| /* |
| * (C) Copyright 2001 |
| * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| /* sdram_init.c - automatic memory sizing */ |
| |
| #include <common.h> |
| #include <74xx_7xx.h> |
| #include <galileo/memory.h> |
| #include <galileo/pci.h> |
| #include <galileo/gt64260R.h> |
| #include <net.h> |
| |
| #include "eth.h" |
| #include "mpsc.h" |
| #include "i2c.h" |
| #include "64260.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* #define DEBUG */ |
| #define MAP_PCI |
| |
| #ifdef DEBUG |
| #define DP(x) x |
| #else |
| #define DP(x) |
| #endif |
| |
| #define GB (1 << 30) |
| |
| /* structure to store the relevant information about an sdram bank */ |
| typedef struct sdram_info { |
| uchar drb_size; |
| uchar registered, ecc; |
| uchar tpar; |
| uchar tras_clocks; |
| uchar burst_len; |
| uchar banks, slot; |
| int size; /* detected size, not from I2C but from dram_size() */ |
| } sdram_info_t; |
| |
| #ifdef DEBUG |
| void dump_dimm_info (struct sdram_info *d) |
| { |
| static const char *ecc_legend[] = { "", " Parity", " ECC" }; |
| |
| printf ("dimm%s %sDRAM: %dMibytes:\n", |
| ecc_legend[d->ecc], |
| d->registered ? "R" : "", (d->size >> 20)); |
| printf (" drb=%d tpar=%d tras=%d burstlen=%d banks=%d slot=%d\n", |
| d->drb_size, d->tpar, d->tras_clocks, d->burst_len, |
| d->banks, d->slot); |
| } |
| #endif |
| |
| static int |
| memory_map_bank (unsigned int bankNo, |
| unsigned int bankBase, unsigned int bankLength) |
| { |
| #ifdef DEBUG |
| if (bankLength > 0) { |
| printf ("mapping bank %d at %08x - %08x\n", |
| bankNo, bankBase, bankBase + bankLength - 1); |
| } else { |
| printf ("unmapping bank %d\n", bankNo); |
| } |
| #endif |
| |
| memoryMapBank (bankNo, bankBase, bankLength); |
| |
| return 0; |
| } |
| |
| #ifdef MAP_PCI |
| static int |
| memory_map_bank_pci (unsigned int bankNo, |
| unsigned int bankBase, unsigned int bankLength) |
| { |
| PCI_HOST host; |
| |
| for (host = PCI_HOST0; host <= PCI_HOST1; host++) { |
| const int features = |
| PREFETCH_ENABLE | |
| DELAYED_READ_ENABLE | |
| AGGRESSIVE_PREFETCH | |
| READ_LINE_AGGRESSIVE_PREFETCH | |
| READ_MULTI_AGGRESSIVE_PREFETCH | |
| MAX_BURST_4 | PCI_NO_SWAP; |
| |
| pciMapMemoryBank (host, bankNo, bankBase, bankLength); |
| |
| pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase, |
| bankLength); |
| |
| pciSetRegionFeatures (host, bankNo, features, bankBase, |
| bankLength); |
| } |
| return 0; |
| } |
| #endif |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* much of this code is based on (or is) the code in the pip405 port */ |
| /* thanks go to the authors of said port - Josh */ |
| |
| |
| /* |
| * translate ns.ns/10 coding of SPD timing values |
| * into 10 ps unit values |
| */ |
| static inline unsigned short NS10to10PS (unsigned char spd_byte) |
| { |
| unsigned short ns, ns10; |
| |
| /* isolate upper nibble */ |
| ns = (spd_byte >> 4) & 0x0F; |
| /* isolate lower nibble */ |
| ns10 = (spd_byte & 0x0F); |
| |
| return (ns * 100 + ns10 * 10); |
| } |
| |
| /* |
| * translate ns coding of SPD timing values |
| * into 10 ps unit values |
| */ |
| static inline unsigned short NSto10PS (unsigned char spd_byte) |
| { |
| return (spd_byte * 100); |
| } |
| |
| #ifdef CONFIG_ZUMA_V2 |
| static int check_dimm (uchar slot, sdram_info_t * info) |
| { |
| /* assume 2 dimms, 2 banks each 256M - we dont have an |
| * dimm i2c so rely on the detection routines later */ |
