blob: bf3a4c97a411dc2513683663e8cfb7a7f3a13e87 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#include <common.h>
#include <clk.h>
#include <log.h>
#include <ram.h>
#include <reset.h>
#include <timer.h>
#include <asm/io.h>
#include <asm/arch/ddr.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include "stm32mp1_ddr.h"
#include "stm32mp1_ddr_regs.h"
#define RCC_DDRITFCR 0xD8
#define RCC_DDRITFCR_DDRCAPBRST (BIT(14))
#define RCC_DDRITFCR_DDRCAXIRST (BIT(15))
#define RCC_DDRITFCR_DDRCORERST (BIT(16))
#define RCC_DDRITFCR_DPHYAPBRST (BIT(17))
#define RCC_DDRITFCR_DPHYRST (BIT(18))
#define RCC_DDRITFCR_DPHYCTLRST (BIT(19))
struct reg_desc {
const char *name;
u16 offset; /* offset for base address */
u8 par_offset; /* offset for parameter array */
};
#define INVALID_OFFSET 0xFF
#define DDRCTL_REG(x, y) \
{#x,\
offsetof(struct stm32mp1_ddrctl, x),\
offsetof(struct y, x)}
#define DDRPHY_REG(x, y) \
{#x,\
offsetof(struct stm32mp1_ddrphy, x),\
offsetof(struct y, x)}
#define DDR_REG_DYN(x) \
{#x,\
offsetof(struct stm32mp1_ddrctl, x),\
INVALID_OFFSET}
#define DDRPHY_REG_DYN(x) \
{#x,\
offsetof(struct stm32mp1_ddrphy, x),\
INVALID_OFFSET}
/***********************************************************
* PARAMETERS: value get from device tree :
* size / order need to be aligned with binding
* modification NOT ALLOWED !!!
***********************************************************/
#define DDRCTL_REG_REG_SIZE 25 /* st,ctl-reg */
#define DDRCTL_REG_TIMING_SIZE 12 /* st,ctl-timing */
#define DDRCTL_REG_MAP_SIZE 9 /* st,ctl-map */
#define DDRCTL_REG_PERF_SIZE 17 /* st,ctl-perf */
#define DDRPHY_REG_REG_SIZE 11 /* st,phy-reg */
#define DDRPHY_REG_TIMING_SIZE 10 /* st,phy-timing */
#define DDRPHY_REG_CAL_SIZE 12 /* st,phy-cal */
#define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
static const struct reg_desc ddr_reg[DDRCTL_REG_REG_SIZE] = {
DDRCTL_REG_REG(mstr),
DDRCTL_REG_REG(mrctrl0),
DDRCTL_REG_REG(mrctrl1),
DDRCTL_REG_REG(derateen),
DDRCTL_REG_REG(derateint),
DDRCTL_REG_REG(pwrctl),
DDRCTL_REG_REG(pwrtmg),
DDRCTL_REG_REG(hwlpctl),
DDRCTL_REG_REG(rfshctl0),
DDRCTL_REG_REG(rfshctl3),
DDRCTL_REG_REG(crcparctl0),
DDRCTL_REG_REG(zqctl0),
DDRCTL_REG_REG(dfitmg0),
DDRCTL_REG_REG(dfitmg1),
DDRCTL_REG_REG(dfilpcfg0),
DDRCTL_REG_REG(dfiupd0),
DDRCTL_REG_REG(dfiupd1),
DDRCTL_REG_REG(dfiupd2),
DDRCTL_REG_REG(dfiphymstr),
DDRCTL_REG_REG(odtmap),
DDRCTL_REG_REG(dbg0),
DDRCTL_REG_REG(dbg1),
DDRCTL_REG_REG(dbgcmd),
DDRCTL_REG_REG(poisoncfg),
DDRCTL_REG_REG(pccfg),
};
#define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
static const struct reg_desc ddr_timing[DDRCTL_REG_TIMING_SIZE] = {
DDRCTL_REG_TIMING(rfshtmg),
DDRCTL_REG_TIMING(dramtmg0),
DDRCTL_REG_TIMING(dramtmg1),
DDRCTL_REG_TIMING(dramtmg2),
DDRCTL_REG_TIMING(dramtmg3),
DDRCTL_REG_TIMING(dramtmg4),
DDRCTL_REG_TIMING(dramtmg5),
DDRCTL_REG_TIMING(dramtmg6),
DDRCTL_REG_TIMING(dramtmg7),
DDRCTL_REG_TIMING(dramtmg8),
DDRCTL_REG_TIMING(dramtmg14),
DDRCTL_REG_TIMING(odtcfg),
};
#define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map)
