| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2013, Google Inc. |
| */ |
| |
| #ifndef USE_HOSTCC |
| #include <common.h> |
| #include <fdtdec.h> |
| #include <malloc.h> |
| #include <asm/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/errno.h> |
| #include <asm/types.h> |
| #include <asm/unaligned.h> |
| #include <dm.h> |
| #else |
| #include "fdt_host.h" |
| #include "mkimage.h" |
| #include <fdt_support.h> |
| #endif |
| #include <u-boot/rsa-mod-exp.h> |
| #include <u-boot/rsa.h> |
| |
| /* Default public exponent for backward compatibility */ |
| #define RSA_DEFAULT_PUBEXP 65537 |
| |
| /** |
| * rsa_verify_padding() - Verify RSA message padding is valid |
| * |
| * Verify a RSA message's padding is consistent with PKCS1.5 |
| * padding as described in the RSA PKCS#1 v2.1 standard. |
| * |
| * @msg: Padded message |
| * @pad_len: Number of expected padding bytes |
| * @algo: Checksum algo structure having information on DER encoding etc. |
| * @return 0 on success, != 0 on failure |
| */ |
| static int rsa_verify_padding(const uint8_t *msg, const int pad_len, |
| struct checksum_algo *algo) |
| { |
| int ff_len; |
| int ret; |
| |
| /* first byte must be 0x00 */ |
| ret = *msg++; |
| /* second byte must be 0x01 */ |
| ret |= *msg++ ^ 0x01; |
| /* next ff_len bytes must be 0xff */ |
| ff_len = pad_len - algo->der_len - 3; |
| ret |= *msg ^ 0xff; |
| ret |= memcmp(msg, msg+1, ff_len-1); |
| msg += ff_len; |
| /* next byte must be 0x00 */ |
| ret |= *msg++; |
| /* next der_len bytes must match der_prefix */ |
| ret |= memcmp(msg, algo->der_prefix, algo->der_len); |
| |
| return ret; |
| } |
| |
| int padding_pkcs_15_verify(struct image_sign_info *info, |
| uint8_t *msg, int msg_len, |
| const uint8_t *hash, int hash_len) |
| { |
| struct checksum_algo *checksum = info->checksum; |
| int ret, pad_len = msg_len - checksum->checksum_len; |
| |
| /* Check pkcs1.5 padding bytes. */ |
| ret = rsa_verify_padding(msg, pad_len, checksum); |
| if (ret) { |
| debug("In RSAVerify(): Padding check failed!\n"); |
| return -EINVAL; |
| } |
| |
| /* Check hash. */ |
| if (memcmp((uint8_t *)msg + pad_len, hash, msg_len - pad_len)) { |
| debug("In RSAVerify(): Hash check failed!\n"); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_FIT_ENABLE_RSASSA_PSS_SUPPORT |
| static void u32_i2osp(uint32_t val, uint8_t *buf) |
| { |
| buf[0] = (uint8_t)((val >> 24) & 0xff); |
| buf[1] = (uint8_t)((val >> 16) & 0xff); |
| buf[2] = (uint8_t)((val >> 8) & 0xff); |
| buf[3] = (uint8_t)((val >> 0) & 0xff); |
| } |
| |
| /** |
| * mask_generation_function1() - generate an octet string |
| * |
| * Generate an octet string used to check rsa signature. |
| * It use an input octet string and a hash function. |
| * |
| * @checksum: A Hash function |
| * @seed: Specifies an input variable octet string |
| * @seed_len: Size of the input octet string |
| * @output: Specifies the output octet string |
| * @output_len: Size of the output octet string |
| * @return 0 if the octet string was correctly generated, others on error |
| */ |
| static int mask_generation_function1(struct checksum_algo *checksum, |
| uint8_t *seed, int seed_len, |
| uint8_t *output, int output_len) |
| { |
| struct image_region region[2]; |
| int ret = 0, i, i_output = 0, region_count = 2; |
| uint32_t counter = 0; |
| uint8_t buf_counter[4], *tmp; |
| int hash_len = checksum->checksum_len; |
| |
| memset(output, 0, output_len); |
| |
| region[0].data = seed; |
| region[0].size = seed_len; |
| region[1].data = &buf_counter[0]; |
| region[1].size = 4; |
| |
| tmp = malloc(hash_len); |
| if (!tmp) { |
| debug("%s: can't allocate array tmp\n", __func__); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| while (i_output < output_len) { |
| u32_i2osp(counter, &buf_counter[0]); |
| |
| ret = checksum->calculate(checksum->name, |
| region, region_count, |
| tmp); |
| if (ret < 0) { |
| debug("%s: Error in checksum calculation\n", __func__); |
| goto out; |
| } |
| |
| i = 0; |
| while ((i_output < output_len) && (i < hash_len)) { |
| output[i_output] = tmp[i]; |
| i_output++; |
| i++; |
| } |
| |
| counter++; |
| } |
| |
| out: |
| free(tmp); |
| |
| return ret; |
| } |
| |
| static int compute_hash_prime(struct checksum_algo *checksum, |
| uint8_t *pad, int pad_len, |