| |
| memset (info, 0, sizeof (*info)); |
| |
| info->slot = slot; |
| info->banks = 2; /* Detect later */ |
| info->registered = 0; |
| info->drb_size = 32; /* 16 - 256MBit, 32 - 512MBit |
| but doesn't matter, both do same |
| thing in setup_sdram() */ |
| info->tpar = 3; |
| info->tras_clocks = 5; |
| info->burst_len = 4; |
| #ifdef CONFIG_ECC |
| info->ecc = 0; /* Detect later */ |
| #endif /* CONFIG_ECC */ |
| return 0; |
| } |
| |
| #elif defined(CONFIG_P3G4) |
| |
| static int check_dimm (uchar slot, sdram_info_t * info) |
| { |
| memset (info, 0, sizeof (*info)); |
| |
| if (slot) |
| return 0; |
| |
| info->slot = slot; |
| info->banks = 1; |
| info->registered = 0; |
| info->drb_size = 4; |
| info->tpar = 3; |
| info->tras_clocks = 6; |
| info->burst_len = 4; |
| #ifdef CONFIG_ECC |
| info->ecc = 2; |
| #endif |
| return 0; |
| } |
| |
| #else /* ! CONFIG_ZUMA_V2 && ! CONFIG_P3G4 */ |
| |
| /* This code reads the SPD chip on the sdram and populates |
| * the array which is passed in with the relevant information */ |
| static int check_dimm (uchar slot, sdram_info_t * info) |
| { |
| uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR; |
| int ret; |
| uchar rows, cols, sdram_banks, supp_cal, width, cal_val; |
| ulong tmemclk; |
| uchar trp_clocks, trcd_clocks; |
| uchar data[128]; |
| |
| get_clocks (); |
| |
| tmemclk = 1000000000 / (gd->bus_clk / 100); /* in 10 ps units */ |
| |
| #ifdef CONFIG_EVB64260_750CX |
| if (0 != slot) { |
| printf ("check_dimm: The EVB-64260-750CX only has 1 DIMM,"); |
| printf (" called with slot=%d insetad!\n", slot); |
| return 0; |
| } |
| #endif |
| DP (puts ("before i2c read\n")); |
| |
| ret = i2c_read (addr, 0, 128, data, 0); |
| |
| DP (puts ("after i2c read\n")); |
| |
| /* zero all the values */ |
| memset (info, 0, sizeof (*info)); |
| |
| if (ret) { |
| DP (printf ("No DIMM in slot %d [err = %x]\n", slot, ret)); |
| return 0; |
| } |
| |
| /* first, do some sanity checks */ |
| if (data[2] != 0x4) { |
| printf ("Not SDRAM in slot %d\n", slot); |
| return 0; |
| } |
| |
| /* get various information */ |
| rows = data[3]; |
| cols = data[4]; |
| info->banks = data[5]; |
| sdram_banks = data[17]; |
| width = data[13] & 0x7f; |
| |
| DP (printf |
| ("sdram_banks: %d, banks: %d\n", sdram_banks, info->banks)); |
| |
| /* check if the memory is registered */ |
| if (data[21] & (BIT1 | BIT4)) |
| info->registered = 1; |
| |
| #ifdef CONFIG_ECC |
| /* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */ |
| info->ecc = (data[11] & 2) >> 1; |
| #endif |
| |
| /* bit 1 is CL2, bit 2 is CL3 */ |
| supp_cal = (data[18] & 0x6) >> 1; |
| |
| /* compute the relevant clock values */ |
| trp_clocks = (NSto10PS (data[27]) + (tmemclk - 1)) / tmemclk; |
| trcd_clocks = (NSto10PS (data[29]) + (tmemclk - 1)) / tmemclk; |
| info->tras_clocks = (NSto10PS (data[30]) + (tmemclk - 1)) / tmemclk; |
| |
| DP (printf ("trp = %d\ntrcd_clocks = %d\ntras_clocks = %d\n", |
| trp_clocks, trcd_clocks, info->tras_clocks)); |
| |
| /* try a CAS latency of 3 first... */ |
| cal_val = 0; |
| if (supp_cal & 3) { |
| if (NS10to10PS (data[9]) <= tmemclk) |
| cal_val = 3; |
| } |
| |
| /* then 2... */ |
| if (supp_cal & 2) { |
| if (NS10to10PS (data[23]) <= tmemclk) |
| cal_val = 2; |
| } |
| |
| DP (printf ("cal_val = %d\n", cal_val)); |
| |
| /* bummer, did't work... */ |
| if (cal_val == 0) { |
