| /* |
| * NAND driver for TI DaVinci based boards. |
| * |
| * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net> |
| * |
| * Based on Linux DaVinci NAND driver by TI. Original copyright follows: |
| */ |
| |
| /* |
| * |
| * linux/drivers/mtd/nand/nand_davinci.c |
| * |
| * NAND Flash Driver |
| * |
| * Copyright (C) 2006 Texas Instruments. |
| * |
| * ---------------------------------------------------------------------------- |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * ---------------------------------------------------------------------------- |
| * |
| * Overview: |
| * This is a device driver for the NAND flash device found on the |
| * DaVinci board which utilizes the Samsung k9k2g08 part. |
| * |
| Modifications: |
| ver. 1.0: Feb 2005, Vinod/Sudhakar |
| - |
| * |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <nand.h> |
| #include <asm/arch/nand_defs.h> |
| #include <asm/arch/emif_defs.h> |
| |
| /* Definitions for 4-bit hardware ECC */ |
| #define NAND_TIMEOUT 10240 |
| #define NAND_ECC_BUSY 0xC |
| #define NAND_4BITECC_MASK 0x03FF03FF |
| #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00 |
| #define ECC_STATE_NO_ERR 0x0 |
| #define ECC_STATE_TOO_MANY_ERRS 0x1 |
| #define ECC_STATE_ERR_CORR_COMP_P 0x2 |
| #define ECC_STATE_ERR_CORR_COMP_N 0x3 |
| |
| static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE; |
| |
| /* |
| * Exploit the little endianness of the ARM to do multi-byte transfers |
| * per device read. This can perform over twice as quickly as individual |
| * byte transfers when buffer alignment is conducive. |
| * |
| * NOTE: This only works if the NAND is not connected to the 2 LSBs of |
| * the address bus. On Davinci EVM platforms this has always been true. |
| */ |
| static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| const u32 *nand = chip->IO_ADDR_R; |
| |
| /* Make sure that buf is 32 bit aligned */ |
| if (((int)buf & 0x3) != 0) { |
| if (((int)buf & 0x1) != 0) { |
| if (len) { |
| *buf = readb(nand); |
| buf += 1; |
| len--; |
| } |
| } |
| |
| if (((int)buf & 0x3) != 0) { |
| if (len >= 2) { |
| *(u16 *)buf = readw(nand); |
| buf += 2; |
| len -= 2; |
| } |
| } |
| } |
| |
| /* copy aligned data */ |
| while (len >= 4) { |
| *(u32 *)buf = readl(nand); |
| buf += 4; |
| len -= 4; |
| } |
| |
| /* mop up any remaining bytes */ |
| if (len) { |
| if (len >= 2) { |
| *(u16 *)buf = readw(nand); |
| buf += 2; |
| len -= 2; |
| } |
| |
| if (len) |
| *buf = readb(nand); |
| } |
| } |
| |
| static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf, |
| int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| const u32 *nand = chip->IO_ADDR_W; |
| |
| /* Make sure that buf is 32 bit aligned */ |
| if (((int)buf & 0x3) != 0) { |
| if (((int)buf & 0x1) != 0) { |
| if (len) { |
| writeb(*buf, nand); |
| buf += 1; |
| len--; |
| } |
| } |
| |
| if (((int)buf & 0x3) != 0) { |
| if (len >= 2) { |
| writew(*(u16 *)buf, nand); |
| buf += 2; |
| len -= 2; |
| } |
| } |
| } |
| |
| /* copy aligned data */ |
| while (len >= 4) { |
| writel(*(u32 *)buf, nand); |
| buf += 4; |
| len -= 4; |
| } |
| |
| /* mop up any remaining bytes */ |
| if (len) { |
| if (len >= 2) { |
| writew(*(u16 *)buf, nand); |
| buf += 2; |
| len -= 2; |
| } |
| |
| if (len) |
| writeb(*buf, nand); |
| } |
| } |
| |
| static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| { |
| struct nand_chip *this = mtd->priv; |
| u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| IO_ADDR_W &= ~(MASK_ALE|MASK_CLE); |
| |
| if ( ctrl & NAND_CLE ) |
| IO_ADDR_W |= MASK_CLE; |
| if ( ctrl & NAND_ALE ) |
| IO_ADDR_W |= MASK_ALE; |
| this->IO_ADDR_W = (void __iomem *) IO_ADDR_W; |
| } |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, IO_ADDR_W); |
| } |
| |
| #ifdef CONFIG_SYS_NAND_HW_ECC |
| |
| static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| u_int32_t val; |
| |
| (void)readl(&(emif_regs->NANDFECC[CONFIG_SYS_NAND_CS - 2])); |
| |
| val = readl(&emif_regs->NANDFCR); |
| val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); |
| val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS); |
| writel(val, &emif_regs->NANDFCR); |
| } |
| |
| static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region) |
| { |
| u_int32_t ecc = 0; |
| |
| ecc = readl(&(emif_regs->NANDFECC[region - 1])); |
| |
| return(ecc); |
