
| /* |
| * We use the last specified parameters, unless new ones are |
| * entered. |
| */ |
| chip = i2c_mm_last_chip; |
| addr = i2c_mm_last_addr; |
| alen = i2c_mm_last_alen; |
| |
| if ((flag & CMD_FLAG_REPEAT) == 0) { |
| /* |
| * New command specified. Check for a size specification. |
| * Defaults to byte if no or incorrect specification. |
| */ |
| size = cmd_get_data_size(argv[0], 1); |
| |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * Address is always specified. |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for (j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if (alen > 4) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') |
| break; |
| } |
| } |
| |
| /* |
| * Print the address, followed by value. Then accept input for |
| * the next value. A non-converted value exits. |
| */ |
| do { |
| printf("%08lx:", addr); |
| if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0) |
| puts ("\nError reading the chip,\n"); |
| else { |
| data = cpu_to_be32(data); |
| if (size == 1) |
| printf(" %02lx", (data >> 24) & 0x000000FF); |
| else if (size == 2) |
| printf(" %04lx", (data >> 16) & 0x0000FFFF); |
| else |
| printf(" %08lx", data); |
| } |
| |
| nbytes = readline (" ? "); |
| if (nbytes == 0) { |
| /* |
| * <CR> pressed as only input, don't modify current |
| * location and move to next. |
| */ |
| if (incrflag) |
| addr += size; |
| nbytes = size; |
| #ifdef CONFIG_BOOT_RETRY_TIME |
| reset_cmd_timeout(); /* good enough to not time out */ |
| #endif |
| } |
| #ifdef CONFIG_BOOT_RETRY_TIME |
| else if (nbytes == -2) |
| break; /* timed out, exit the command */ |
| #endif |
| else { |
| char *endp; |
| |
| data = simple_strtoul(console_buffer, &endp, 16); |
| if (size == 1) |
| data = data << 24; |
| else if (size == 2) |
| data = data << 16; |
| data = be32_to_cpu(data); |
| nbytes = endp - console_buffer; |
| if (nbytes) { |
| #ifdef CONFIG_BOOT_RETRY_TIME |
| /* |
| * good enough to not time out |
| */ |
| reset_cmd_timeout(); |
| #endif |
| if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0) |
| puts ("Error writing the chip.\n"); |
| #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS |
| udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000); |
| #endif |
| if (incrflag) |
| addr += size; |
| } |
| } |
| } while (nbytes); |
| |
| i2c_mm_last_chip = chip; |
| i2c_mm_last_addr = addr; |
| i2c_mm_last_alen = alen; |
| |
| return 0; |
| } |
| |
| /* |
| * Syntax: |
| * i2c probe {addr}{.0, .1, .2} |
| */ |
| int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| int j; |
| #if defined(CONFIG_SYS_I2C_NOPROBES) |
| int k, skip; |
| uchar bus = GET_BUS_NUM; |
| #endif /* NOPROBES */ |
| |
| puts ("Valid chip addresses:"); |
| for (j = 0; j < 128; j++) { |
| #if defined(CONFIG_SYS_I2C_NOPROBES) |
| skip = 0; |
| for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) { |
| if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) { |
| skip = 1; |
| break; |
| } |
| } |
| if (skip) |
| continue; |
| #endif |
| if (i2c_probe(j) == 0) |
| printf(" %02X", j); |
| } |
| putc ('\n'); |
| |
| #if defined(CONFIG_SYS_I2C_NOPROBES) |
| puts ("Excluded chip addresses:"); |
| for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) { |
| if (COMPARE_BUS(bus,k)) |
| printf(" %02X", NO_PROBE_ADDR(k)); |
| } |
| putc ('\n'); |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Syntax: |
