blob: 93722f74ae4df4ebfae76eecdc5dc6610c442592 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <log.h>
#include <stm32_rcc.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/arch/stm32.h>
#include <asm/arch/stm32_pwr.h>
#include <dt-bindings/mfd/stm32f7-rcc.h>
#define RCC_CR_HSION BIT(0)
#define RCC_CR_HSEON BIT(16)
#define RCC_CR_HSERDY BIT(17)
#define RCC_CR_HSEBYP BIT(18)
#define RCC_CR_CSSON BIT(19)
#define RCC_CR_PLLON BIT(24)
#define RCC_CR_PLLRDY BIT(25)
#define RCC_CR_PLLSAION BIT(28)
#define RCC_CR_PLLSAIRDY BIT(29)
#define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
#define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
#define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
#define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
#define RCC_PLLCFGR_PLLSRC BIT(22)
#define RCC_PLLCFGR_PLLM_SHIFT 0
#define RCC_PLLCFGR_PLLN_SHIFT 6
#define RCC_PLLCFGR_PLLP_SHIFT 16
#define RCC_PLLCFGR_PLLQ_SHIFT 24
#define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
#define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
#define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
#define RCC_CFGR_SW0 BIT(0)
#define RCC_CFGR_SW1 BIT(1)
#define RCC_CFGR_SW_MASK GENMASK(1, 0)
#define RCC_CFGR_SW_HSI 0
#define RCC_CFGR_SW_HSE RCC_CFGR_SW0
#define RCC_CFGR_SW_PLL RCC_CFGR_SW1
#define RCC_CFGR_SWS0 BIT(2)
#define RCC_CFGR_SWS1 BIT(3)
#define RCC_CFGR_SWS_MASK GENMASK(3, 2)
#define RCC_CFGR_SWS_HSI 0
#define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
#define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
#define RCC_CFGR_HPRE_SHIFT 4
#define RCC_CFGR_PPRE1_SHIFT 10
#define RCC_CFGR_PPRE2_SHIFT 13
#define RCC_PLLSAICFGR_PLLSAIN_MASK GENMASK(14, 6)
#define RCC_PLLSAICFGR_PLLSAIP_MASK GENMASK(17, 16)
#define RCC_PLLSAICFGR_PLLSAIQ_MASK GENMASK(27, 24)
#define RCC_PLLSAICFGR_PLLSAIR_MASK GENMASK(30, 28)
#define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6
#define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16
#define RCC_PLLSAICFGR_PLLSAIQ_SHIFT 24
#define RCC_PLLSAICFGR_PLLSAIR_SHIFT 28
#define RCC_PLLSAICFGR_PLLSAIP_4 BIT(16)
#define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26)
#define RCC_PLLSAICFGR_PLLSAIR_3 BIT(29) | BIT(28)
#define RCC_DCKCFGRX_TIMPRE BIT(24)
#define RCC_DCKCFGRX_CK48MSEL BIT(27)
#define RCC_DCKCFGRX_SDMMC1SEL BIT(28)
#define RCC_DCKCFGR2_SDMMC2SEL BIT(29)
#define RCC_DCKCFGR_PLLSAIDIVR_SHIFT 16
#define RCC_DCKCFGR_PLLSAIDIVR_MASK GENMASK(17, 16)
#define RCC_DCKCFGR_PLLSAIDIVR_2 0
/*
* RCC AHB1ENR specific definitions
*/
#define RCC_AHB1ENR_ETHMAC_EN BIT(25)
#define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
#define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
/*
* RCC APB1ENR specific definitions
*/
#define RCC_APB1ENR_TIM2EN BIT(0)
#define RCC_APB1ENR_PWREN BIT(28)
/*
* RCC APB2ENR specific definitions
*/
#define RCC_APB2ENR_SYSCFGEN BIT(14)
#define RCC_APB2ENR_SAI1EN BIT(22)
enum pllsai_div {
PLLSAIP,
PLLSAIQ,
PLLSAIR,
};
static const struct stm32_clk_info stm32f4_clk_info = {
/* 180 MHz */
.sys_pll_psc = {
.pll_n = 360,
.pll_p = 2,
.pll_q = 8,
.ahb_psc = AHB_PSC_1,
.apb1_psc = APB_PSC_4,
.apb2_psc = APB_PSC_2,
},
.has_overdrive = false,
.v2 = false,
};
static const struct stm32_clk_info stm32f7_clk_info = {
/* 200 MHz */
.sys_pll_psc = {
.pll_n = 400,
.pll_p = 2,
.pll_q = 8,
.ahb_psc = AHB_PSC_1,
.apb1_psc = APB_PSC_4,
.apb2_psc = APB_PSC_2,
},
.has_overdrive = true,
.v2 = true,
};
struct stm32_clk {
struct stm32_rcc_regs *base;
