| /* |
| * tsec.c |
| * Motorola Three Speed Ethernet Controller driver |
| * |
| * This software may be used and distributed according to the |
| * terms of the GNU Public License, Version 2, incorporated |
| * herein by reference. |
| * |
| * (C) Copyright 2003, Motorola, Inc. |
| * maintained by Xianghua Xiao (x.xiao@motorola.com) |
| * author Andy Fleming |
| * |
| */ |
| |
| #include <config.h> |
| #include <mpc85xx.h> |
| #include <common.h> |
| #include <malloc.h> |
| #include <net.h> |
| #include <command.h> |
| |
| #if defined(CONFIG_TSEC_ENET) |
| #include "tsec.h" |
| |
| #define TX_BUF_CNT 2 |
| |
| #undef TSEC_DEBUG |
| #ifdef TSEC_DEBUG |
| #define DBGPRINT(x) printf(x) |
| #else |
| #define DBGPRINT(x) |
| #endif |
| |
| static uint rxIdx; /* index of the current RX buffer */ |
| static uint txIdx; /* index of the current TX buffer */ |
| |
| typedef volatile struct rtxbd { |
| txbd8_t txbd[TX_BUF_CNT]; |
| rxbd8_t rxbd[PKTBUFSRX]; |
| } RTXBD; |
| |
| #ifdef __GNUC__ |
| static RTXBD rtx __attribute__ ((aligned(8))); |
| #else |
| #error "rtx must be 64-bit aligned" |
| #endif |
| |
| static int tsec_send(struct eth_device* dev, volatile void *packet, int length); |
| static int tsec_recv(struct eth_device* dev); |
| static int tsec_init(struct eth_device* dev, bd_t * bd); |
| static void tsec_halt(struct eth_device* dev); |
| static void init_registers(tsec_t *regs); |
| static void startup_tsec(tsec_t *regs); |
| static void init_phy(tsec_t *regs); |
| |
| /* Initialize device structure. returns 0 on failure, 1 on |
| * success */ |
| int tsec_initialize(bd_t *bis) |
| { |
| struct eth_device* dev; |
| int i; |
| |
| dev = (struct eth_device*) malloc(sizeof *dev); |
| |
| if(dev == NULL) |
| return 0; |
| |
| memset(dev, 0, sizeof *dev); |
| |
| sprintf(dev->name, "MOTOROLA ETHERNET"); |
| dev->iobase = 0; |
| dev->priv = 0; |
| dev->init = tsec_init; |
| dev->halt = tsec_halt; |
| dev->send = tsec_send; |
| dev->recv = tsec_recv; |
| |
| /* Tell u-boot to get the addr from the env */ |
| for(i=0;i<6;i++) |
| dev->enetaddr[i] = 0; |
| |
| eth_register(dev); |
| |
| return 1; |
| } |
| |
| |
| /* Initializes data structures and registers for the controller, |
| * and brings the interface up */ |
| int tsec_init(struct eth_device* dev, bd_t * bd) |
| { |
| tsec_t *regs; |
| uint tempval; |
| char tmpbuf[MAC_ADDR_LEN]; |
| int i; |
| |
| regs = (tsec_t *)(TSEC_BASE_ADDR); |
| |
| /* Make sure the controller is stopped */ |
| tsec_halt(dev); |
| |
| /* Reset the MAC */ |
| regs->maccfg1 |= MACCFG1_SOFT_RESET; |
| |
| /* Clear MACCFG1[Soft_Reset] */ |
| regs->maccfg1 &= ~(MACCFG1_SOFT_RESET); |
| |
| /* Init MACCFG2. Defaults to GMII/MII */ |
| regs->maccfg2 = MACCFG2_INIT_SETTINGS; |
| |
| /* Init ECNTRL */ |
| regs->ecntrl = ECNTRL_INIT_SETTINGS; |
| |
| /* Copy the station address into the address registers. |
| * Backwards, because little endian MACS are dumb */ |
| for(i=0;i<MAC_ADDR_LEN;i++) { |
| tmpbuf[MAC_ADDR_LEN - 1 - i] = bd->bi_enetaddr[i]; |
| } |