| * i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}] |
| * {length} - Number of bytes to read |
| * {delay} - A DECIMAL number and defaults to 1000 uSec |
| */ |
| int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| u_char chip; |
| ulong alen; |
| uint addr; |
| uint length; |
| u_char bytes[16]; |
| int delay; |
| int j; |
| |
| if (argc < 3) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul(argv[1], NULL, 16); |
| |
| /* |
| * Address is always specified. |
| */ |
| addr = simple_strtoul(argv[2], NULL, 16); |
| alen = 1; |
| for (j = 0; j < 8; j++) { |
| if (argv[2][j] == '.') { |
| alen = argv[2][j+1] - '0'; |
| if (alen > 4) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| break; |
| } else if (argv[2][j] == '\0') |
| break; |
| } |
| |
| /* |
| * Length is the number of objects, not number of bytes. |
| */ |
| length = 1; |
| length = simple_strtoul(argv[3], NULL, 16); |
| if (length > sizeof(bytes)) |
| length = sizeof(bytes); |
| |
| /* |
| * The delay time (uSec) is optional. |
| */ |
| delay = 1000; |
| if (argc > 3) |
| delay = simple_strtoul(argv[4], NULL, 10); |
| /* |
| * Run the loop... |
| */ |
| while (1) { |
| if (i2c_read(chip, addr, alen, bytes, length) != 0) |
| puts ("Error reading the chip.\n"); |
| udelay(delay); |
| } |
| |
| /* NOTREACHED */ |
| return 0; |
| } |
| |
| /* |
| * The SDRAM command is separately configured because many |
| * (most?) embedded boards don't use SDRAM DIMMs. |
| */ |
| #if defined(CONFIG_CMD_SDRAM) |
| static void print_ddr2_tcyc (u_char const b) |
| { |
| printf ("%d.", (b >> 4) & 0x0F); |
| switch (b & 0x0F) { |
| case 0x0: |
| case 0x1: |
| case 0x2: |
| case 0x3: |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| case 0x8: |
| case 0x9: |
| printf ("%d ns\n", b & 0x0F); |
| break; |
| case 0xA: |
| puts ("25 ns\n"); |
| break; |
| case 0xB: |
| puts ("33 ns\n"); |
| break; |
| case 0xC: |
| puts ("66 ns\n"); |
| break; |
| case 0xD: |
| puts ("75 ns\n"); |
| break; |
| default: |
| puts ("?? ns\n"); |
| break; |
| } |
| } |
| |
| static void decode_bits (u_char const b, char const *str[], int const do_once) |
| { |
| u_char mask; |
| |
| for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) { |
| if (b & mask) { |
| puts (*str); |
| if (do_once) |
| return; |
| } |
| } |
| } |
| |
| /* |
| * Syntax: |
| * i2c sdram {i2c_chip} |
| */ |
| int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) |
| { |
| enum { unknown, EDO, SDRAM, DDR2 } type; |
| |
| u_char chip; |
| u_char data[128]; |
| u_char cksum; |
| int j; |
| |
| static const char *decode_CAS_DDR2[] = { |
| " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD" |
| }; |
| |
| static const char *decode_CAS_default[] = { |
| " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1" |
| }; |
| |
| static const char *decode_CS_WE_default[] = { |
| " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0" |
| }; |
| |
| static const char *decode_byte21_default[] = { |
| " TBD (bit 7)\n", |
| " Redundant row address\n", |
| " Differential clock input\n", |
| " Registerd DQMB inputs\n", |
| " Buffered DQMB inputs\n", |
| " On-card PLL\n", |
| " Registered address/control lines\n", |
| " Buffered address/control lines\n" |
| }; |
| |
| static const char *decode_byte22_DDR2[] = { |
| " TBD (bit 7)\n", |
| " TBD (bit 6)\n", |
| " TBD (bit 5)\n", |