static const struct reg_desc ddr_map[DDRCTL_REG_MAP_SIZE] = {
DDRCTL_REG_MAP(addrmap1),
DDRCTL_REG_MAP(addrmap2),
DDRCTL_REG_MAP(addrmap3),
DDRCTL_REG_MAP(addrmap4),
DDRCTL_REG_MAP(addrmap5),
DDRCTL_REG_MAP(addrmap6),
DDRCTL_REG_MAP(addrmap9),
DDRCTL_REG_MAP(addrmap10),
DDRCTL_REG_MAP(addrmap11),
};
#define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
static const struct reg_desc ddr_perf[DDRCTL_REG_PERF_SIZE] = {
DDRCTL_REG_PERF(sched),
DDRCTL_REG_PERF(sched1),
DDRCTL_REG_PERF(perfhpr1),
DDRCTL_REG_PERF(perflpr1),
DDRCTL_REG_PERF(perfwr1),
DDRCTL_REG_PERF(pcfgr_0),
DDRCTL_REG_PERF(pcfgw_0),
DDRCTL_REG_PERF(pcfgqos0_0),
DDRCTL_REG_PERF(pcfgqos1_0),
DDRCTL_REG_PERF(pcfgwqos0_0),
DDRCTL_REG_PERF(pcfgwqos1_0),
DDRCTL_REG_PERF(pcfgr_1),
DDRCTL_REG_PERF(pcfgw_1),
DDRCTL_REG_PERF(pcfgqos0_1),
DDRCTL_REG_PERF(pcfgqos1_1),
DDRCTL_REG_PERF(pcfgwqos0_1),
DDRCTL_REG_PERF(pcfgwqos1_1),
};
#define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg)
static const struct reg_desc ddrphy_reg[DDRPHY_REG_REG_SIZE] = {
DDRPHY_REG_REG(pgcr),
DDRPHY_REG_REG(aciocr),
DDRPHY_REG_REG(dxccr),
DDRPHY_REG_REG(dsgcr),
DDRPHY_REG_REG(dcr),
DDRPHY_REG_REG(odtcr),
DDRPHY_REG_REG(zq0cr1),
DDRPHY_REG_REG(dx0gcr),
DDRPHY_REG_REG(dx1gcr),
DDRPHY_REG_REG(dx2gcr),
DDRPHY_REG_REG(dx3gcr),
};
#define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing)
static const struct reg_desc ddrphy_timing[DDRPHY_REG_TIMING_SIZE] = {
DDRPHY_REG_TIMING(ptr0),
DDRPHY_REG_TIMING(ptr1),
DDRPHY_REG_TIMING(ptr2),
DDRPHY_REG_TIMING(dtpr0),
DDRPHY_REG_TIMING(dtpr1),
DDRPHY_REG_TIMING(dtpr2),
DDRPHY_REG_TIMING(mr0),
DDRPHY_REG_TIMING(mr1),
DDRPHY_REG_TIMING(mr2),
DDRPHY_REG_TIMING(mr3),
};
#define DDRPHY_REG_CAL(x) DDRPHY_REG(x, stm32mp1_ddrphy_cal)
static const struct reg_desc ddrphy_cal[DDRPHY_REG_CAL_SIZE] = {
DDRPHY_REG_CAL(dx0dllcr),
DDRPHY_REG_CAL(dx0dqtr),
DDRPHY_REG_CAL(dx0dqstr),
DDRPHY_REG_CAL(dx1dllcr),
DDRPHY_REG_CAL(dx1dqtr),
DDRPHY_REG_CAL(dx1dqstr),
DDRPHY_REG_CAL(dx2dllcr),
DDRPHY_REG_CAL(dx2dqtr),
DDRPHY_REG_CAL(dx2dqstr),
DDRPHY_REG_CAL(dx3dllcr),
DDRPHY_REG_CAL(dx3dqtr),
DDRPHY_REG_CAL(dx3dqstr),
};
/**************************************************************
* DYNAMIC REGISTERS: only used for debug purpose (read/modify)
**************************************************************/
#ifdef CONFIG_STM32MP1_DDR_INTERACTIVE
static const struct reg_desc ddr_dyn[] = {
DDR_REG_DYN(stat),
DDR_REG_DYN(init0),
DDR_REG_DYN(dfimisc),
DDR_REG_DYN(dfistat),
DDR_REG_DYN(swctl),
DDR_REG_DYN(swstat),
DDR_REG_DYN(pctrl_0),
DDR_REG_DYN(pctrl_1),
};
#define DDR_REG_DYN_SIZE ARRAY_SIZE(ddr_dyn)
static const struct reg_desc ddrphy_dyn[] = {
DDRPHY_REG_DYN(pir),
DDRPHY_REG_DYN(pgsr),
DDRPHY_REG_DYN(zq0sr0),
DDRPHY_REG_DYN(zq0sr1),
DDRPHY_REG_DYN(dx0gsr0),
DDRPHY_REG_DYN(dx0gsr1),
DDRPHY_REG_DYN(dx1gsr0),
DDRPHY_REG_DYN(dx1gsr1),
DDRPHY_REG_DYN(dx2gsr0),
DDRPHY_REG_DYN(dx2gsr1),
DDRPHY_REG_DYN(dx3gsr0),
DDRPHY_REG_DYN(dx3gsr1),
};
#define DDRPHY_REG_DYN_SIZE ARRAY_SIZE(ddrphy_dyn)
#endif
/*****************************************************************