struct stm32_pwr_regs *pwr_regs;
struct stm32_clk_info info;
unsigned long hse_rate;
bool pllsaip;
};
#ifdef CONFIG_VIDEO_STM32
static const u8 plldivr_table[] = { 0, 0, 2, 3, 4, 5, 6, 7 };
#endif
static const u8 pllsaidivr_table[] = { 2, 4, 8, 16 };
static int configure_clocks(struct udevice *dev)
{
struct stm32_clk *priv = dev_get_priv(dev);
struct stm32_rcc_regs *regs = priv->base;
struct stm32_pwr_regs *pwr = priv->pwr_regs;
struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
/* Reset RCC configuration */
setbits_le32(&regs->cr, RCC_CR_HSION);
writel(0, &regs->cfgr); /* Reset CFGR */
clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
| RCC_CR_PLLON | RCC_CR_PLLSAION));
writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
writel(0, &regs->cir); /* Disable all interrupts */
/* Configure for HSE+PLL operation */
setbits_le32(&regs->cr, RCC_CR_HSEON);
while (!(readl(&regs->cr) & RCC_CR_HSERDY))
;
setbits_le32(&regs->cfgr, ((
sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
| (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
| (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
/* Configure the main PLL */
setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
/* configure SDMMC clock */
if (priv->info.v2) { /*stm32f7 case */
if (priv->pllsaip)
/* select PLLSAIP as 48MHz clock source */
setbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
else
/* select PLLQ as 48MHz clock source */
clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
/* select 48MHz as SDMMC1 clock source */
clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
/* select 48MHz as SDMMC2 clock source */
clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
} else { /* stm32f4 case */
if (priv->pllsaip)
/* select PLLSAIP as 48MHz clock source */
setbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
else
/* select PLLQ as 48MHz clock source */
clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
/* select 48MHz as SDMMC1 clock source */
clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
}
/*
* Configure the SAI PLL to generate LTDC pixel clock and
* 48 Mhz for SDMMC and USB
*/
clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIP_MASK,
RCC_PLLSAICFGR_PLLSAIP_4);
clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
RCC_PLLSAICFGR_PLLSAIR_3);
clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIN_MASK,
195 << RCC_PLLSAICFGR_PLLSAIN_SHIFT);
clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
RCC_DCKCFGR_PLLSAIDIVR_2 << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
/* Enable the main PLL */
setbits_le32(&regs->cr, RCC_CR_PLLON);
while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
;
/* Enable the SAI PLL */
setbits_le32(&regs->cr, RCC_CR_PLLSAION);
while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
;
setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
if (priv->info.has_overdrive) {
/*
* Enable high performance mode
* System frequency up to 200 MHz
*/
setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
/* Infinite wait! */
while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
;
/* Enable the Over-drive switch */
setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
/* Infinite wait! */
while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
;
}
stm32_flash_latency_cfg(5);
clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
RCC_CFGR_SWS_PLL)
;
#ifdef CONFIG_ETH_DESIGNWARE
/* gate the SYSCFG clock, needed to set RMII ethernet interface */