| uint8_t *hash, int hash_len, |
| uint8_t *salt, int salt_len, |
| uint8_t *hprime) |
| { |
| struct image_region region[3]; |
| int ret, region_count = 3; |
| |
| region[0].data = pad; |
| region[0].size = pad_len; |
| region[1].data = hash; |
| region[1].size = hash_len; |
| region[2].data = salt; |
| region[2].size = salt_len; |
| |
| ret = checksum->calculate(checksum->name, region, region_count, hprime); |
| if (ret < 0) { |
| debug("%s: Error in checksum calculation\n", __func__); |
| goto out; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| int padding_pss_verify(struct image_sign_info *info, |
| uint8_t *msg, int msg_len, |
| const uint8_t *hash, int hash_len) |
| { |
| uint8_t *masked_db = NULL; |
| int masked_db_len = msg_len - hash_len - 1; |
| uint8_t *h = NULL, *hprime = NULL; |
| int h_len = hash_len; |
| uint8_t *db_mask = NULL; |
| int db_mask_len = masked_db_len; |
| uint8_t *db = NULL, *salt = NULL; |
| int db_len = masked_db_len, salt_len = msg_len - hash_len - 2; |
| uint8_t pad_zero[8] = { 0 }; |
| int ret, i, leftmost_bits = 1; |
| uint8_t leftmost_mask; |
| struct checksum_algo *checksum = info->checksum; |
| |
| /* first, allocate everything */ |
| masked_db = malloc(masked_db_len); |
| h = malloc(h_len); |
| db_mask = malloc(db_mask_len); |
| db = malloc(db_len); |
| salt = malloc(salt_len); |
| hprime = malloc(hash_len); |
| if (!masked_db || !h || !db_mask || !db || !salt || !hprime) { |
| printf("%s: can't allocate some buffer\n", __func__); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* step 4: check if the last byte is 0xbc */ |
| if (msg[msg_len - 1] != 0xbc) { |
| printf("%s: invalid pss padding (0xbc is missing)\n", __func__); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* step 5 */ |
| memcpy(masked_db, msg, masked_db_len); |
| memcpy(h, msg + masked_db_len, h_len); |
| |
| /* step 6 */ |
| leftmost_mask = (0xff >> (8 - leftmost_bits)) << (8 - leftmost_bits); |
| if (masked_db[0] & leftmost_mask) { |
| printf("%s: invalid pss padding ", __func__); |
| printf("(leftmost bit of maskedDB not zero)\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* step 7 */ |
| mask_generation_function1(checksum, h, h_len, db_mask, db_mask_len); |
| |
| /* step 8 */ |
| for (i = 0; i < db_len; i++) |
| db[i] = masked_db[i] ^ db_mask[i]; |
| |
| /* step 9 */ |
| db[0] &= 0xff >> leftmost_bits; |
| |
| /* step 10 */ |
| if (db[0] != 0x01) { |
| printf("%s: invalid pss padding ", __func__); |
| printf("(leftmost byte of db isn't 0x01)\n"); |
| ret = EINVAL; |
| goto out; |
| } |
| |
| /* step 11 */ |
| memcpy(salt, &db[1], salt_len); |
| |
| /* step 12 & 13 */ |
| compute_hash_prime(checksum, pad_zero, 8, |
| (uint8_t *)hash, hash_len, |
| salt, salt_len, hprime); |
| |
| /* step 14 */ |
| ret = memcmp(h, hprime, hash_len); |
| |
| out: |
| free(hprime); |
| free(salt); |
| free(db); |
| free(db_mask); |
| free(h); |
| free(masked_db); |
| |
| return ret; |
| } |
| #endif |
| |
| /** |
| * rsa_verify_key() - Verify a signature against some data using RSA Key |
| * |
| * Verify a RSA PKCS1.5 signature against an expected hash using |
| * the RSA Key properties in prop structure. |
| * |
| * @info: Specifies key and FIT information |
| * @prop: Specifies key |
| * @sig: Signature |
| * @sig_len: Number of bytes in signature |
| * @hash: Pointer to the expected hash |
| * @key_len: Number of bytes in rsa key |
| * @return 0 if verified, -ve on error |
| */ |
| static int rsa_verify_key(struct image_sign_info *info, |
| struct key_prop *prop, const uint8_t *sig, |
| const uint32_t sig_len, const uint8_t *hash, |
| const uint32_t key_len) |
| { |
| int ret; |
| #if !defined(USE_HOSTCC) |
| struct udevice *mod_exp_dev; |
| #endif |
| struct checksum_algo *checksum = info->checksum; |
| struct padding_algo *padding = info->padding; |
| int hash_len; |
| |
| if (!prop || !sig || !hash || !checksum) |
| return -EIO; |
| |
| if (sig_len != (prop->num_bits / 8)) { |
| debug("Signature is of incorrect length %d\n", sig_len); |
| return -EINVAL; |
| } |
| |
| debug("Checksum algorithm: %s", checksum->name); |
| |
| /* Sanity check for stack size */ |
| if (sig_len > RSA_MAX_SIG_BITS / 8) { |
| debug("Signature length %u exceeds maximum %d\n", sig_len, |
| RSA_MAX_SIG_BITS / 8); |
| return -EINVAL; |