| " TBD (bit 4)\n", |
| " TBD (bit 3)\n", |
| " Supports partial array self refresh\n", |
| " Supports 50 ohm ODT\n", |
| " Supports weak driver\n" |
| }; |
| |
| static const char *decode_row_density_DDR2[] = { |
| "512 MiB", "256 MiB", "128 MiB", "16 GiB", |
| "8 GiB", "4 GiB", "2 GiB", "1 GiB" |
| }; |
| |
| static const char *decode_row_density_default[] = { |
| "512 MiB", "256 MiB", "128 MiB", "64 MiB", |
| "32 MiB", "16 MiB", "8 MiB", "4 MiB" |
| }; |
| |
| if (argc < 2) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| /* |
| * Chip is always specified. |
| */ |
| chip = simple_strtoul (argv[1], NULL, 16); |
| |
| if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) { |
| puts ("No SDRAM Serial Presence Detect found.\n"); |
| return 1; |
| } |
| |
| cksum = 0; |
| for (j = 0; j < 63; j++) { |
| cksum += data[j]; |
| } |
| if (cksum != data[63]) { |
| printf ("WARNING: Configuration data checksum failure:\n" |
| " is 0x%02x, calculated 0x%02x\n", data[63], cksum); |
| } |
| printf ("SPD data revision %d.%d\n", |
| (data[62] >> 4) & 0x0F, data[62] & 0x0F); |
| printf ("Bytes used 0x%02X\n", data[0]); |
| printf ("Serial memory size 0x%02X\n", 1 << data[1]); |
| |
| puts ("Memory type "); |
| switch (data[2]) { |
| case 2: |
| type = EDO; |
| puts ("EDO\n"); |
| break; |
| case 4: |
| type = SDRAM; |
| puts ("SDRAM\n"); |
| break; |
| case 8: |
| type = DDR2; |
| puts ("DDR2\n"); |
| break; |
| default: |
| type = unknown; |
| puts ("unknown\n"); |
| break; |
| } |
| |
| puts ("Row address bits "); |
| if ((data[3] & 0x00F0) == 0) |
| printf ("%d\n", data[3] & 0x0F); |
| else |
| printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F); |
| |
| puts ("Column address bits "); |
| if ((data[4] & 0x00F0) == 0) |
| printf ("%d\n", data[4] & 0x0F); |
| else |
| printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F); |
| |
| switch (type) { |
| case DDR2: |
| printf ("Number of ranks %d\n", |
| (data[5] & 0x07) + 1); |
| break; |
| default: |
| printf ("Module rows %d\n", data[5]); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("Module data width %d bits\n", data[6]); |
| break; |
| default: |
| printf ("Module data width %d bits\n", |
| (data[7] << 8) | data[6]); |
| break; |
| } |
| |
| puts ("Interface signal levels "); |
| switch(data[8]) { |
| case 0: puts ("TTL 5.0 V\n"); break; |
| case 1: puts ("LVTTL\n"); break; |
| case 2: puts ("HSTL 1.5 V\n"); break; |
| case 3: puts ("SSTL 3.3 V\n"); break; |
| case 4: puts ("SSTL 2.5 V\n"); break; |
| case 5: puts ("SSTL 1.8 V\n"); break; |
| default: puts ("unknown\n"); break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("SDRAM cycle time "); |
| print_ddr2_tcyc (data[9]); |
| break; |
| default: |
| printf ("SDRAM cycle time %d.%d ns\n", |
| (data[9] >> 4) & 0x0F, data[9] & 0x0F); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("SDRAM access time 0.%d%d ns\n", |
| (data[10] >> 4) & 0x0F, data[10] & 0x0F); |
| break; |
| default: |
| printf ("SDRAM access time %d.%d ns\n", |
| (data[10] >> 4) & 0x0F, data[10] & 0x0F); |
| break; |
| } |
| |
| puts ("EDC configuration "); |
| switch (data[11]) { |
| case 0: puts ("None\n"); break; |
| case 1: puts ("Parity\n"); break; |
| case 2: puts ("ECC\n"); break; |
| default: puts ("unknown\n"); break; |
| } |
| |
| if ((data[12] & 0x80) == 0) |
| puts ("No self refresh, rate "); |