* REGISTERS ARRAY: used to parse device tree and interactive mode
*****************************************************************/
enum reg_type {
REG_REG,
REG_TIMING,
REG_PERF,
REG_MAP,
REGPHY_REG,
REGPHY_TIMING,
REGPHY_CAL,
#ifdef CONFIG_STM32MP1_DDR_INTERACTIVE
/* dynamic registers => managed in driver or not changed,
* can be dumped in interactive mode
*/
REG_DYN,
REGPHY_DYN,
#endif
REG_TYPE_NB
};
enum base_type {
DDR_BASE,
DDRPHY_BASE,
NONE_BASE
};
struct ddr_reg_info {
const char *name;
const struct reg_desc *desc;
u8 size;
enum base_type base;
};
#define DDRPHY_REG_CAL(x) DDRPHY_REG(x, stm32mp1_ddrphy_cal)
const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
[REG_REG] = {
"static", ddr_reg, DDRCTL_REG_REG_SIZE, DDR_BASE},
[REG_TIMING] = {
"timing", ddr_timing, DDRCTL_REG_TIMING_SIZE, DDR_BASE},
[REG_PERF] = {
"perf", ddr_perf, DDRCTL_REG_PERF_SIZE, DDR_BASE},
[REG_MAP] = {
"map", ddr_map, DDRCTL_REG_MAP_SIZE, DDR_BASE},
[REGPHY_REG] = {
"static", ddrphy_reg, DDRPHY_REG_REG_SIZE, DDRPHY_BASE},
[REGPHY_TIMING] = {
"timing", ddrphy_timing, DDRPHY_REG_TIMING_SIZE, DDRPHY_BASE},
[REGPHY_CAL] = {
"cal", ddrphy_cal, DDRPHY_REG_CAL_SIZE, DDRPHY_BASE},
#ifdef CONFIG_STM32MP1_DDR_INTERACTIVE
[REG_DYN] = {
"dyn", ddr_dyn, DDR_REG_DYN_SIZE, DDR_BASE},
[REGPHY_DYN] = {
"dyn", ddrphy_dyn, DDRPHY_REG_DYN_SIZE, DDRPHY_BASE},
#endif
};
const char *base_name[] = {
[DDR_BASE] = "ctl",
[DDRPHY_BASE] = "phy",
};
static u32 get_base_addr(const struct ddr_info *priv, enum base_type base)
{
if (base == DDRPHY_BASE)
return (u32)priv->phy;
else
return (u32)priv->ctl;
}
static void set_reg(const struct ddr_info *priv,
enum reg_type type,
const void *param)
{
unsigned int i;
unsigned int *ptr, value;
enum base_type base = ddr_registers[type].base;
u32 base_addr = get_base_addr(priv, base);
const struct reg_desc *desc = ddr_registers[type].desc;
debug("init %s\n", ddr_registers[type].name);
for (i = 0; i < ddr_registers[type].size; i++) {
ptr = (unsigned int *)(base_addr + desc[i].offset);
if (desc[i].par_offset == INVALID_OFFSET) {
pr_err("invalid parameter offset for %s", desc[i].name);
} else {
value = *((u32 *)((u32)param +
desc[i].par_offset));
writel(value, ptr);
debug("[0x%x] %s= 0x%08x\n",
(u32)ptr, desc[i].name, value);
}
}
}
#ifdef CONFIG_STM32MP1_DDR_INTERACTIVE
static void stm32mp1_dump_reg_desc(u32 base_addr, const struct reg_desc *desc)
{
unsigned int *ptr;
ptr = (unsigned int *)(base_addr + desc->offset);
printf("%s= 0x%08x\n", desc->name, readl(ptr));
}
static void stm32mp1_dump_param_desc(u32 par_addr, const struct reg_desc *desc)
{
unsigned int *ptr;
ptr = (unsigned int *)(par_addr + desc->par_offset);
printf("%s= 0x%08x\n", desc->name, readl(ptr));
}
static const struct reg_desc *found_reg(const char *name, enum reg_type *type)
{
unsigned int i, j;
const struct reg_desc *desc;
for (i = 0; i < ARRAY_SIZE(ddr_registers); i++) {
desc = ddr_registers[i].desc;
for (j = 0; j < ddr_registers[i].size; j++) {
if (strcmp(name, desc[j].name) == 0) {
*type = i;
return &desc[j];
}
}
}
*type = REG_TYPE_NB;
return NULL;