| (uint)(regs->macstnaddr1) = *((uint *)(tmpbuf)); |
| |
| tempval = *((uint *)(tmpbuf +4)); |
| |
| (uint)(regs->macstnaddr2) = tempval; |
| |
| /* Initialize the PHY */ |
| init_phy(regs); |
| |
| /* reset the indices to zero */ |
| rxIdx = 0; |
| txIdx = 0; |
| |
| /* Clear out (for the most part) the other registers */ |
| init_registers(regs); |
| |
| /* Ready the device for tx/rx */ |
| startup_tsec(regs); |
| |
| return 1; |
| |
| } |
| |
| |
| /* Reads from the register at offset in the PHY at phyid, */ |
| /* using the register set defined in regbase. It waits until the */ |
| /* bits in the miimstat are valid (miimind notvalid bit cleared), */ |
| /* and then passes those bits on to the variable specified in */ |
| /* value */ |
| /* Before it does the read, it needs to clear the command field */ |
| uint read_phy_reg(tsec_t *regbase, uint phyid, uint offset) |
| { |
| uint value; |
| |
| /* Put the address of the phy, and the register number into |
| * MIIMADD |
| */ |
| regbase->miimadd = (phyid << 8) | offset; |
| |
| /* Clear the command register, and wait */ |
| regbase->miimcom = 0; |
| asm("msync"); |
| |
| /* Initiate a read command, and wait */ |
| regbase->miimcom = MIIM_READ_COMMAND; |
| asm("msync"); |
| |
| /* Wait for the the indication that the read is done */ |
| while((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))); |
| |
| /* Grab the value read from the PHY */ |
| value = regbase->miimstat; |
| |
| return value; |
| } |
| |
| /* Setup the PHY */ |
| static void init_phy(tsec_t *regs) |
| { |
| uint testval; |
| unsigned int timeout = TSEC_TIMEOUT; |
| |
| /* Assign a Physical address to the TBI */ |
| regs->tbipa=TBIPA_VALUE; |
| |
| /* reset the management interface */ |
| regs->miimcfg=MIIMCFG_RESET; |
| |
| regs->miimcfg=MIIMCFG_INIT_VALUE; |
| |
| /* Wait until the bus is free */ |
| while(regs->miimind & MIIMIND_BUSY); |
| |
| #ifdef CONFIG_PHY_CIS8201 |
| /* override PHY config settings */ |
| write_phy_reg(regs, 0, MIIM_AUX_CONSTAT, MIIM_AUXCONSTAT_INIT); |
| |
| /* Set up interface mode */ |
| write_phy_reg(regs, 0, MIIM_EXT_CON1, MIIM_EXTCON1_INIT); |
| #endif |
| |
| /* Set the PHY to gigabit, full duplex, Auto-negotiate */ |
| write_phy_reg(regs, 0, MIIM_CONTROL, MIIM_CONTROL_INIT); |
| |
| /* Wait until TBI_STATUS indicates AN is done */ |
| DBGPRINT("Waiting for Auto-negotiation to complete\n"); |
| testval=read_phy_reg(regs, 0, MIIM_TBI_STATUS); |
| |
| while((!(testval & MIIM_TBI_STATUS_AN_DONE))&& timeout--) { |
| testval=read_phy_reg(regs, 0, MIIM_TBI_STATUS); |
| } |
| |
| if(testval & MIIM_TBI_STATUS_AN_DONE) |
| DBGPRINT("Auto-negotiation done\n"); |
| else |
| DBGPRINT("Auto-negotiation timed-out.\n"); |
| |
| #ifdef CONFIG_PHY_CIS8201 |
| /* Find out what duplexity (duplicity?) we have */ |
| /* Read it twice to make sure */ |
| testval=read_phy_reg(regs, 0, MIIM_AUX_CONSTAT); |
| |
| if(testval & MIIM_AUXCONSTAT_DUPLEX) { |
| DBGPRINT("Enet starting in full duplex\n"); |
| regs->maccfg2 |= MACCFG2_FULL_DUPLEX; |
| } else { |
