| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * MUSB OTG driver host support |
| * |
| * Copyright 2005 Mentor Graphics Corporation |
| * Copyright (C) 2005-2006 by Texas Instruments |
| * Copyright (C) 2006-2007 Nokia Corporation |
| * Copyright (C) 2008-2009 MontaVista Software, Inc. <source@mvista.com> |
| */ |
| |
| #ifndef __UBOOT__ |
| #include <dm/device_compat.h> |
| #include <dm/devres.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/dma-mapping.h> |
| #else |
| #include <common.h> |
| #include <dm.h> |
| #include <dm/device_compat.h> |
| #include <usb.h> |
| #include <linux/bug.h> |
| #include <linux/usb/usb_urb_compat.h> |
| #include "linux-compat.h" |
| #endif |
| |
| #include "musb_core.h" |
| #include "musb_host.h" |
| |
| |
| /* MUSB HOST status 22-mar-2006 |
| * |
| * - There's still lots of partial code duplication for fault paths, so |
| * they aren't handled as consistently as they need to be. |
| * |
| * - PIO mostly behaved when last tested. |
| * + including ep0, with all usbtest cases 9, 10 |
| * + usbtest 14 (ep0out) doesn't seem to run at all |
| * + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest |
| * configurations, but otherwise double buffering passes basic tests. |
| * + for 2.6.N, for N > ~10, needs API changes for hcd framework. |
| * |
| * - DMA (CPPI) ... partially behaves, not currently recommended |
| * + about 1/15 the speed of typical EHCI implementations (PCI) |
| * + RX, all too often reqpkt seems to misbehave after tx |
| * + TX, no known issues (other than evident silicon issue) |
| * |
| * - DMA (Mentor/OMAP) ...has at least toggle update problems |
| * |
| * - [23-feb-2009] minimal traffic scheduling to avoid bulk RX packet |
| * starvation ... nothing yet for TX, interrupt, or bulk. |
| * |
| * - Not tested with HNP, but some SRP paths seem to behave. |
| * |
| * NOTE 24-August-2006: |
| * |
| * - Bulk traffic finally uses both sides of hardware ep1, freeing up an |
| * extra endpoint for periodic use enabling hub + keybd + mouse. That |
| * mostly works, except that with "usbnet" it's easy to trigger cases |
| * with "ping" where RX loses. (a) ping to davinci, even "ping -f", |
| * fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses |
| * although ARP RX wins. (That test was done with a full speed link.) |
| */ |
| |
| |
| /* |
| * NOTE on endpoint usage: |
| * |
| * CONTROL transfers all go through ep0. BULK ones go through dedicated IN |
| * and OUT endpoints ... hardware is dedicated for those "async" queue(s). |
| * (Yes, bulk _could_ use more of the endpoints than that, and would even |
| * benefit from it.) |
| * |
| * INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints. |
| * So far that scheduling is both dumb and optimistic: the endpoint will be |
| * "claimed" until its software queue is no longer refilled. No multiplexing |
| * of transfers between endpoints, or anything clever. |
| */ |
| |
| |
| static void musb_ep_program(struct musb *musb, u8 epnum, |
| struct urb *urb, int is_out, |
| u8 *buf, u32 offset, u32 len); |
| |
| /* |
| * Clear TX fifo. Needed to avoid BABBLE errors. |
| */ |
| static void musb_h_tx_flush_fifo(struct musb_hw_ep *ep) |
| { |
| struct musb *musb = ep->musb; |
| void __iomem *epio = ep->regs; |
| u16 csr; |
| u16 lastcsr = 0; |
| int retries = 1000; |
| |
| csr = musb_readw(epio, MUSB_TXCSR); |
| while (csr & MUSB_TXCSR_FIFONOTEMPTY) { |
| if (csr != lastcsr) |
| dev_dbg(musb->controller, "Host TX FIFONOTEMPTY csr: %02x\n", csr); |
| lastcsr = csr; |