}
int stm32mp1_dump_reg(const struct ddr_info *priv,
const char *name)
{
unsigned int i, j;
const struct reg_desc *desc;
u32 base_addr;
enum base_type p_base;
enum reg_type type;
const char *p_name;
enum base_type filter = NONE_BASE;
int result = -1;
if (name) {
if (strcmp(name, base_name[DDR_BASE]) == 0)
filter = DDR_BASE;
else if (strcmp(name, base_name[DDRPHY_BASE]) == 0)
filter = DDRPHY_BASE;
}
for (i = 0; i < ARRAY_SIZE(ddr_registers); i++) {
p_base = ddr_registers[i].base;
p_name = ddr_registers[i].name;
if (!name || (filter == p_base || !strcmp(name, p_name))) {
result = 0;
desc = ddr_registers[i].desc;
base_addr = get_base_addr(priv, p_base);
printf("==%s.%s==\n", base_name[p_base], p_name);
for (j = 0; j < ddr_registers[i].size; j++)
stm32mp1_dump_reg_desc(base_addr, &desc[j]);
}
}
if (result) {
desc = found_reg(name, &type);
if (desc) {
p_base = ddr_registers[type].base;
base_addr = get_base_addr(priv, p_base);
stm32mp1_dump_reg_desc(base_addr, desc);
result = 0;
}
}
return result;
}
void stm32mp1_edit_reg(const struct ddr_info *priv,
char *name, char *string)
{
unsigned long *ptr, value;
enum reg_type type;
enum base_type base;
const struct reg_desc *desc;
u32 base_addr;
desc = found_reg(name, &type);
if (!desc) {
printf("%s not found\n", name);
return;
}
if (strict_strtoul(string, 16, &value) < 0) {
printf("invalid value %s\n", string);
return;
}
base = ddr_registers[type].base;
base_addr = get_base_addr(priv, base);
ptr = (unsigned long *)(base_addr + desc->offset);
writel(value, ptr);
printf("%s= 0x%08x\n", desc->name, readl(ptr));
}
static u32 get_par_addr(const struct stm32mp1_ddr_config *config,
enum reg_type type)
{
u32 par_addr = 0x0;
switch (type) {
case REG_REG:
par_addr = (u32)&config->c_reg;
break;
case REG_TIMING:
par_addr = (u32)&config->c_timing;
break;
case REG_PERF:
par_addr = (u32)&config->c_perf;
break;
case REG_MAP:
par_addr = (u32)&config->c_map;
break;
case REGPHY_REG:
par_addr = (u32)&config->p_reg;
break;
case REGPHY_TIMING:
par_addr = (u32)&config->p_timing;
break;
case REGPHY_CAL:
par_addr = (u32)&config->p_cal;
break;
case REG_DYN:
case REGPHY_DYN:
case REG_TYPE_NB:
par_addr = (u32)NULL;
break;
}
return par_addr;
}
int stm32mp1_dump_param(const struct stm32mp1_ddr_config *config,
const char *name)
{
unsigned int i, j;
const struct reg_desc *desc;
u32 par_addr;
enum base_type p_base;
enum reg_type type;
const char *p_name;
enum base_type filter = NONE_BASE;
int result = -EINVAL;
if (name) {
if (strcmp(name, base_name[DDR_BASE]) == 0)
filter = DDR_BASE;
else if (strcmp(name, base_name[DDRPHY_BASE]) == 0)
filter = DDRPHY_BASE;
}
for (i = 0; i < ARRAY_SIZE(ddr_registers); i++) {
par_addr = get_par_addr(config, i);
if (!par_addr)
continue;
p_base = ddr_registers[i].base;
p_name = ddr_registers[i].name;
if (!name || (filter == p_base || !strcmp(name, p_name))) {
result = 0;
desc = ddr_registers[i].desc;
printf("==%s.%s==\n", base_name[p_base], p_name);
for (j = 0; j < ddr_registers[i].size; j++)
stm32mp1_dump_param_desc(par_addr, &desc[j]);
}
}
if (result) {