| } |
| |
| static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) |
| { |
| u_int32_t tmp; |
| const int region = 1; |
| |
| tmp = nand_davinci_readecc(mtd, region); |
| |
| /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits |
| * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */ |
| tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4); |
| |
| /* Invert so that erased block ECC is correct */ |
| tmp = ~tmp; |
| |
| *ecc_code++ = tmp; |
| *ecc_code++ = tmp >> 8; |
| *ecc_code++ = tmp >> 16; |
| |
| /* NOTE: the above code matches mainline Linux: |
| * .PQR.stu ==> ~PQRstu |
| * |
| * MontaVista/TI kernels encode those bytes differently, use |
| * complicated (and allegedly sometimes-wrong) correction code, |
| * and usually shipped with U-Boot that uses software ECC: |
| * .PQR.stu ==> PsQRtu |
| * |
| * If you need MV/TI compatible NAND I/O in U-Boot, it should |
| * be possible to (a) change the mangling above, (b) reverse |
| * that mangling in nand_davinci_correct_data() below. |
| */ |
| |
| return 0; |
| } |
| |
| static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct nand_chip *this = mtd->priv; |
| u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) | |
| (read_ecc[2] << 16); |
| u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) | |
| (calc_ecc[2] << 16); |
| u_int32_t diff = ecc_calc ^ ecc_nand; |
| |
| if (diff) { |
| if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { |
| /* Correctable error */ |
| if ((diff >> (12 + 3)) < this->ecc.size) { |
| uint8_t find_bit = 1 << ((diff >> 12) & 7); |
| uint32_t find_byte = diff >> (12 + 3); |
| |
| dat[find_byte] ^= find_bit; |
| MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single " |
| "bit ECC error at offset: %d, bit: " |
| "%d\n", find_byte, find_bit); |
| return 1; |
| } else { |
| return -1; |
| } |
| } else if (!(diff & (diff - 1))) { |
| /* Single bit ECC error in the ECC itself, |
| nothing to fix */ |
| MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in " |
| "ECC.\n"); |
| return 1; |
| } else { |
| /* Uncorrectable error */ |
| MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); |
| return -1; |
| } |
| } |
| return(0); |
| } |
| #endif /* CONFIG_SYS_NAND_HW_ECC */ |
| |
| #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST |
| static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = { |
| #if defined(CONFIG_SYS_NAND_PAGE_2K) |
| .eccbytes = 40, |
| .eccpos = { |
| 24, 25, 26, 27, 28, |
| 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, |
| 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, |
| 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, |
| 59, 60, 61, 62, 63, |
| }, |
| .oobfree = { |
| {.offset = 2, .length = 22, }, |
| }, |
| #elif defined(CONFIG_SYS_NAND_PAGE_4K) |
| .eccbytes = 80, |
| .eccpos = { |
| 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, |
| 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, |
| 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, |
| 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, |
| 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, |
| 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, |
| 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, |
| 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, |
| }, |
| .oobfree = { |
| {.offset = 2, .length = 46, }, |
| }, |
| #endif |
| }; |
| |
| static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| u32 val; |
| |
| switch (mode) { |
| case NAND_ECC_WRITE: |
| case NAND_ECC_READ: |
| /* |
| * Start a new ECC calculation for reading or writing 512 bytes |
| * of data. |
| */ |
| val = readl(&emif_regs->NANDFCR); |
| val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK; |
| val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); |
| val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS); |
| val |= DAVINCI_NANDFCR_4BIT_ECC_START; |
| writel(val, &emif_regs->NANDFCR); |
| break; |
| case NAND_ECC_READSYN: |
| val = emif_regs->NAND4BITECC1; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4]) |
| { |
| ecc[0] = emif_regs->NAND4BITECC1 & NAND_4BITECC_MASK; |
| ecc[1] = emif_regs->NAND4BITECC2 & NAND_4BITECC_MASK; |
| ecc[2] = emif_regs->NAND4BITECC3 & NAND_4BITECC_MASK; |
| ecc[3] = emif_regs->NAND4BITECC4 & NAND_4BITECC_MASK; |
| |
| return 0; |
| } |
| |