| csr |= MUSB_TXCSR_FLUSHFIFO; |
| musb_writew(epio, MUSB_TXCSR, csr); |
| csr = musb_readw(epio, MUSB_TXCSR); |
| if (WARN(retries-- < 1, |
| "Could not flush host TX%d fifo: csr: %04x\n", |
| ep->epnum, csr)) |
| return; |
| mdelay(1); |
| } |
| } |
| |
| static void musb_h_ep0_flush_fifo(struct musb_hw_ep *ep) |
| { |
| void __iomem *epio = ep->regs; |
| u16 csr; |
| int retries = 5; |
| |
| /* scrub any data left in the fifo */ |
| do { |
| csr = musb_readw(epio, MUSB_TXCSR); |
| if (!(csr & (MUSB_CSR0_TXPKTRDY | MUSB_CSR0_RXPKTRDY))) |
| break; |
| musb_writew(epio, MUSB_TXCSR, MUSB_CSR0_FLUSHFIFO); |
| csr = musb_readw(epio, MUSB_TXCSR); |
| udelay(10); |
| } while (--retries); |
| |
| WARN(!retries, "Could not flush host TX%d fifo: csr: %04x\n", |
| ep->epnum, csr); |
| |
| /* and reset for the next transfer */ |
| musb_writew(epio, MUSB_TXCSR, 0); |
| } |
| |
| /* |
| * Start transmit. Caller is responsible for locking shared resources. |
| * musb must be locked. |
| */ |
| static inline void musb_h_tx_start(struct musb_hw_ep *ep) |
| { |
| u16 txcsr; |
| |
| /* NOTE: no locks here; caller should lock and select EP */ |
| if (ep->epnum) { |
| txcsr = musb_readw(ep->regs, MUSB_TXCSR); |
| txcsr |= MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_H_WZC_BITS; |
| musb_writew(ep->regs, MUSB_TXCSR, txcsr); |
| } else { |
| txcsr = MUSB_CSR0_H_SETUPPKT | MUSB_CSR0_TXPKTRDY; |
| musb_writew(ep->regs, MUSB_CSR0, txcsr); |
| } |
| |
| } |
| |
| static inline void musb_h_tx_dma_start(struct musb_hw_ep *ep) |
| { |
| u16 txcsr; |
| |
| /* NOTE: no locks here; caller should lock and select EP */ |
| txcsr = musb_readw(ep->regs, MUSB_TXCSR); |
| txcsr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_WZC_BITS; |
| if (is_cppi_enabled()) |
| txcsr |= MUSB_TXCSR_DMAMODE; |
| musb_writew(ep->regs, MUSB_TXCSR, txcsr); |
| } |
| |
| static void musb_ep_set_qh(struct musb_hw_ep *ep, int is_in, struct musb_qh *qh) |
| { |
| if (is_in != 0 || ep->is_shared_fifo) |
| ep->in_qh = qh; |
| if (is_in == 0 || ep->is_shared_fifo) |
| ep->out_qh = qh; |
| } |
| |
| static struct musb_qh *musb_ep_get_qh(struct musb_hw_ep *ep, int is_in) |
| { |
| return is_in ? ep->in_qh : ep->out_qh; |
| } |
| |
| /* |
| * Start the URB at the front of an endpoint's queue |
| * end must be claimed from the caller. |
| * |
| * Context: controller locked, irqs blocked |
| */ |
| static void |
| musb_start_urb(struct musb *musb, int is_in, struct musb_qh *qh) |
| { |
| u16 frame; |
| u32 len; |
| void __iomem *mbase = musb->mregs; |
| struct urb *urb = next_urb(qh); |
| void *buf = urb->transfer_buffer; |
| u32 offset = 0; |
| struct musb_hw_ep *hw_ep = qh->hw_ep; |
| unsigned pipe = urb->pipe; |
| u8 address = usb_pipedevice(pipe); |
| int epnum = hw_ep->epnum; |
| |
| /* initialize software qh state */ |
| qh->offset = 0; |
| qh->segsize = 0; |
| |
| /* gather right source of data */ |
| switch (qh->type) { |
| case USB_ENDPOINT_XFER_CONTROL: |
| /* control transfers always start with SETUP */ |
| is_in = 0; |
| musb->ep0_stage = MUSB_EP0_START; |
| buf = urb->setup_packet; |
| len = 8; |
| break; |
| #ifndef __UBOOT__ |
| case USB_ENDPOINT_XFER_ISOC: |
| qh->iso_idx = 0; |
| qh->frame = 0; |
| offset = urb->iso_frame_desc[0].offset; |
| len = urb->iso_frame_desc[0].length; |
| break; |
| #endif |
| default: /* bulk, interrupt */ |
| /* actual_length may be nonzero on retry paths */ |
| buf = urb->transfer_buffer + urb->actual_length; |
| len = urb->transfer_buffer_length - urb->actual_length; |