| else |
| puts ("Self refresh, rate "); |
| |
| switch(data[12] & 0x7F) { |
| case 0: puts ("15.625 us\n"); break; |
| case 1: puts ("3.9 us\n"); break; |
| case 2: puts ("7.8 us\n"); break; |
| case 3: puts ("31.3 us\n"); break; |
| case 4: puts ("62.5 us\n"); break; |
| case 5: puts ("125 us\n"); break; |
| default: puts ("unknown\n"); break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("SDRAM width (primary) %d\n", data[13]); |
| break; |
| default: |
| printf ("SDRAM width (primary) %d\n", data[13] & 0x7F); |
| if ((data[13] & 0x80) != 0) { |
| printf (" (second bank) %d\n", |
| 2 * (data[13] & 0x7F)); |
| } |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| if (data[14] != 0) |
| printf ("EDC width %d\n", data[14]); |
| break; |
| default: |
| if (data[14] != 0) { |
| printf ("EDC width %d\n", |
| data[14] & 0x7F); |
| |
| if ((data[14] & 0x80) != 0) { |
| printf (" (second bank) %d\n", |
| 2 * (data[14] & 0x7F)); |
| } |
| } |
| break; |
| } |
| |
| if (DDR2 != type) { |
| printf ("Min clock delay, back-to-back random column addresses " |
| "%d\n", data[15]); |
| } |
| |
| puts ("Burst length(s) "); |
| if (data[16] & 0x80) puts (" Page"); |
| if (data[16] & 0x08) puts (" 8"); |
| if (data[16] & 0x04) puts (" 4"); |
| if (data[16] & 0x02) puts (" 2"); |
| if (data[16] & 0x01) puts (" 1"); |
| putc ('\n'); |
| printf ("Number of banks %d\n", data[17]); |
| |
| switch (type) { |
| case DDR2: |
| puts ("CAS latency(s) "); |
| decode_bits (data[18], decode_CAS_DDR2, 0); |
| putc ('\n'); |
| break; |
| default: |
| puts ("CAS latency(s) "); |
| decode_bits (data[18], decode_CAS_default, 0); |
| putc ('\n'); |
| break; |
| } |
| |
| if (DDR2 != type) { |
| puts ("CS latency(s) "); |
| decode_bits (data[19], decode_CS_WE_default, 0); |
| putc ('\n'); |
| } |
| |
| if (DDR2 != type) { |
| puts ("WE latency(s) "); |
| decode_bits (data[20], decode_CS_WE_default, 0); |
| putc ('\n'); |
| } |
| |
| switch (type) { |
| case DDR2: |
| puts ("Module attributes:\n"); |
| if (data[21] & 0x80) |
| puts (" TBD (bit 7)\n"); |
| if (data[21] & 0x40) |
| puts (" Analysis probe installed\n"); |
| if (data[21] & 0x20) |
| puts (" TBD (bit 5)\n"); |
| if (data[21] & 0x10) |
| puts (" FET switch external enable\n"); |
| printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03); |
| if (data[20] & 0x11) { |
| printf (" %d active registers on DIMM\n", |
| (data[21] & 0x03) + 1); |
| } |
| break; |
| default: |
| puts ("Module attributes:\n"); |
| if (!data[21]) |
| puts (" (none)\n"); |
| else |
| decode_bits (data[21], decode_byte21_default, 0); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| decode_bits (data[22], decode_byte22_DDR2, 0); |
| break; |
| default: |
| puts ("Device attributes:\n"); |
| if (data[22] & 0x80) puts (" TBD (bit 7)\n"); |
| if (data[22] & 0x40) puts (" TBD (bit 6)\n"); |
| if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n"); |
| else puts (" Upper Vcc tolerance 10%\n"); |
| if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n"); |
| else puts (" Lower Vcc tolerance 10%\n"); |
| if (data[22] & 0x08) puts (" Supports write1/read burst\n"); |
| if (data[22] & 0x04) puts (" Supports precharge all\n"); |
| if (data[22] & 0x02) puts (" Supports auto precharge\n"); |
| if (data[22] & 0x01) puts (" Supports early RAS# precharge\n"); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("SDRAM cycle time (2nd highest CAS latency) "); |