| static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd, |
| const uint8_t *dat, |
| uint8_t *ecc_code) |
| { |
| unsigned int hw_4ecc[4]; |
| unsigned int i; |
| |
| nand_davinci_4bit_readecc(mtd, hw_4ecc); |
| |
| /*Convert 10 bit ecc value to 8 bit */ |
| for (i = 0; i < 2; i++) { |
| unsigned int hw_ecc_low = hw_4ecc[i * 2]; |
| unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1]; |
| |
| /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */ |
| *ecc_code++ = hw_ecc_low & 0xFF; |
| |
| /* |
| * Take 2 bits as LSB bits from val1 (count1=0) or val5 |
| * (count1=1) and 6 bits from val2 (count1=0) or |
| * val5 (count1=1) |
| */ |
| *ecc_code++ = |
| ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC); |
| |
| /* |
| * Take 4 bits from val2 (count1=0) or val5 (count1=1) and |
| * 4 bits from val3 (count1=0) or val6 (count1=1) |
| */ |
| *ecc_code++ = |
| ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0); |
| |
| /* |
| * Take 6 bits from val3(count1=0) or val6 (count1=1) and |
| * 2 bits from val4 (count1=0) or val7 (count1=1) |
| */ |
| *ecc_code++ = |
| ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0); |
| |
| /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */ |
| *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF; |
| } |
| |
| return 0; |
| } |
| |
| static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| int i; |
| unsigned int hw_4ecc[4]; |
| unsigned int iserror; |
| unsigned short *ecc16; |
| unsigned int numerrors, erroraddress, errorvalue; |
| u32 val; |
| |
| /* |
| * Check for an ECC where all bytes are 0xFF. If this is the case, we |
| * will assume we are looking at an erased page and we should ignore |
| * the ECC. |
| */ |
| for (i = 0; i < 10; i++) { |
| if (read_ecc[i] != 0xFF) |
| break; |
| } |
| if (i == 10) |
| return 0; |
| |
| /* Convert 8 bit in to 10 bit */ |
| ecc16 = (unsigned short *)&read_ecc[0]; |
| |
| /* |
| * Write the parity values in the NAND Flash 4-bit ECC Load register. |
| * Write each parity value one at a time starting from 4bit_ecc_val8 |
| * to 4bit_ecc_val1. |
| */ |
| |
| /*Take 2 bits from 8th byte and 8 bits from 9th byte */ |
| writel(((ecc16[4]) >> 6) & 0x3FF, &emif_regs->NAND4BITECCLOAD); |
| |
| /* Take 4 bits from 7th byte and 6 bits from 8th byte */ |
| writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0), |
| &emif_regs->NAND4BITECCLOAD); |
| |
| /* Take 6 bits from 6th byte and 4 bits from 7th byte */ |
| writel((ecc16[3] >> 2) & 0x3FF, &emif_regs->NAND4BITECCLOAD); |
| |
| /* Take 8 bits from 5th byte and 2 bits from 6th byte */ |
| writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300), |
| &emif_regs->NAND4BITECCLOAD); |
| |
| /*Take 2 bits from 3rd byte and 8 bits from 4th byte */ |
| writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC), |
| &emif_regs->NAND4BITECCLOAD); |
| |
| /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */ |
| writel(((ecc16[1]) >> 4) & 0x3FF, &emif_regs->NAND4BITECCLOAD); |
| |
| /* Take 6 bits from 1st byte and 4 bits from 2nd byte */ |
| writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0), |
| &emif_regs->NAND4BITECCLOAD); |
| |
| /* Take 10 bits from 0th and 1st bytes */ |
| writel((ecc16[0]) & 0x3FF, &emif_regs->NAND4BITECCLOAD); |
| |
| /* |
| * Perform a dummy read to the EMIF Revision Code and Status register. |
| * This is required to ensure time for syndrome calculation after |
| * writing the ECC values in previous step. |
| */ |
| |
| val = emif_regs->NANDFSR; |
| |
| /* |
| * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers. |
| * A syndrome value of 0 means no bit errors. If the syndrome is |
| * non-zero then go further otherwise return. |
| */ |
| nand_davinci_4bit_readecc(mtd, hw_4ecc); |
| |
| if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3])) |
| return 0; |
| |
| /* |
| * Clear any previous address calculation by doing a dummy read of an |
| * error address register. |
| */ |
| val = emif_regs->NANDERRADD1; |
| |
| /* |
| * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control |
| * register to 1. |
| */ |
| emif_regs->NANDFCR |= 1 << 13; |
| |
| /* |
| * Wait for the corr_state field (bits 8 to 11)in the |
| * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3. |
| */ |
| i = NAND_TIMEOUT; |
| do { |
| val = emif_regs->NANDFSR; |
| val &= 0xc00; |
| i--; |