| } |
| |
| dev_dbg(musb->controller, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n", |
| qh, urb, address, qh->epnum, |
| is_in ? "in" : "out", |
| ({char *s; switch (qh->type) { |
| case USB_ENDPOINT_XFER_CONTROL: s = ""; break; |
| case USB_ENDPOINT_XFER_BULK: s = "-bulk"; break; |
| #ifndef __UBOOT__ |
| case USB_ENDPOINT_XFER_ISOC: s = "-iso"; break; |
| #endif |
| default: s = "-intr"; break; |
| }; s; }), |
| epnum, buf + offset, len); |
| |
| /* Configure endpoint */ |
| musb_ep_set_qh(hw_ep, is_in, qh); |
| musb_ep_program(musb, epnum, urb, !is_in, buf, offset, len); |
| |
| /* transmit may have more work: start it when it is time */ |
| if (is_in) |
| return; |
| |
| /* determine if the time is right for a periodic transfer */ |
| switch (qh->type) { |
| #ifndef __UBOOT__ |
| case USB_ENDPOINT_XFER_ISOC: |
| #endif |
| case USB_ENDPOINT_XFER_INT: |
| dev_dbg(musb->controller, "check whether there's still time for periodic Tx\n"); |
| frame = musb_readw(mbase, MUSB_FRAME); |
| /* FIXME this doesn't implement that scheduling policy ... |
| * or handle framecounter wrapping |
| */ |
| #ifndef __UBOOT__ |
| if ((urb->transfer_flags & URB_ISO_ASAP) |
| || (frame >= urb->start_frame)) { |
| /* REVISIT the SOF irq handler shouldn't duplicate |
| * this code; and we don't init urb->start_frame... |
| */ |
| qh->frame = 0; |
| goto start; |
| } else { |
| #endif |
| qh->frame = urb->start_frame; |
| /* enable SOF interrupt so we can count down */ |
| dev_dbg(musb->controller, "SOF for %d\n", epnum); |
| #if 1 /* ifndef CONFIG_ARCH_DAVINCI */ |
| musb_writeb(mbase, MUSB_INTRUSBE, 0xff); |
| #endif |
| #ifndef __UBOOT__ |
| } |
| #endif |
| break; |
| default: |
| start: |
| dev_dbg(musb->controller, "Start TX%d %s\n", epnum, |
| hw_ep->tx_channel ? "dma" : "pio"); |
| |
| if (!hw_ep->tx_channel) |
| musb_h_tx_start(hw_ep); |
| else if (is_cppi_enabled() || tusb_dma_omap()) |
| musb_h_tx_dma_start(hw_ep); |
| } |
| } |
| |
| /* Context: caller owns controller lock, IRQs are blocked */ |
| static void musb_giveback(struct musb *musb, struct urb *urb, int status) |
| __releases(musb->lock) |
| __acquires(musb->lock) |
| { |
| dev_dbg(musb->controller, |
| "complete %p %pF (%d), dev%d ep%d%s, %d/%d\n", |
| urb, urb->complete, status, |
| usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out", |
| urb->actual_length, urb->transfer_buffer_length |
| ); |
| |
| usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb), urb); |
| spin_unlock(&musb->lock); |
| usb_hcd_giveback_urb(musb_to_hcd(musb), urb, status); |
| spin_lock(&musb->lock); |
| } |
| |
| /* For bulk/interrupt endpoints only */ |
| static inline void musb_save_toggle(struct musb_qh *qh, int is_in, |
| struct urb *urb) |
| { |
| void __iomem *epio = qh->hw_ep->regs; |
| u16 csr; |
| |
| /* |
| * FIXME: the current Mentor DMA code seems to have |
| * problems getting toggle correct. |
| */ |
| |
| if (is_in) |
| csr = musb_readw(epio, MUSB_RXCSR) & MUSB_RXCSR_H_DATATOGGLE; |
| else |
| csr = musb_readw(epio, MUSB_TXCSR) & MUSB_TXCSR_H_DATATOGGLE; |
| |
| usb_settoggle(urb->dev, qh->epnum, !is_in, csr ? 1 : 0); |
| } |
| |
| /* |
| * Advance this hardware endpoint's queue, completing the specified URB and |
| * advancing to either the next URB queued to that qh, or else invalidating |
| * that qh and advancing to the next qh scheduled after the current one. |
| * |
| * Context: caller owns controller lock, IRQs are blocked |
| */ |
| static void musb_advance_schedule(struct musb *musb, struct urb *urb, |