setbits_le32(&regs->apb2enr, RCC_APB2ENR_SYSCFGEN);
#endif
return 0;
}
static bool stm32_clk_get_ck48msel(struct stm32_clk *priv)
{
struct stm32_rcc_regs *regs = priv->base;
if (priv->info.v2) /*stm32f7 case */
return readl(&regs->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
else
return readl(&regs->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
}
static unsigned long stm32_clk_get_pllsai_vco_rate(struct stm32_clk *priv)
{
struct stm32_rcc_regs *regs = priv->base;
u16 pllm, pllsain;
pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
pllsain = ((readl(&regs->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIN_MASK)
>> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
return ((priv->hse_rate / pllm) * pllsain);
}
static unsigned long stm32_clk_get_pllsai_rate(struct stm32_clk *priv,
enum pllsai_div output)
{
struct stm32_rcc_regs *regs = priv->base;
u16 pll_div_output;
switch (output) {
case PLLSAIP:
pll_div_output = ((((readl(&regs->pllsaicfgr)
& RCC_PLLSAICFGR_PLLSAIP_MASK)
>> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
break;
case PLLSAIQ:
pll_div_output = (readl(&regs->pllsaicfgr)
& RCC_PLLSAICFGR_PLLSAIQ_MASK)
>> RCC_PLLSAICFGR_PLLSAIQ_SHIFT;
break;
case PLLSAIR:
pll_div_output = (readl(&regs->pllsaicfgr)
& RCC_PLLSAICFGR_PLLSAIR_MASK)
>> RCC_PLLSAICFGR_PLLSAIR_SHIFT;
break;
default:
pr_err("incorrect PLLSAI output %d\n", output);
return -EINVAL;
}
return (stm32_clk_get_pllsai_vco_rate(priv) / pll_div_output);
}
static bool stm32_get_timpre(struct stm32_clk *priv)
{
struct stm32_rcc_regs *regs = priv->base;
u32 val;
if (priv->info.v2) /*stm32f7 case */
val = readl(&regs->dckcfgr2);
else
val = readl(&regs->dckcfgr);
/* get timer prescaler */
return !!(val & RCC_DCKCFGRX_TIMPRE);
}
static u32 stm32_get_hclk_rate(struct stm32_rcc_regs *regs, u32 sysclk)
{
u8 shift;
/* Prescaler table lookups for clock computation */
u8 ahb_psc_table[16] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
};
shift = ahb_psc_table[(
(readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
>> RCC_CFGR_HPRE_SHIFT)];
return sysclk >> shift;
};
static u8 stm32_get_apb_shift(struct stm32_rcc_regs *regs, enum apb apb)
{
/* Prescaler table lookups for clock computation */
u8 apb_psc_table[8] = {
0, 0, 0, 0, 1, 2, 3, 4
};
if (apb == APB1)
return apb_psc_table[(
(readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
>> RCC_CFGR_PPRE1_SHIFT)];
else /* APB2 */
return apb_psc_table[(
(readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
>> RCC_CFGR_PPRE2_SHIFT)];
};
static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
enum apb apb)
{
struct stm32_rcc_regs *regs = priv->base;
u8 shift = stm32_get_apb_shift(regs, apb);
if (stm32_get_timpre(priv))
/*
* if APB prescaler is configured to a
* division factor of 1, 2 or 4
*/
switch (shift) {
case 0:
case 1:
case 2:
return stm32_get_hclk_rate(regs, sysclk);
default:
return (sysclk >> shift) * 4;
}
else
/*
* if APB prescaler is configured to a
* division factor of 1
*/
if (shift == 0)
return sysclk;
else
return (sysclk >> shift) * 2;
};
static ulong stm32_clk_get_rate(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->base;
u32 sysclk = 0;
u32 vco;
u32 sdmmcxsel_bit;
u32 saidivr;
u32 pllsai_rate;
u16 pllm, plln, pllp, pllq;
if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
RCC_CFGR_SWS_PLL) {
pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
>> RCC_PLLCFGR_PLLN_SHIFT);
pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
>> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