| print_ddr2_tcyc (data[23]); |
| break; |
| default: |
| printf ("SDRAM cycle time (2nd highest CAS latency) %d." |
| "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("SDRAM access from clock (2nd highest CAS latency) 0." |
| "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F); |
| break; |
| default: |
| printf ("SDRAM access from clock (2nd highest CAS latency) %d." |
| "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("SDRAM cycle time (3rd highest CAS latency) "); |
| print_ddr2_tcyc (data[25]); |
| break; |
| default: |
| printf ("SDRAM cycle time (3rd highest CAS latency) %d." |
| "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("SDRAM access from clock (3rd highest CAS latency) 0." |
| "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F); |
| break; |
| default: |
| printf ("SDRAM access from clock (3rd highest CAS latency) %d." |
| "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("Minimum row precharge %d.%02d ns\n", |
| (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03)); |
| break; |
| default: |
| printf ("Minimum row precharge %d ns\n", data[27]); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("Row active to row active min %d.%02d ns\n", |
| (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03)); |
| break; |
| default: |
| printf ("Row active to row active min %d ns\n", data[28]); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("RAS to CAS delay min %d.%02d ns\n", |
| (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03)); |
| break; |
| default: |
| printf ("RAS to CAS delay min %d ns\n", data[29]); |
| break; |
| } |
| |
| printf ("Minimum RAS pulse width %d ns\n", data[30]); |
| |
| switch (type) { |
| case DDR2: |
| puts ("Density of each row "); |
| decode_bits (data[31], decode_row_density_DDR2, 1); |
| putc ('\n'); |
| break; |
| default: |
| puts ("Density of each row "); |
| decode_bits (data[31], decode_row_density_default, 1); |
| putc ('\n'); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| puts ("Command and Address setup "); |
| if (data[32] >= 0xA0) { |
| printf ("1.%d%d ns\n", |
| ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F); |
| } else { |
| printf ("0.%d%d ns\n", |
| ((data[32] >> 4) & 0x0F), data[32] & 0x0F); |
| } |
| break; |
| default: |
| printf ("Command and Address setup %c%d.%d ns\n", |
| (data[32] & 0x80) ? '-' : '+', |
| (data[32] >> 4) & 0x07, data[32] & 0x0F); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| puts ("Command and Address hold "); |
| if (data[33] >= 0xA0) { |
| printf ("1.%d%d ns\n", |
| ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F); |
| } else { |
| printf ("0.%d%d ns\n", |
| ((data[33] >> 4) & 0x0F), data[33] & 0x0F); |
| } |
| break; |
| default: |
| printf ("Command and Address hold %c%d.%d ns\n", |
| (data[33] & 0x80) ? '-' : '+', |
| (data[33] >> 4) & 0x07, data[33] & 0x0F); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("Data signal input setup 0.%d%d ns\n", |
| (data[34] >> 4) & 0x0F, data[34] & 0x0F); |
| break; |
| default: |
| printf ("Data signal input setup %c%d.%d ns\n", |
| (data[34] & 0x80) ? '-' : '+', |
| (data[34] >> 4) & 0x07, data[34] & 0x0F); |
| break; |
| } |
| |
| switch (type) { |
| case DDR2: |
| printf ("Data signal input hold 0.%d%d ns\n", |
| (data[35] >> 4) & 0x0F, data[35] & 0x0F); |