| DBGPRINT("Enet starting in half duplex\n"); |
| regs->maccfg2 &= ~MACCFG2_FULL_DUPLEX; |
| } |
| |
| /* Also, we look to see what speed we are at |
| * if Gigabit, MACCFG2 goes in GMII, otherwise, |
| * MII mode. |
| */ |
| if((testval & MIIM_AUXCONSTAT_SPEED) != MIIM_AUXCONSTAT_GBIT) { |
| if((testval & MIIM_AUXCONSTAT_SPEED) == MIIM_AUXCONSTAT_100) |
| DBGPRINT("Enet starting in 100BT\n"); |
| else |
| DBGPRINT("Enet starting in 10BT\n"); |
| |
| /* mark the mode in MACCFG2 */ |
| regs->maccfg2 = ((regs->maccfg2&~(MACCFG2_IF)) | MACCFG2_MII); |
| } else { |
| DBGPRINT("Enet starting in 1000BT\n"); |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_PHY_M88E1011 |
| /* Read the PHY to see what speed and duplex we are */ |
| testval=read_phy_reg(regs, 0, MIIM_PHY_STATUS); |
| |
| timeout = TSEC_TIMEOUT; |
| while((!(testval & MIIM_PHYSTAT_SPDDONE)) && timeout--) { |
| testval = read_phy_reg(regs,0,MIIM_PHY_STATUS); |
| } |
| |
| if(!(testval & MIIM_PHYSTAT_SPDDONE)) |
| DBGPRINT("Enet: Speed not resolved\n"); |
| |
| testval=read_phy_reg(regs, 0, MIIM_PHY_STATUS); |
| if(testval & MIIM_PHYSTAT_DUPLEX) { |
| DBGPRINT("Enet starting in Full Duplex\n"); |
| regs->maccfg2 |= MACCFG2_FULL_DUPLEX; |
| } else { |
| DBGPRINT("Enet starting in Half Duplex\n"); |
| regs->maccfg2 &= ~MACCFG2_FULL_DUPLEX; |
| } |
| |
| if(!((testval&MIIM_PHYSTAT_SPEED) == MIIM_PHYSTAT_GBIT)) { |
| if((testval & MIIM_PHYSTAT_SPEED) == MIIM_PHYSTAT_100) |
| DBGPRINT("Enet starting in 100BT\n"); |
| else |
| DBGPRINT("Enet starting in 10BT\n"); |
| |
| regs->maccfg2 = ((regs->maccfg2&~(MACCFG2_IF)) | MACCFG2_MII); |
| } else { |
| DBGPRINT("Enet starting in 1000BT\n"); |
| } |
| #endif |
| |
| } |
| |
| |
| static void init_registers(tsec_t *regs) |
| { |
| /* Clear IEVENT */ |
| regs->ievent = IEVENT_INIT_CLEAR; |
| |
| regs->imask = IMASK_INIT_CLEAR; |
| |
| regs->hash.iaddr0 = 0; |
| regs->hash.iaddr1 = 0; |
| regs->hash.iaddr2 = 0; |
| regs->hash.iaddr3 = 0; |
| regs->hash.iaddr4 = 0; |
| regs->hash.iaddr5 = 0; |
| regs->hash.iaddr6 = 0; |
| regs->hash.iaddr7 = 0; |
| |
| regs->hash.gaddr0 = 0; |
| regs->hash.gaddr1 = 0; |
| regs->hash.gaddr2 = 0; |
| regs->hash.gaddr3 = 0; |
| regs->hash.gaddr4 = 0; |
| regs->hash.gaddr5 = 0; |
| regs->hash.gaddr6 = 0; |
| regs->hash.gaddr7 = 0; |
| |
| regs->rctrl = 0x00000000; |
| |
| /* Init RMON mib registers */ |
| memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t)); |
| |
| regs->rmon.cam1 = 0xffffffff; |
| regs->rmon.cam2 = 0xffffffff; |
| |
| regs->mrblr = MRBLR_INIT_SETTINGS; |
| |
| regs->minflr = MINFLR_INIT_SETTINGS; |
| |
| regs->attr = ATTR_INIT_SETTINGS; |
| regs->attreli = ATTRELI_INIT_SETTINGS; |
| |
| } |
| |
| static void startup_tsec(tsec_t *regs) |
| { |
| int i; |
| |
| /* Point to the buffer descriptors */ |
| regs->tbase = (unsigned int)(&rtx.txbd[txIdx]); |
| regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]); |
| |
| /* Initialize the Rx Buffer descriptors */ |
| for (i = 0; i < PKTBUFSRX; i++) { |
| rtx.rxbd[i].status = RXBD_EMPTY; |