pllq = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
>> RCC_PLLCFGR_PLLQ_SHIFT);
vco = (priv->hse_rate / pllm) * plln;
sysclk = vco / pllp;
} else {
return -EINVAL;
}
switch (clk->id) {
/*
* AHB CLOCK: 3 x 32 bits consecutive registers are used :
* AHB1, AHB2 and AHB3
*/
case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
return stm32_get_hclk_rate(regs, sysclk);
/* APB1 CLOCK */
case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
/* For timer clock, an additionnal prescaler is used*/
switch (clk->id) {
case STM32F7_APB1_CLOCK(TIM2):
case STM32F7_APB1_CLOCK(TIM3):
case STM32F7_APB1_CLOCK(TIM4):
case STM32F7_APB1_CLOCK(TIM5):
case STM32F7_APB1_CLOCK(TIM6):
case STM32F7_APB1_CLOCK(TIM7):
case STM32F7_APB1_CLOCK(TIM12):
case STM32F7_APB1_CLOCK(TIM13):
case STM32F7_APB1_CLOCK(TIM14):
return stm32_get_timer_rate(priv, sysclk, APB1);
}
return (sysclk >> stm32_get_apb_shift(regs, APB1));
/* APB2 CLOCK */
case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(DSI):
switch (clk->id) {
/*
* particular case for SDMMC1 and SDMMC2 :
* 48Mhz source clock can be from main PLL or from
* PLLSAIP
*/
case STM32F7_APB2_CLOCK(SDMMC1):
case STM32F7_APB2_CLOCK(SDMMC2):
if (clk->id == STM32F7_APB2_CLOCK(SDMMC1))
sdmmcxsel_bit = RCC_DCKCFGRX_SDMMC1SEL;
else
sdmmcxsel_bit = RCC_DCKCFGR2_SDMMC2SEL;
if (readl(&regs->dckcfgr2) & sdmmcxsel_bit)
/* System clock is selected as SDMMC1 clock */
return sysclk;
/*
* 48 MHz can be generated by either PLLSAIP
* or by PLLQ depending of CK48MSEL bit of RCC_DCKCFGR
*/
if (stm32_clk_get_ck48msel(priv))
return stm32_clk_get_pllsai_rate(priv, PLLSAIP);
else
return (vco / pllq);
break;
/* For timer clock, an additionnal prescaler is used*/
case STM32F7_APB2_CLOCK(TIM1):
case STM32F7_APB2_CLOCK(TIM8):
case STM32F7_APB2_CLOCK(TIM9):
case STM32F7_APB2_CLOCK(TIM10):
case STM32F7_APB2_CLOCK(TIM11):
return stm32_get_timer_rate(priv, sysclk, APB2);
break;
/* particular case for LTDC clock */
case STM32F7_APB2_CLOCK(LTDC):
saidivr = readl(&regs->dckcfgr);
saidivr = (saidivr & RCC_DCKCFGR_PLLSAIDIVR_MASK)
>> RCC_DCKCFGR_PLLSAIDIVR_SHIFT;
pllsai_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
return pllsai_rate / pllsaidivr_table[saidivr];
}
return (sysclk >> stm32_get_apb_shift(regs, APB2));
default:
pr_err("clock index %ld out of range\n", clk->id);
return -EINVAL;
}
}
static ulong stm32_set_rate(struct clk *clk, ulong rate)
{
#ifdef CONFIG_VIDEO_STM32
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->base;
u32 pllsair_rate, pllsai_vco_rate, current_rate;
u32 best_div, best_diff, diff;
u16 div;
u8 best_plldivr, best_pllsaidivr;
u8 i, j;
bool found = false;
/* Only set_rate for LTDC clock is implemented */
if (clk->id != STM32F7_APB2_CLOCK(LTDC)) {
pr_err("set_rate not implemented for clock index %ld\n",
clk->id);
return 0;
}
if (rate == stm32_clk_get_rate(clk))
/* already set to requested rate */
return rate;
/* get the current PLLSAIR output freq */
pllsair_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
best_div = pllsair_rate / rate;
/* look into pllsaidivr_table if this divider is available*/
for (i = 0 ; i < sizeof(pllsaidivr_table); i++)
if (best_div == pllsaidivr_table[i]) {
/* set pll_saidivr with found value */
clrsetbits_le32(&regs->dckcfgr,
RCC_DCKCFGR_PLLSAIDIVR_MASK,
pllsaidivr_table[i]);
return rate;
}
/*
* As no pllsaidivr value is suitable to obtain requested freq,
* test all combination of pllsaidivr * pllsair and find the one
* which give freq closest to requested rate.