| DP (printf ("Couldn't find a good CAS latency\n")); |
| return 0; |
| } |
| |
| /* get the largest delay -- these values need to all be the same |
| * see Res#6 */ |
| info->tpar = cal_val; |
| if (trp_clocks > info->tpar) |
| info->tpar = trp_clocks; |
| if (trcd_clocks > info->tpar) |
| info->tpar = trcd_clocks; |
| |
| DP (printf ("tpar set to: %d\n", info->tpar)); |
| |
| #ifdef CFG_BROKEN_CL2 |
| if (info->tpar == 2) { |
| info->tpar = 3; |
| DP (printf ("tpar fixed-up to: %d\n", info->tpar)); |
| } |
| #endif |
| /* compute the module DRB size */ |
| info->drb_size = |
| (((1 << (rows + cols)) * sdram_banks) * width) / _16M; |
| |
| DP (printf ("drb_size set to: %d\n", info->drb_size)); |
| |
| /* find the burst len */ |
| info->burst_len = data[16] & 0xf; |
| if ((info->burst_len & 8) == 8) { |
| info->burst_len = 1; |
| } else if ((info->burst_len & 4) == 4) { |
| info->burst_len = 0; |
| } else { |
| return 0; |
| } |
| |
| info->slot = slot; |
| return 0; |
| } |
| #endif /* ! CONFIG_ZUMA_V2 */ |
| |
| static int setup_sdram_common (sdram_info_t info[2]) |
| { |
| ulong tmp; |
| int tpar = 2, tras_clocks = 5, registered = 1, ecc = 2; |
| |
| if (!info[0].banks && !info[1].banks) |
| return 0; |
| |
| if (info[0].banks) { |
| if (info[0].tpar > tpar) |
| tpar = info[0].tpar; |
| if (info[0].tras_clocks > tras_clocks) |
| tras_clocks = info[0].tras_clocks; |
| if (!info[0].registered) |
| registered = 0; |
| if (info[0].ecc != 2) |
| ecc = 0; |
| } |
| |
| if (info[1].banks) { |
| if (info[1].tpar > tpar) |
| tpar = info[1].tpar; |
| if (info[1].tras_clocks > tras_clocks) |
| tras_clocks = info[1].tras_clocks; |
| if (!info[1].registered) |
| registered = 0; |
| if (info[1].ecc != 2) |
| ecc = 0; |
| } |
| |
| /* SDRAM configuration */ |
| tmp = GTREGREAD (SDRAM_CONFIGURATION); |
| |
| /* Turn on physical interleave if both DIMMs |
| * have even numbers of banks. */ |
| if ((info[0].banks == 0 || info[0].banks == 2) && |
| (info[1].banks == 0 || info[1].banks == 2)) { |
| /* physical interleave on */ |
| tmp &= ~(1 << 15); |
| } else { |
| /* physical interleave off */ |
| tmp |= (1 << 15); |
| } |
| |
| tmp |= (registered << 17); |
| |
| /* Use buffer 1 to return read data to the CPU |
| * See Res #12 */ |
| tmp |= (1 << 26); |
| |
| GT_REG_WRITE (SDRAM_CONFIGURATION, tmp); |
| DP (printf ("SDRAM config: %08x\n", GTREGREAD (SDRAM_CONFIGURATION))); |
| |
| /* SDRAM timing */ |
| tmp = (((tpar == 3) ? 2 : 1) | |
| (((tpar == 3) ? 2 : 1) << 2) | |
| (((tpar == 3) ? 2 : 1) << 4) | (tras_clocks << 8)); |
| |
| #ifdef CONFIG_ECC |
| /* Setup ECC */ |
| if (ecc == 2) |
| tmp |= 1 << 13; |
| #endif /* CONFIG_ECC */ |
| |
| GT_REG_WRITE (SDRAM_TIMING, tmp); |
| DP (printf ("SDRAM timing: %08x (%d,%d,%d,%d)\n", |
| GTREGREAD (SDRAM_TIMING), tpar, tpar, tpar, tras_clocks)); |
| |
| /* SDRAM address decode register */ |
| /* program this with the default value */ |
| GT_REG_WRITE (SDRAM_ADDRESS_DECODE, 0x2); |
| DP (printf ("SDRAM decode: %08x\n", |
| GTREGREAD (SDRAM_ADDRESS_DECODE))); |
| |
| return 0; |
| } |
| |
| /* sets up the GT properly with information passed in */ |
| static int setup_sdram (sdram_info_t * info) |
| { |
| ulong tmp, check; |
| ulong *addr = 0; |
| int i; |
| |
| /* sanity checking */ |
| if (!info->banks) |
| return 0; |
| |
| /* ---------------------------- */ |
| /* Program the GT with the discovered data */ |
| |
| /* bank parameters */ |