desc = found_reg(name, &type);
if (desc) {
par_addr = get_par_addr(config, type);
if (par_addr) {
stm32mp1_dump_param_desc(par_addr, desc);
result = 0;
}
}
}
return result;
}
void stm32mp1_edit_param(const struct stm32mp1_ddr_config *config,
char *name, char *string)
{
unsigned long *ptr, value;
enum reg_type type;
const struct reg_desc *desc;
u32 par_addr;
desc = found_reg(name, &type);
if (!desc) {
printf("%s not found\n", name);
return;
}
if (strict_strtoul(string, 16, &value) < 0) {
printf("invalid value %s\n", string);
return;
}
par_addr = get_par_addr(config, type);
if (!par_addr) {
printf("no parameter %s\n", name);
return;
}
ptr = (unsigned long *)(par_addr + desc->par_offset);
writel(value, ptr);
printf("%s= 0x%08x\n", desc->name, readl(ptr));
}
#endif
__weak bool stm32mp1_ddr_interactive(void *priv,
enum stm32mp1_ddr_interact_step step,
const struct stm32mp1_ddr_config *config)
{
return false;
}
#define INTERACTIVE(step)\
stm32mp1_ddr_interactive(priv, step, config)
static void ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
{
u32 pgsr;
int ret;
ret = readl_poll_timeout(&phy->pgsr, pgsr,
pgsr & (DDRPHYC_PGSR_IDONE |
DDRPHYC_PGSR_DTERR |
DDRPHYC_PGSR_DTIERR |
DDRPHYC_PGSR_DFTERR |
DDRPHYC_PGSR_RVERR |
DDRPHYC_PGSR_RVEIRR),
1000000);
debug("\n[0x%08x] pgsr = 0x%08x ret=%d\n",
(u32)&phy->pgsr, pgsr, ret);
}
void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, u32 pir)
{
pir |= DDRPHYC_PIR_INIT;
writel(pir, &phy->pir);
debug("[0x%08x] pir = 0x%08x -> 0x%08x\n",
(u32)&phy->pir, pir, readl(&phy->pir));
/* need to wait 10 configuration clock before start polling */
udelay(10);
/* Wait DRAM initialization and Gate Training Evaluation complete */
ddrphy_idone_wait(phy);
}
/* start quasi dynamic register update */
static void start_sw_done(struct stm32mp1_ddrctl *ctl)
{
clrbits_le32(&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
}
/* wait quasi dynamic register update */
static void wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
{
int ret;
u32 swstat;
setbits_le32(&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
ret = readl_poll_timeout(&ctl->swstat, swstat,
swstat & DDRCTRL_SWSTAT_SW_DONE_ACK,
1000000);
if (ret)
panic("Timeout initialising DRAM : DDR->swstat = %x\n",
swstat);
debug("[0x%08x] swstat = 0x%08x\n", (u32)&ctl->swstat, swstat);
}
/* wait quasi dynamic register update */
static void wait_operating_mode(struct ddr_info *priv, int mode)
{
u32 stat, val, mask, val2 = 0, mask2 = 0;
int ret;
mask = DDRCTRL_STAT_OPERATING_MODE_MASK;
val = mode;
/* self-refresh due to software => check also STAT.selfref_type */
if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
mask |= DDRCTRL_STAT_SELFREF_TYPE_MASK;
val |= DDRCTRL_STAT_SELFREF_TYPE_SR;
} else if (mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) {
/* normal mode: handle also automatic self refresh */
mask2 = DDRCTRL_STAT_OPERATING_MODE_MASK |
DDRCTRL_STAT_SELFREF_TYPE_MASK;
val2 = DDRCTRL_STAT_OPERATING_MODE_SR |
DDRCTRL_STAT_SELFREF_TYPE_ASR;
}
ret = readl_poll_timeout(&priv->ctl->stat, stat,