| rtx.rxbd[i].length = 0; |
| rtx.rxbd[i].bufPtr = (uint)NetRxPackets[i]; |
| } |
| rtx.rxbd[PKTBUFSRX -1].status |= RXBD_WRAP; |
| |
| /* Initialize the TX Buffer Descriptors */ |
| for(i=0; i<TX_BUF_CNT; i++) { |
| rtx.txbd[i].status = 0; |
| rtx.txbd[i].length = 0; |
| rtx.txbd[i].bufPtr = 0; |
| } |
| rtx.txbd[TX_BUF_CNT -1].status |= TXBD_WRAP; |
| |
| /* Enable Transmit and Receive */ |
| regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN); |
| |
| /* Tell the DMA it is clear to go */ |
| regs->dmactrl |= DMACTRL_INIT_SETTINGS; |
| regs->tstat = TSTAT_CLEAR_THALT; |
| regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS); |
| } |
| |
| /* This returns the status bits of the device. The return value |
| * is never checked, and this is what the 8260 driver did, so we |
| * do the same. Presumably, this would be zero if there were no |
| * errors */ |
| static int tsec_send(struct eth_device* dev, volatile void *packet, int length) |
| { |
| int i; |
| int result = 0; |
| tsec_t * regs = (tsec_t *)(TSEC_BASE_ADDR); |
| |
| /* Find an empty buffer descriptor */ |
| for(i=0; rtx.txbd[txIdx].status & TXBD_READY; i++) { |
| if (i >= TOUT_LOOP) { |
| DBGPRINT("tsec: tx buffers full\n"); |
| return result; |
| } |
| } |
| |
| rtx.txbd[txIdx].bufPtr = (uint)packet; |
| rtx.txbd[txIdx].length = length; |
| rtx.txbd[txIdx].status |= (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT); |
| |
| /* Tell the DMA to go */ |
| regs->tstat = TSTAT_CLEAR_THALT; |
| |
| /* Wait for buffer to be transmitted */ |
| for(i=0; rtx.txbd[txIdx].status & TXBD_READY; i++) { |
| if (i >= TOUT_LOOP) { |
| DBGPRINT("tsec: tx error\n"); |
| return result; |
| } |
| } |
| |
| txIdx = (txIdx + 1) % TX_BUF_CNT; |
| result = rtx.txbd[txIdx].status & TXBD_STATS; |
| |
| return result; |
| } |
| |
| static int tsec_recv(struct eth_device* dev) |
| { |
| int length; |
| tsec_t *regs = (tsec_t *)(TSEC_BASE_ADDR); |
| |
| while(!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) { |
| |
| length = rtx.rxbd[rxIdx].length; |
| |
| /* Send the packet up if there were no errors */ |
| if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) { |
| NetReceive(NetRxPackets[rxIdx], length - 4); |
| } |
| |
| rtx.rxbd[rxIdx].length = 0; |
| |
| /* Set the wrap bit if this is the last element in the list */ |
| rtx.rxbd[rxIdx].status = RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0); |
| |
| rxIdx = (rxIdx + 1) % PKTBUFSRX; |
| } |
| |
| if(regs->ievent&IEVENT_BSY) { |
| regs->ievent = IEVENT_BSY; |
| regs->rstat = RSTAT_CLEAR_RHALT; |
| } |
| |
| return -1; |
| |
| } |
| |
| |
| static void tsec_halt(struct eth_device* dev) |
| { |
| tsec_t *regs = (tsec_t *)(TSEC_BASE_ADDR); |
| |
| regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS); |
| regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS); |
| |
| while(!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))); |
| |
| regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN); |
| |
| } |
| #endif /* CONFIG_TSEC_ENET */ |