| tmp = (0xf << 16); /* leave all virt bank pages open */ |
| |
| DP (printf ("drb_size: %d\n", info->drb_size)); |
| switch (info->drb_size) { |
| case 1: |
| tmp |= (1 << 14); |
| break; |
| case 4: |
| case 8: |
| tmp |= (2 << 14); |
| break; |
| case 16: |
| case 32: |
| tmp |= (3 << 14); |
| break; |
| default: |
| printf ("Error in dram size calculation\n"); |
| return 1; |
| } |
| |
| /* SDRAM bank parameters */ |
| /* the param registers for slot 1 (banks 2+3) are offset by 0x8 */ |
| GT_REG_WRITE (SDRAM_BANK0PARAMETERS + (info->slot * 0x8), tmp); |
| GT_REG_WRITE (SDRAM_BANK1PARAMETERS + (info->slot * 0x8), tmp); |
| DP (printf |
| ("SDRAM bankparam slot %d (bank %d+%d): %08lx\n", info->slot, |
| info->slot * 2, (info->slot * 2) + 1, tmp)); |
| |
| /* set the SDRAM configuration for each bank */ |
| for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) { |
| DP (printf ("*** Running a MRS cycle for bank %d ***\n", i)); |
| |
| /* map the bank */ |
| memory_map_bank (i, 0, GB / 4); |
| |
| /* set SDRAM mode */ |
| GT_REG_WRITE (SDRAM_OPERATION_MODE, 0x3); |
| check = GTREGREAD (SDRAM_OPERATION_MODE); |
| |
| /* dummy write */ |
| *addr = 0; |
| |
| /* wait for the command to complete */ |
| while ((GTREGREAD (SDRAM_OPERATION_MODE) & (1 << 31)) == 0); |
| |
| /* switch back to normal operation mode */ |
| GT_REG_WRITE (SDRAM_OPERATION_MODE, 0); |
| check = GTREGREAD (SDRAM_OPERATION_MODE); |
| |
| /* unmap the bank */ |
| memory_map_bank (i, 0, 0); |
| DP (printf ("*** MRS cycle for bank %d done ***\n", i)); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Check memory range for valid RAM. A simple memory test determines |
| * the actually available RAM size between addresses `base' and |
| * `base + maxsize'. Some (not all) hardware errors are detected: |
| * - short between address lines |
| * - short between data lines |
| */ |
| static long int dram_size (long int *base, long int maxsize) |
| { |
| volatile long int *addr, *b = base; |
| long int cnt, val, save1, save2; |
| |
| #define STARTVAL (1<<20) /* start test at 1M */ |
| for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long); |
| cnt <<= 1) { |
| addr = base + cnt; /* pointer arith! */ |
| |
| save1 = *addr; /* save contents of addr */ |
| save2 = *b; /* save contents of base */ |
| |
| *addr = cnt; /* write cnt to addr */ |
| *b = 0; /* put null at base */ |
| |
| /* check at base address */ |
| if ((*b) != 0) { |
| *addr = save1; /* restore *addr */ |
| *b = save2; /* restore *b */ |
| return (0); |
| } |
| val = *addr; /* read *addr */ |
| |
| *addr = save1; |
| *b = save2; |
| |
| if (val != cnt) { |
| /* fix boundary condition.. STARTVAL means zero */ |
| if (cnt == STARTVAL / sizeof (long)) |
| cnt = 0; |
| return (cnt * sizeof (long)); |
| } |
| } |
| return maxsize; |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* U-Boot interface function to SDRAM init - this is where all the |
| * controlling logic happens */ |
| phys_size_t initdram (int board_type) |
| { |
| ulong checkbank[4] = {[0 ... 3] = 0 }; |
| int bank_no; |
| ulong total; |
| int nhr; |
| sdram_info_t dimm_info[2]; |
| |
| |
| /* first, use the SPD to get info about the SDRAM */ |
| |
| /* check the NHR bit and skip mem init if it's already done */ |
| nhr = get_hid0 () & (1 << 16); |
| |
| if (nhr) { |
| printf ("Skipping SDRAM setup due to NHR bit being set\n"); |
| } else { |
| /* DIMM0 */ |