| break; |
| default: |
| printf ("Data signal input hold %c%d.%d ns\n", |
| (data[35] & 0x80) ? '-' : '+', |
| (data[35] >> 4) & 0x07, data[35] & 0x0F); |
| break; |
| } |
| |
| puts ("Manufacturer's JEDEC ID "); |
| for (j = 64; j <= 71; j++) |
| printf ("%02X ", data[j]); |
| putc ('\n'); |
| printf ("Manufacturing Location %02X\n", data[72]); |
| puts ("Manufacturer's Part Number "); |
| for (j = 73; j <= 90; j++) |
| printf ("%02X ", data[j]); |
| putc ('\n'); |
| printf ("Revision Code %02X %02X\n", data[91], data[92]); |
| printf ("Manufacturing Date %02X %02X\n", data[93], data[94]); |
| puts ("Assembly Serial Number "); |
| for (j = 95; j <= 98; j++) |
| printf ("%02X ", data[j]); |
| putc ('\n'); |
| |
| if (DDR2 != type) { |
| printf ("Speed rating PC%d\n", |
| data[126] == 0x66 ? 66 : data[126]); |
| } |
| return 0; |
| } |
| #endif |
| |
| #if defined(CONFIG_I2C_MUX) |
| int do_i2c_add_bus(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) |
| { |
| int ret=0; |
| |
| if (argc == 1) { |
| /* show all busses */ |
| I2C_MUX *mux; |
| I2C_MUX_DEVICE *device = i2c_mux_devices; |
| |
| printf ("Busses reached over muxes:\n"); |
| while (device != NULL) { |
| printf ("Bus ID: %x\n", device->busid); |
| printf (" reached over Mux(es):\n"); |
| mux = device->mux; |
| while (mux != NULL) { |
| printf (" %s@%x ch: %x\n", mux->name, mux->chip, mux->channel); |
| mux = mux->next; |
| } |
| device = device->next; |
| } |
| } else { |
| I2C_MUX_DEVICE *dev; |
| |
| dev = i2c_mux_ident_muxstring ((uchar *)argv[1]); |
| ret = 0; |
| } |
| return ret; |
| } |
| #endif /* CONFIG_I2C_MUX */ |
| |
| #if defined(CONFIG_I2C_MULTI_BUS) |
| int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) |
| { |
| int bus_idx, ret=0; |
| |
| if (argc == 1) |
| /* querying current setting */ |
| printf("Current bus is %d\n", i2c_get_bus_num()); |
| else { |
| bus_idx = simple_strtoul(argv[1], NULL, 10); |
| printf("Setting bus to %d\n", bus_idx); |
| ret = i2c_set_bus_num(bus_idx); |
| if (ret) |
| printf("Failure changing bus number (%d)\n", ret); |
| } |
| return ret; |
| } |
| #endif /* CONFIG_I2C_MULTI_BUS */ |
| |
| int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) |
| { |
| int speed, ret=0; |
| |
| if (argc == 1) |
| /* querying current speed */ |
| printf("Current bus speed=%d\n", i2c_get_bus_speed()); |
| else { |
| speed = simple_strtoul(argv[1], NULL, 10); |
| printf("Setting bus speed to %d Hz\n", speed); |
| ret = i2c_set_bus_speed(speed); |
| if (ret) |
| printf("Failure changing bus speed (%d)\n", ret); |
| } |
| return ret; |
| } |
| |
| int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) |
| { |
| /* Strip off leading 'i2c' command argument */ |
| argc--; |
| argv++; |
| |
| #if defined(CONFIG_I2C_MUX) |
| if (!strncmp(argv[0], "bu", 2)) |
| return do_i2c_add_bus(cmdtp, flag, argc, argv); |
| #endif /* CONFIG_I2C_MUX */ |
| if (!strncmp(argv[0], "sp", 2)) |
| return do_i2c_bus_speed(cmdtp, flag, argc, argv); |
| #if defined(CONFIG_I2C_MULTI_BUS) |
| if (!strncmp(argv[0], "de", 2)) |
| return do_i2c_bus_num(cmdtp, flag, argc, argv); |
| #endif /* CONFIG_I2C_MULTI_BUS */ |
| if (!strncmp(argv[0], "md", 2)) |
| return do_i2c_md(cmdtp, flag, argc, argv); |
| if (!strncmp(argv[0], "mm", 2)) |
| return mod_i2c_mem (cmdtp, 1, flag, argc, argv); |
| if (!strncmp(argv[0], "mw", 2)) |