((stat & mask) == val) ||
(mask2 && ((stat & mask2) == val2)),
1000000);
if (ret)
panic("Timeout DRAM : DDR->stat = %x\n", stat);
debug("[0x%08x] stat = 0x%08x\n", (u32)&priv->ctl->stat, stat);
}
void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
{
start_sw_done(ctl);
/* quasi-dynamic register update*/
setbits_le32(&ctl->rfshctl3, DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
clrbits_le32(&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN |
DDRCTRL_PWRCTL_SELFREF_EN);
clrbits_le32(&ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
wait_sw_done_ack(ctl);
}
void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
u32 rfshctl3, u32 pwrctl)
{
start_sw_done(ctl);
if (!(rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH))
clrbits_le32(&ctl->rfshctl3, DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
if (pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN)
setbits_le32(&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
if ((pwrctl & DDRCTRL_PWRCTL_SELFREF_EN))
setbits_le32(&ctl->pwrctl, DDRCTRL_PWRCTL_SELFREF_EN);
setbits_le32(&ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
wait_sw_done_ack(ctl);
}
/* board-specific DDR power initializations. */
__weak int board_ddr_power_init(enum ddr_type ddr_type)
{
return 0;
}
__maybe_unused
void stm32mp1_ddr_init(struct ddr_info *priv,
const struct stm32mp1_ddr_config *config)
{
u32 pir;
int ret = -EINVAL;
char bus_width;
switch (config->c_reg.mstr & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK) {
case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
bus_width = 8;
break;
case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
bus_width = 16;
break;
default:
bus_width = 32;
break;
}
if (config->c_reg.mstr & DDRCTRL_MSTR_DDR3)
ret = board_ddr_power_init(STM32MP_DDR3);
else if (config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) {
if (bus_width == 32)
ret = board_ddr_power_init(STM32MP_LPDDR2_32);
else
ret = board_ddr_power_init(STM32MP_LPDDR2_16);
} else if (config->c_reg.mstr & DDRCTRL_MSTR_LPDDR3) {
if (bus_width == 32)
ret = board_ddr_power_init(STM32MP_LPDDR3_32);
else
ret = board_ddr_power_init(STM32MP_LPDDR3_16);
}
if (ret)
panic("ddr power init failed\n");
start:
debug("name = %s\n", config->info.name);
debug("speed = %d kHz\n", config->info.speed);
debug("size = 0x%x\n", config->info.size);
/*
* 1. Program the DWC_ddr_umctl2 registers
* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn
*/
/* Assert All DDR part */
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
/* 1.2. start CLOCK */
if (stm32mp1_ddr_clk_enable(priv, config->info.speed))
panic("invalid DRAM clock : %d kHz\n",
config->info.speed);
/* 1.3. deassert reset */
/* de-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST */
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
/* De-assert presetn once the clocks are active
* and stable via DDRCAPBRST bit
*/
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
/* 1.4. wait 128 cycles to permit initialization of end logic */
udelay(2);
/* for PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */
if (INTERACTIVE(STEP_DDR_RESET))
goto start;
/* 1.5. initialize registers ddr_umctl2 */
/* Stop uMCTL2 before PHY is ready */
clrbits_le32(&priv->ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
debug("[0x%08x] dfimisc = 0x%08x\n",
(u32)&priv->ctl->dfimisc, readl(&priv->ctl->dfimisc));
set_reg(priv, REG_REG, &config->c_reg);
set_reg(priv, REG_TIMING, &config->c_timing);
set_reg(priv, REG_MAP, &config->c_map);
/* skip CTRL init, SDRAM init is done by PHY PUBL */
clrsetbits_le32(&priv->ctl->init0,
DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
set_reg(priv, REG_PERF, &config->c_perf);
if (INTERACTIVE(STEP_CTL_INIT))
goto start;
/* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
/* 3. start PHY init by accessing relevant PUBL registers
* (DXGCR, DCR, PTR*, MR*, DTPR*)
*/
set_reg(priv, REGPHY_REG, &config->p_reg);
set_reg(priv, REGPHY_TIMING, &config->p_timing);
if (config->p_cal_present)
set_reg(priv, REGPHY_CAL, &config->p_cal);
if (INTERACTIVE(STEP_PHY_INIT))
goto start;
/* 4. Monitor PHY init status by polling PUBL register PGSR.IDONE
* Perform DDR PHY DRAM initialization and Gate Training Evaluation
*/
ddrphy_idone_wait(priv->phy);
/* 5. Indicate to PUBL that controller performs SDRAM initialization
* by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
* DRAM init is done by PHY, init0.skip_dram.init = 1
*/
pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;
if (config->c_reg.mstr & DDRCTRL_MSTR_DDR3)
pir |= DDRPHYC_PIR_DRAMRST; /* only for DDR3 */
stm32mp1_ddrphy_init(priv->phy, pir);
/* 6. SET DFIMISC.dfi_init_complete_en to 1 */
/* Enable quasi-dynamic register programming*/
start_sw_done(priv->ctl);
setbits_le32(&priv->ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
wait_sw_done_ack(priv->ctl);
/* 7. Wait for DWC_ddr_umctl2 to move to normal operation mode
* by monitoring STAT.operating_mode signal
*/
/* wait uMCTL2 ready */
wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
if (config->p_cal_present) {
debug("DDR DQS training skipped.\n");
} else {
debug("DDR DQS training : ");
/* 8. Disable Auto refresh and power down by setting
* - RFSHCTL3.dis_au_refresh = 1
* - PWRCTL.powerdown_en = 0
* - DFIMISC.dfiinit_complete_en = 0
*/
stm32mp1_refresh_disable(priv->ctl);
/* 9. Program PUBL PGCR to enable refresh during training and rank to train
* not done => keep the programed value in PGCR
*/
/* 10. configure PUBL PIR register to specify which training step to run */
/* warning : RVTRN is not supported by this PUBL */
stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);
/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
ddrphy_idone_wait(priv->phy);
/* 12. set back registers in step 8 to the orginal values if desidered */
stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
config->c_reg.pwrctl);
} /* if (config->p_cal_present) */
/* enable uMCTL2 AXI port 0 and 1 */
setbits_le32(&priv->ctl->pctrl_0, DDRCTRL_PCTRL_N_PORT_EN);
setbits_le32(&priv->ctl->pctrl_1, DDRCTRL_PCTRL_N_PORT_EN);
if (INTERACTIVE(STEP_DDR_READY))
goto start;
}