| check_dimm (0, &dimm_info[0]); |
| |
| /* DIMM1 */ |
| #ifndef CONFIG_EVB64260_750CX /* EVB64260_750CX has only 1 DIMM */ |
| check_dimm (1, &dimm_info[1]); |
| #else /* CONFIG_EVB64260_750CX */ |
| memset (&dimm_info[1], 0, sizeof (sdram_info_t)); |
| #endif |
| |
| /* unmap all banks */ |
| memory_map_bank (0, 0, 0); |
| memory_map_bank (1, 0, 0); |
| memory_map_bank (2, 0, 0); |
| memory_map_bank (3, 0, 0); |
| |
| /* Now, program the GT with the correct values */ |
| if (setup_sdram_common (dimm_info)) { |
| printf ("Setup common failed.\n"); |
| } |
| |
| if (setup_sdram (&dimm_info[0])) { |
| printf ("Setup for DIMM1 failed.\n"); |
| } |
| |
| if (setup_sdram (&dimm_info[1])) { |
| printf ("Setup for DIMM2 failed.\n"); |
| } |
| |
| /* set the NHR bit */ |
| set_hid0 (get_hid0 () | (1 << 16)); |
| } |
| /* next, size the SDRAM banks */ |
| |
| total = 0; |
| if (dimm_info[0].banks > 0) |
| checkbank[0] = 1; |
| if (dimm_info[0].banks > 1) |
| checkbank[1] = 1; |
| if (dimm_info[0].banks > 2) |
| printf ("Error, SPD claims DIMM1 has >2 banks\n"); |
| |
| if (dimm_info[1].banks > 0) |
| checkbank[2] = 1; |
| if (dimm_info[1].banks > 1) |
| checkbank[3] = 1; |
| if (dimm_info[1].banks > 2) |
| printf ("Error, SPD claims DIMM2 has >2 banks\n"); |
| |
| /* Generic dram sizer: works even if we don't have i2c DIMMs, |
| * as long as the timing settings are more or less correct */ |
| |
| /* |
| * pass 1: size all the banks, using first bat (0-256M) |
| * limitation: we only support 256M per bank due to |
| * us only having 1 BAT for all DRAM |
| */ |
| for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) { |
| /* skip over banks that are not populated */ |
| if (!checkbank[bank_no]) |
| continue; |
| |
| DP (printf ("checking bank %d\n", bank_no)); |
| |
| memory_map_bank (bank_no, 0, GB / 4); |
| checkbank[bank_no] = dram_size (NULL, GB / 4); |
| memory_map_bank (bank_no, 0, 0); |
| |
| DP (printf ("bank %d %08lx\n", bank_no, checkbank[bank_no])); |
| } |
| |
| /* |
| * pass 2: contiguously map each bank into physical address |
| * space. |
| */ |
| dimm_info[0].banks = dimm_info[1].banks = 0; |
| for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) { |
| if (!checkbank[bank_no]) |
| continue; |
| |
| dimm_info[bank_no / 2].banks++; |
| dimm_info[bank_no / 2].size += checkbank[bank_no]; |
| |
| memory_map_bank (bank_no, total, checkbank[bank_no]); |
| #ifdef MAP_PCI |
| memory_map_bank_pci (bank_no, total, checkbank[bank_no]); |
| #endif |
| total += checkbank[bank_no]; |
| } |
| |
| #ifdef CONFIG_ECC |
| #ifdef CONFIG_ZUMA_V2 |
| /* |
| * We always enable ECC when bank 2 and 3 are unpopulated |
| * If we 2 or 3 are populated, we CAN'T support ECC. |
| * (Zuma boards only support ECC in banks 0 and 1; assume that |
| * in that configuration, ECC chips are mounted, even for stacked |
| * chips) |
| */ |
| if (checkbank[2] == 0 && checkbank[3] == 0) { |
| dimm_info[0].ecc = 2; |
| GT_REG_WRITE (SDRAM_TIMING, |
| GTREGREAD (SDRAM_TIMING) | (1 << 13)); |
| /* TODO: do we have to run MRS cycles again? */ |
| } |
| #endif /* CONFIG_ZUMA_V2 */ |
| |
| if (GTREGREAD (SDRAM_TIMING) & (1 << 13)) { |
| puts ("[ECC] "); |
| } |
| #endif /* CONFIG_ECC */ |
| |
| #ifdef DEBUG |
| dump_dimm_info (&dimm_info[0]); |
| dump_dimm_info (&dimm_info[1]); |
| #endif |
| /* TODO: return at MOST 256M? */ |
| /* return total > GB/4 ? GB/4 : total; */ |
| return total; |
| } |