| } while ((i > 0) && val); |
| |
| iserror = emif_regs->NANDFSR; |
| iserror &= EMIF_NANDFSR_ECC_STATE_MASK; |
| iserror = iserror >> 8; |
| |
| /* |
| * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be |
| * corrected (five or more errors). The number of errors |
| * calculated (err_num field) differs from the number of errors |
| * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error |
| * correction complete (errors on bit 8 or 9). |
| * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction |
| * complete (error exists). |
| */ |
| |
| if (iserror == ECC_STATE_NO_ERR) { |
| val = emif_regs->NANDERRVAL1; |
| return 0; |
| } else if (iserror == ECC_STATE_TOO_MANY_ERRS) { |
| val = emif_regs->NANDERRVAL1; |
| return -1; |
| } |
| |
| numerrors = ((emif_regs->NANDFSR >> 16) & 0x3) + 1; |
| |
| /* Read the error address, error value and correct */ |
| for (i = 0; i < numerrors; i++) { |
| if (i > 1) { |
| erroraddress = |
| ((emif_regs->NANDERRADD2 >> |
| (16 * (i & 1))) & 0x3FF); |
| erroraddress = ((512 + 7) - erroraddress); |
| errorvalue = |
| ((emif_regs->NANDERRVAL2 >> |
| (16 * (i & 1))) & 0xFF); |
| } else { |
| erroraddress = |
| ((emif_regs->NANDERRADD1 >> |
| (16 * (i & 1))) & 0x3FF); |
| erroraddress = ((512 + 7) - erroraddress); |
| errorvalue = |
| ((emif_regs->NANDERRVAL1 >> |
| (16 * (i & 1))) & 0xFF); |
| } |
| /* xor the corrupt data with error value */ |
| if (erroraddress < 512) |
| dat[erroraddress] ^= errorvalue; |
| } |
| |
| return numerrors; |
| } |
| #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */ |
| |
| static int nand_davinci_dev_ready(struct mtd_info *mtd) |
| { |
| return emif_regs->NANDFSR & 0x1; |
| } |
| |
| static void nand_flash_init(void) |
| { |
| /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS! |
| * Instead, have your board_init() set EMIF timings, based on its |
| * knowledge of the clocks and what devices are hooked up ... and |
| * don't even do that unless no UBL handled it. |
| */ |
| #ifdef CONFIG_SOC_DM644X |
| u_int32_t acfg1 = 0x3ffffffc; |
| |
| /*------------------------------------------------------------------* |
| * NAND FLASH CHIP TIMEOUT @ 459 MHz * |
| * * |
| * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz * |
| * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns * |
| * * |
| *------------------------------------------------------------------*/ |
| acfg1 = 0 |
| | (0 << 31 ) /* selectStrobe */ |
| | (0 << 30 ) /* extWait */ |
| | (1 << 26 ) /* writeSetup 10 ns */ |
| | (3 << 20 ) /* writeStrobe 40 ns */ |
| | (1 << 17 ) /* writeHold 10 ns */ |
| | (1 << 13 ) /* readSetup 10 ns */ |
| | (5 << 7 ) /* readStrobe 60 ns */ |
| | (1 << 4 ) /* readHold 10 ns */ |
| | (3 << 2 ) /* turnAround ?? ns */ |
| | (0 << 0 ) /* asyncSize 8-bit bus */ |
| ; |
| |
| emif_regs->AB1CR = acfg1; /* CS2 */ |
| |
| emif_regs->NANDFCR = 0x00000101; /* NAND flash on CS2 */ |
| #endif |
| } |
| |
| void davinci_nand_init(struct nand_chip *nand) |
| { |
| nand->chip_delay = 0; |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| nand->options |= NAND_USE_FLASH_BBT; |
| #endif |
| #ifdef CONFIG_SYS_NAND_HW_ECC |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.size = 512; |
| nand->ecc.bytes = 3; |
| nand->ecc.calculate = nand_davinci_calculate_ecc; |
| nand->ecc.correct = nand_davinci_correct_data; |
| nand->ecc.hwctl = nand_davinci_enable_hwecc; |
| #else |
| nand->ecc.mode = NAND_ECC_SOFT; |
| #endif /* CONFIG_SYS_NAND_HW_ECC */ |
| #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST |
| nand->ecc.mode = NAND_ECC_HW_OOB_FIRST; |
| nand->ecc.size = 512; |
| nand->ecc.bytes = 10; |
| nand->ecc.calculate = nand_davinci_4bit_calculate_ecc; |
| nand->ecc.correct = nand_davinci_4bit_correct_data; |
| nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc; |
| nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst; |
| #endif |
| /* Set address of hardware control function */ |
| nand->cmd_ctrl = nand_davinci_hwcontrol; |
| |
| nand->read_buf = nand_davinci_read_buf; |
| nand->write_buf = nand_davinci_write_buf; |
| |
| nand->dev_ready = nand_davinci_dev_ready; |
| |
| nand_flash_init(); |
| } |
| |
| int board_nand_init(struct nand_chip *chip) __attribute__((weak)); |
| |
| int board_nand_init(struct nand_chip *chip) |
| { |
| davinci_nand_init(chip); |
| return 0; |
| } |