| return do_i2c_mw(cmdtp, flag, argc, argv); |
| if (!strncmp(argv[0], "nm", 2)) |
| return mod_i2c_mem (cmdtp, 0, flag, argc, argv); |
| if (!strncmp(argv[0], "cr", 2)) |
| return do_i2c_crc(cmdtp, flag, argc, argv); |
| if (!strncmp(argv[0], "pr", 2)) |
| return do_i2c_probe(cmdtp, flag, argc, argv); |
| if (!strncmp(argv[0], "re", 2)) { |
| i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); |
| return 0; |
| } |
| if (!strncmp(argv[0], "lo", 2)) |
| return do_i2c_loop(cmdtp, flag, argc, argv); |
| #if defined(CONFIG_CMD_SDRAM) |
| if (!strncmp(argv[0], "sd", 2)) |
| return do_sdram(cmdtp, flag, argc, argv); |
| #endif |
| cmd_usage(cmdtp); |
| return 0; |
| } |
| |
| /***************************************************/ |
| |
| U_BOOT_CMD( |
| i2c, 6, 1, do_i2c, |
| "I2C sub-system", |
| "speed [speed] - show or set I2C bus speed\n" |
| #if defined(CONFIG_I2C_MUX) |
| "i2c bus [muxtype:muxaddr:muxchannel] - add a new bus reached over muxes\n" |
| #endif /* CONFIG_I2C_MUX */ |
| #if defined(CONFIG_I2C_MULTI_BUS) |
| "i2c dev [dev] - show or set current I2C bus\n" |
| #endif /* CONFIG_I2C_MULTI_BUS */ |
| "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n" |
| "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n" |
| "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n" |
| "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n" |
| "i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n" |
| "i2c probe - show devices on the I2C bus\n" |
| "i2c reset - re-init the I2C Controller\n" |
| "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device" |
| #if defined(CONFIG_CMD_SDRAM) |
| "\n" |
| "i2c sdram chip - print SDRAM configuration information" |
| #endif |
| ); |
| |
| #if defined(CONFIG_I2C_MUX) |
| |
| int i2c_mux_add_device(I2C_MUX_DEVICE *dev) |
| { |
| I2C_MUX_DEVICE *devtmp = i2c_mux_devices; |
| |
| if (i2c_mux_devices == NULL) { |
| i2c_mux_devices = dev; |
| return 0; |
| } |
| while (devtmp->next != NULL) |
| devtmp = devtmp->next; |
| |
| devtmp->next = dev; |
| return 0; |
| } |
| |
| I2C_MUX_DEVICE *i2c_mux_search_device(int id) |
| { |
| I2C_MUX_DEVICE *device = i2c_mux_devices; |
| |
| while (device != NULL) { |
| if (device->busid == id) |
| return device; |
| device = device->next; |
| } |
| return NULL; |
| } |
| |
| /* searches in the buf from *pos the next ':'. |
| * returns: |
| * 0 if found (with *pos = where) |
| * < 0 if an error occured |
| * > 0 if the end of buf is reached |
| */ |
| static int i2c_mux_search_next (int *pos, uchar *buf, int len) |
| { |
| while ((buf[*pos] != ':') && (*pos < len)) { |
| *pos += 1; |
| } |
| if (*pos >= len) |
| return 1; |
| if (buf[*pos] != ':') |
| return -1; |
| return 0; |
| } |
| |
| static int i2c_mux_get_busid (void) |
| { |
| int tmp = i2c_mux_busid; |
| |
| i2c_mux_busid ++; |
| return tmp; |
| } |
| |
| /* Analyses a Muxstring and sends immediately the |
| Commands to the Muxes. Runs from Flash. |
| */ |
| int i2c_mux_ident_muxstring_f (uchar *buf) |
| { |
| int pos = 0; |
| int oldpos; |
| int ret = 0; |
| int len = strlen((char *)buf); |
| int chip; |
| uchar channel; |
| int was = 0; |
| |
| while (ret == 0) { |
| oldpos = pos; |
| /* search name */ |
| ret = i2c_mux_search_next(&pos, buf, len); |
| if (ret != 0) |
| printf ("ERROR\n"); |
| /* search address */ |
| pos ++; |
| oldpos = pos; |