*/
pllsai_vco_rate = stm32_clk_get_pllsai_vco_rate(priv);
best_diff = ULONG_MAX;
best_pllsaidivr = 0;
best_plldivr = 0;
/*
* start at index 2 of plldivr_table as divider value at index 0
* and 1 are 0)
*/
for (i = 2; i < sizeof(plldivr_table); i++) {
for (j = 0; j < sizeof(pllsaidivr_table); j++) {
div = plldivr_table[i] * pllsaidivr_table[j];
current_rate = pllsai_vco_rate / div;
/* perfect combination is found ? */
if (current_rate == rate) {
best_pllsaidivr = j;
best_plldivr = i;
found = true;
break;
}
diff = (current_rate > rate) ?
current_rate - rate : rate - current_rate;
/* found a better combination ? */
if (diff < best_diff) {
best_diff = diff;
best_pllsaidivr = j;
best_plldivr = i;
}
}
if (found)
break;
}
/* Disable the SAI PLL */
clrbits_le32(&regs->cr, RCC_CR_PLLSAION);
/* set pll_saidivr with found value */
clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
best_pllsaidivr << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
/* set pllsair with found value */
clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
plldivr_table[best_plldivr]
<< RCC_PLLSAICFGR_PLLSAIR_SHIFT);
/* Enable the SAI PLL */
setbits_le32(&regs->cr, RCC_CR_PLLSAION);
while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
;
div = plldivr_table[best_plldivr] * pllsaidivr_table[best_pllsaidivr];
return pllsai_vco_rate / div;
#else
return 0;
#endif
}
static int stm32_clk_enable(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->base;
u32 offset = clk->id / 32;
u32 bit_index = clk->id % 32;
debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
__func__, clk->id, offset, bit_index);
setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
return 0;
}
static int stm32_clk_probe(struct udevice *dev)
{
struct ofnode_phandle_args args;
struct udevice *fixed_clock_dev = NULL;
struct clk clk;
int err;
debug("%s\n", __func__);
struct stm32_clk *priv = dev_get_priv(dev);
fdt_addr_t addr;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
priv->base = (struct stm32_rcc_regs *)addr;
priv->pllsaip = true;
switch (dev_get_driver_data(dev)) {
case STM32F42X:
priv->pllsaip = false;
/* fallback into STM32F469 case */
case STM32F469:
memcpy(&priv->info, &stm32f4_clk_info,
sizeof(struct stm32_clk_info));
break;
case STM32F7:
memcpy(&priv->info, &stm32f7_clk_info,
sizeof(struct stm32_clk_info));
break;
default:
return -EINVAL;
}
/* retrieve HSE frequency (external oscillator) */
err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
&fixed_clock_dev);
if (err) {
pr_err("Can't find fixed clock (%d)", err);
return err;
}
err = clk_request(fixed_clock_dev, &clk);
if (err) {
pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
err);
return err;
}
/*
* set pllm factor accordingly to the external oscillator
* frequency (HSE). For STM32F4 and STM32F7, we want VCO
* freq at 1MHz
* if input PLL frequency is 25Mhz, divide it by 25
*/
clk.id = 0;
priv->hse_rate = clk_get_rate(&clk);
if (priv->hse_rate < 1000000) {
pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
priv->hse_rate);
return -EINVAL;
}
priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
if (priv->info.has_overdrive) {
err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
&args);
if (err) {
debug("%s: can't find syscon device (%d)\n", __func__,
err);
return err;
}
priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
}
configure_clocks(dev);
return 0;
}
static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
{
debug("%s(clk=%p)\n", __func__, clk);
if (args->args_count != 2) {
debug("Invaild args_count: %d\n", args->args_count);
return -EINVAL;
}
if (args->args_count)
clk->id = args->args[1];
else
clk->id = 0;
return 0;
}
static struct clk_ops stm32_clk_ops = {
.of_xlate = stm32_clk_of_xlate,
.enable = stm32_clk_enable,
.get_rate = stm32_clk_get_rate,
.set_rate = stm32_set_rate,
};
U_BOOT_DRIVER(stm32fx_clk) = {
.name = "stm32fx_rcc_clock",
.id = UCLASS_CLK,
.ops = &stm32_clk_ops,
.probe = stm32_clk_probe,
.priv_auto_alloc_size = sizeof(struct stm32_clk),
.flags = DM_FLAG_PRE_RELOC,
};