| } |
| |
| uint8_t buf[sig_len]; |
| hash_len = checksum->checksum_len; |
| |
| #if !defined(USE_HOSTCC) |
| ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev); |
| if (ret) { |
| printf("RSA: Can't find Modular Exp implementation\n"); |
| return -EINVAL; |
| } |
| |
| ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf); |
| #else |
| ret = rsa_mod_exp_sw(sig, sig_len, prop, buf); |
| #endif |
| if (ret) { |
| debug("Error in Modular exponentation\n"); |
| return ret; |
| } |
| |
| ret = padding->verify(info, buf, key_len, hash, hash_len); |
| if (ret) { |
| debug("In RSAVerify(): padding check failed!\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * rsa_verify_with_keynode() - Verify a signature against some data using |
| * information in node with prperties of RSA Key like modulus, exponent etc. |
| * |
| * Parse sign-node and fill a key_prop structure with properties of the |
| * key. Verify a RSA PKCS1.5 signature against an expected hash using |
| * the properties parsed |
| * |
| * @info: Specifies key and FIT information |
| * @hash: Pointer to the expected hash |
| * @sig: Signature |
| * @sig_len: Number of bytes in signature |
| * @node: Node having the RSA Key properties |
| * @return 0 if verified, -ve on error |
| */ |
| static int rsa_verify_with_keynode(struct image_sign_info *info, |
| const void *hash, uint8_t *sig, |
| uint sig_len, int node) |
| { |
| const void *blob = info->fdt_blob; |
| struct key_prop prop; |
| int length; |
| int ret = 0; |
| |
| if (node < 0) { |
| debug("%s: Skipping invalid node", __func__); |
| return -EBADF; |
| } |
| |
| prop.num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0); |
| |
| prop.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0); |
| |
| prop.public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length); |
| if (!prop.public_exponent || length < sizeof(uint64_t)) |
| prop.public_exponent = NULL; |
| |
| prop.exp_len = sizeof(uint64_t); |
| |
| prop.modulus = fdt_getprop(blob, node, "rsa,modulus", NULL); |
| |
| prop.rr = fdt_getprop(blob, node, "rsa,r-squared", NULL); |
| |
| if (!prop.num_bits || !prop.modulus) { |
| debug("%s: Missing RSA key info", __func__); |
| return -EFAULT; |
| } |
| |
| ret = rsa_verify_key(info, &prop, sig, sig_len, hash, |
| info->crypto->key_len); |
| |
| return ret; |
| } |
| |
| int rsa_verify(struct image_sign_info *info, |
| const struct image_region region[], int region_count, |
| uint8_t *sig, uint sig_len) |
| { |
| const void *blob = info->fdt_blob; |
| /* Reserve memory for maximum checksum-length */ |
| uint8_t hash[info->crypto->key_len]; |
| int ndepth, noffset; |
| int sig_node, node; |
| char name[100]; |
| int ret; |
| |
| /* |
| * Verify that the checksum-length does not exceed the |
| * rsa-signature-length |
| */ |
| if (info->checksum->checksum_len > |
| info->crypto->key_len) { |
| debug("%s: invlaid checksum-algorithm %s for %s\n", |
| __func__, info->checksum->name, info->crypto->name); |
| return -EINVAL; |
| } |
| |
| sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); |
| if (sig_node < 0) { |
| debug("%s: No signature node found\n", __func__); |
| return -ENOENT; |
| } |
| |
| /* Calculate checksum with checksum-algorithm */ |
| ret = info->checksum->calculate(info->checksum->name, |
| region, region_count, hash); |
| if (ret < 0) { |
| debug("%s: Error in checksum calculation\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* See if we must use a particular key */ |
| if (info->required_keynode != -1) { |
| ret = rsa_verify_with_keynode(info, hash, sig, sig_len, |
| info->required_keynode); |
| return ret; |
| } |
| |
| /* Look for a key that matches our hint */ |
| snprintf(name, sizeof(name), "key-%s", info->keyname); |
| node = fdt_subnode_offset(blob, sig_node, name); |
| ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node); |
| if (!ret) |
| return ret; |
| |
| /* No luck, so try each of the keys in turn */ |
| for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth); |
| (noffset >= 0) && (ndepth > 0); |
| noffset = fdt_next_node(info->fit, noffset, &ndepth)) { |
| if (ndepth == 1 && noffset != node) { |
| ret = rsa_verify_with_keynode(info, hash, sig, sig_len, |
| noffset); |
| if (!ret) |
| break; |
| } |
| } |
| |
| return ret; |
| } |