| ret = i2c_mux_search_next(&pos, buf, len); |
| if (ret != 0) |
| printf ("ERROR\n"); |
| buf[pos] = 0; |
| chip = simple_strtoul((char *)&buf[oldpos], NULL, 16); |
| buf[pos] = ':'; |
| /* search channel */ |
| pos ++; |
| oldpos = pos; |
| ret = i2c_mux_search_next(&pos, buf, len); |
| if (ret < 0) |
| printf ("ERROR\n"); |
| was = 0; |
| if (buf[pos] != 0) { |
| buf[pos] = 0; |
| was = 1; |
| } |
| channel = simple_strtoul((char *)&buf[oldpos], NULL, 16); |
| if (was) |
| buf[pos] = ':'; |
| if (i2c_write(chip, 0, 0, &channel, 1) != 0) { |
| printf ("Error setting Mux: chip:%x channel: \ |
| %x\n", chip, channel); |
| return -1; |
| } |
| pos ++; |
| oldpos = pos; |
| |
| } |
| |
| return 0; |
| } |
| |
| /* Analyses a Muxstring and if this String is correct |
| * adds a new I2C Bus. |
| */ |
| I2C_MUX_DEVICE *i2c_mux_ident_muxstring (uchar *buf) |
| { |
| I2C_MUX_DEVICE *device; |
| I2C_MUX *mux; |
| int pos = 0; |
| int oldpos; |
| int ret = 0; |
| int len = strlen((char *)buf); |
| int was = 0; |
| |
| device = (I2C_MUX_DEVICE *)malloc (sizeof(I2C_MUX_DEVICE)); |
| device->mux = NULL; |
| device->busid = i2c_mux_get_busid (); |
| device->next = NULL; |
| while (ret == 0) { |
| mux = (I2C_MUX *)malloc (sizeof(I2C_MUX)); |
| mux->next = NULL; |
| /* search name of mux */ |
| oldpos = pos; |
| ret = i2c_mux_search_next(&pos, buf, len); |
| if (ret != 0) |
| printf ("%s no name.\n", __FUNCTION__); |
| mux->name = (char *)malloc (pos - oldpos + 1); |
| memcpy (mux->name, &buf[oldpos], pos - oldpos); |
| mux->name[pos - oldpos] = 0; |
| /* search address */ |
| pos ++; |
| oldpos = pos; |
| ret = i2c_mux_search_next(&pos, buf, len); |
| if (ret != 0) |
| printf ("%s no mux address.\n", __FUNCTION__); |
| buf[pos] = 0; |
| mux->chip = simple_strtoul((char *)&buf[oldpos], NULL, 16); |
| buf[pos] = ':'; |
| /* search channel */ |
| pos ++; |
| oldpos = pos; |
| ret = i2c_mux_search_next(&pos, buf, len); |
| if (ret < 0) |
| printf ("%s no mux channel.\n", __FUNCTION__); |
| was = 0; |
| if (buf[pos] != 0) { |
| buf[pos] = 0; |
| was = 1; |
| } |
| mux->channel = simple_strtoul((char *)&buf[oldpos], NULL, 16); |
| if (was) |
| buf[pos] = ':'; |
| if (device->mux == NULL) |
| device->mux = mux; |
| else { |
| I2C_MUX *muxtmp = device->mux; |
| while (muxtmp->next != NULL) { |
| muxtmp = muxtmp->next; |
| } |
| muxtmp->next = mux; |
| } |
| pos ++; |
| oldpos = pos; |
| } |
| if (ret > 0) { |
| /* Add Device */ |
| i2c_mux_add_device (device); |
| return device; |
| } |
| |
| return NULL; |
| } |
| |
| int i2x_mux_select_mux(int bus) |
| { |
| I2C_MUX_DEVICE *dev; |
| I2C_MUX *mux; |
| |
| if ((gd->flags & GD_FLG_RELOC) != GD_FLG_RELOC) { |
| /* select Default Mux Bus */ |
| #if defined(CONFIG_SYS_I2C_IVM_BUS) |
| i2c_mux_ident_muxstring_f ((uchar *)CONFIG_SYS_I2C_IVM_BUS); |
| #else |
| { |
| unsigned char *buf; |
| buf = (unsigned char *) getenv("EEprom_ivm"); |
| if (buf != NULL) |
| i2c_mux_ident_muxstring_f (buf); |
| } |
| #endif |
| return 0; |
| } |
| dev = i2c_mux_search_device(bus); |
| if (dev == NULL) |
| return -1; |
| |
| mux = dev->mux; |
| while (mux != NULL) { |
| if (i2c_write(mux->chip, 0, 0, &mux->channel, 1) != 0) { |
| printf ("Error setting Mux: chip:%x channel: \ |
| %x\n", mux->chip, mux->channel); |
| return -1; |
| } |
| mux = mux->next; |
| } |
| return 0; |
| } |
| #endif /* CONFIG_I2C_MUX */ |