| /* |
| * (C) Copyright 2000-2004 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <mpc8xx.h> |
| #include <asm/processor.h> |
| |
| #define PITC_SHIFT 16 |
| #define PITR_SHIFT 16 |
| /* pitc values to time for 58/8192 seconds (about 70.8 milliseconds) */ |
| #define SPEED_PIT_COUNTS 58 |
| #define SPEED_PITC ((SPEED_PIT_COUNTS - 1) << PITC_SHIFT) |
| #define SPEED_PITC_INIT ((SPEED_PIT_COUNTS + 1) << PITC_SHIFT) |
| |
| /* Access functions for the Machine State Register */ |
| static __inline__ unsigned long get_msr(void) |
| { |
| unsigned long msr; |
| |
| asm volatile("mfmsr %0" : "=r" (msr) :); |
| return msr; |
| } |
| |
| static __inline__ void set_msr(unsigned long msr) |
| { |
| asm volatile("mtmsr %0" : : "r" (msr)); |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * Measure CPU clock speed (core clock GCLK1, GCLK2), |
| * also determine bus clock speed (checking bus divider factor) |
| * |
| * (Approx. GCLK frequency in Hz) |
| * |
| * Initializes timer 2 and PIT, but disables them before return. |
| * [Use timer 2, because MPC823 CPUs mask 0.x do not have timers 3 and 4] |
| * |
| * When measuring the CPU clock against the PIT, we count cpu clocks |
| * for 58/8192 seconds with a prescale divide by 177 for the cpu clock. |
| * These strange values for the timing interval and prescaling are used |
| * because the formula for the CPU clock is: |
| * |
| * CPU clock = count * (177 * (8192 / 58)) |
| * |
| * = count * 24999.7241 |
| * |
| * which is very close to |
| * |
| * = count * 25000 |
| * |
| * Since the count gives the CPU clock divided by 25000, we can get |
| * the CPU clock rounded to the nearest 0.1 MHz by |
| * |
| * CPU clock = ((count + 2) / 4) * 100000; |
| * |
| * The rounding is important since the measurement is sometimes going |
| * to be high or low by 0.025 MHz, depending on exactly how the clocks |
| * and counters interact. By rounding we get the exact answer for any |
| * CPU clock that is an even multiple of 0.1 MHz. |
| */ |
| |
| unsigned long measure_gclk(void) |
| { |
| volatile immap_t *immr = (immap_t *) CFG_IMMR; |
| volatile cpmtimer8xx_t *timerp = &immr->im_cpmtimer; |
| ulong timer2_val; |
| ulong msr_val; |
| |
| #ifdef CONFIG_MPC866_et_al |
| /* dont use OSCM, only use EXTCLK/512 */ |
| immr->im_clkrst.car_sccr |= SCCR_RTSEL | SCCR_RTDIV; |
| #else |
| immr->im_clkrst.car_sccr &= ~(SCCR_RTSEL | SCCR_RTDIV); |
| #endif |
| |
| /* Reset + Stop Timer 2, no cascading |
| */ |
| timerp->cpmt_tgcr &= ~(TGCR_CAS2 | TGCR_RST2); |
| |
| /* Keep stopped, halt in debug mode |
| */ |
| timerp->cpmt_tgcr |= (TGCR_FRZ2 | TGCR_STP2); |
| |
| /* Timer 2 setup: |
| * Output ref. interrupt disable, int. clock |
| * Prescale by 177. Note that prescaler divides by value + 1 |
| * so we must subtract 1 here. |
| */ |
| timerp->cpmt_tmr2 = ((177 - 1) << TMR_PS_SHIFT) | TMR_ICLK_IN_GEN; |
| |
| timerp->cpmt_tcn2 = 0; /* reset state */ |
| timerp->cpmt_tgcr |= TGCR_RST2; /* enable timer 2 */ |
| |
| /* |
| * PIT setup: |
| * |
| * We want to time for SPEED_PITC_COUNTS counts (of 8192 Hz), |
| * so the count value would be SPEED_PITC_COUNTS - 1. |
| * But there would be an uncertainty in the start time of 1/4 |
| * count since when we enable the PIT the count is not |
| * synchronized to the 32768 Hz oscillator. The trick here is |
| * to start the count higher and wait until the PIT count |
| * changes to the required value before starting timer 2. |
| * |
| * One count high should be enough, but occasionally the start |
| * is off by 1 or 2 counts of 32768 Hz. With the start value |
| * set two counts high it seems very reliable. |
| */ |
| |
| immr->im_sitk.sitk_pitck = KAPWR_KEY; /* PIT initialization */ |
| immr->im_sit.sit_pitc = SPEED_PITC_INIT; |
| |
| immr->im_sitk.sitk_piscrk = KAPWR_KEY; |
| immr->im_sit.sit_piscr = CFG_PISCR; |
| |
| /* |
| * Start measurement - disable interrupts, just in case |
| */ |
| msr_val = get_msr (); |
| set_msr (msr_val & ~MSR_EE); |
| |
| immr->im_sit.sit_piscr |= PISCR_PTE; |
| |
| /* spin until get exact count when we want to start */ |
| while (immr->im_sit.sit_pitr > SPEED_PITC); |
| |
| timerp->cpmt_tgcr &= ~TGCR_STP2; /* Start Timer 2 */ |
| while ((immr->im_sit.sit_piscr & PISCR_PS) == 0); |
| timerp->cpmt_tgcr |= TGCR_STP2; /* Stop Timer 2 */ |
| |
| /* re-enable external interrupts if they were on */ |
| set_msr (msr_val); |
| |
| /* Disable timer and PIT |
| */ |
| timer2_val = timerp->cpmt_tcn2; /* save before reset timer */ |
| |
| timerp->cpmt_tgcr &= ~(TGCR_RST2 | TGCR_FRZ2 | TGCR_STP2); |
| immr->im_sit.sit_piscr &= ~PISCR_PTE; |
| |
| #if defined(CONFIG_MPC866_et_al) |
| /* not using OSCM, using XIN, so scale appropriately */ |
| return (((timer2_val + 2) / 4) * (CFG_8XX_XIN/512))/8192 * 100000L; |
| #else |
| return ((timer2_val + 2) / 4) * 100000L; /* convert to Hz */ |
| #endif |
| } |
| |
| /* |
| * get_clocks() fills in gd->cpu_clock depending on CONFIG_8xx_GCLK_FREQ |
| * or (if it is not defined) measure_gclk() (which uses the ref clock) |
| * from above. |
| */ |
| int get_clocks (void) |
| { |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| volatile immap_t *immr = (immap_t *) CFG_IMMR; |
| #ifndef CONFIG_8xx_GCLK_FREQ |
| gd->cpu_clk = measure_gclk(); |
| #else /* CONFIG_8xx_GCLK_FREQ */ |
| /* |
| * If for some reason measuring the gclk frequency won't |
| * work, we return the hardwired value. |
| * (For example, the cogent CMA286-60 CPU module has no |
| * separate oscillator for PITRTCLK) |
| */ |
| |
| gd->cpu_clk = CONFIG_8xx_GCLK_FREQ; |
| |
| #endif /* CONFIG_8xx_GCLK_FREQ */ |
| |
| if ((immr->im_clkrst.car_sccr & SCCR_EBDF11) == 0) { |
| /* No Bus Divider active */ |
| gd->bus_clk = gd->cpu_clk; |
| } else { |
| /* The MPC8xx has only one BDF: half clock speed */ |
| gd->bus_clk = gd->cpu_clk / 2; |
| } |
| |
| return (0); |
| } |
| |
| /* ------------------------------------------------------------------------- */ |