| struct musb_hw_ep *hw_ep, int is_in) |
| { |
| struct musb_qh *qh = musb_ep_get_qh(hw_ep, is_in); |
| struct musb_hw_ep *ep = qh->hw_ep; |
| int ready = qh->is_ready; |
| int status; |
| |
| status = (urb->status == -EINPROGRESS) ? 0 : urb->status; |
| |
| /* save toggle eagerly, for paranoia */ |
| switch (qh->type) { |
| case USB_ENDPOINT_XFER_BULK: |
| case USB_ENDPOINT_XFER_INT: |
| musb_save_toggle(qh, is_in, urb); |
| break; |
| #ifndef __UBOOT__ |
| case USB_ENDPOINT_XFER_ISOC: |
| if (status == 0 && urb->error_count) |
| status = -EXDEV; |
| break; |
| #endif |
| } |
| |
| qh->is_ready = 0; |
| musb_giveback(musb, urb, status); |
| qh->is_ready = ready; |
| |
| /* reclaim resources (and bandwidth) ASAP; deschedule it, and |
| * invalidate qh as soon as list_empty(&hep->urb_list) |
| */ |
| if (list_empty(&qh->hep->urb_list)) { |
| struct list_head *head; |
| struct dma_controller *dma = musb->dma_controller; |
| |
| if (is_in) { |
| ep->rx_reinit = 1; |
| if (ep->rx_channel) { |
| dma->channel_release(ep->rx_channel); |
| ep->rx_channel = NULL; |
| } |
| } else { |
| ep->tx_reinit = 1; |
| if (ep->tx_channel) { |
| dma->channel_release(ep->tx_channel); |
| ep->tx_channel = NULL; |
| } |
| } |
| |
| /* Clobber old pointers to this qh */ |
| musb_ep_set_qh(ep, is_in, NULL); |
| qh->hep->hcpriv = NULL; |
| |
| switch (qh->type) { |
| |
| case USB_ENDPOINT_XFER_CONTROL: |
| case USB_ENDPOINT_XFER_BULK: |
| /* fifo policy for these lists, except that NAKing |
| * should rotate a qh to the end (for fairness). |
| */ |
| if (qh->mux == 1) { |
| head = qh->ring.prev; |
| list_del(&qh->ring); |
| kfree(qh); |
| qh = first_qh(head); |
| break; |
| } |
| |
| case USB_ENDPOINT_XFER_ISOC: |
| case USB_ENDPOINT_XFER_INT: |
| /* this is where periodic bandwidth should be |
| * de-allocated if it's tracked and allocated; |
| * and where we'd update the schedule tree... |
| */ |
| kfree(qh); |
| qh = NULL; |
| break; |
| } |
| } |
| |
| if (qh != NULL && qh->is_ready) { |
| dev_dbg(musb->controller, "... next ep%d %cX urb %p\n", |
| hw_ep->epnum, is_in ? 'R' : 'T', next_urb(qh)); |
| musb_start_urb(musb, is_in, qh); |
| } |
| } |
| |
| static u16 musb_h_flush_rxfifo(struct musb_hw_ep *hw_ep, u16 csr) |
| { |
| /* we don't want fifo to fill itself again; |
| * ignore dma (various models), |
| * leave toggle alone (may not have been saved yet) |
| */ |
| csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_RXPKTRDY; |
| csr &= ~(MUSB_RXCSR_H_REQPKT |
| | MUSB_RXCSR_H_AUTOREQ |
| | MUSB_RXCSR_AUTOCLEAR); |
| |
| /* write 2x to allow double buffering */ |
| musb_writew(hw_ep->regs, MUSB_RXCSR, csr); |
| musb_writew(hw_ep->regs, MUSB_RXCSR, csr); |
| |
| /* flush writebuffer */ |
| return musb_readw(hw_ep->regs, MUSB_RXCSR); |
| } |
| |
| /* |
| * PIO RX for a packet (or part of it). |
| */ |
| static bool |
| musb_host_packet_rx(struct musb *musb, struct urb *urb, u8 epnum, u8 iso_err) |
| { |
| u16 rx_count; |
| u8 *buf; |
| u16 csr; |
| bool done = false; |
| u32 length; |
| int do_flush = 0; |
| struct musb_hw_ep *hw_ep = musb->endpoints + epnum; |
| void __iomem *epio = hw_ep->regs; |
| struct musb_qh *qh = hw_ep->in_qh; |
| int pipe = urb->pipe; |
| void *buffer = urb->transfer_buffer; |
| |
| /* musb_ep_select(mbase, epnum); */ |
| rx_count = musb_readw(epio, MUSB_RXCOUNT); |
| dev_dbg(musb->controller, "RX%d count %d, buffer %p len %d/%d\n", epnum, rx_count, |
| urb->transfer_buffer, qh->offset, |
| urb->transfer_buffer_length); |
| |
| /* unload FIFO */ |
| #ifndef __UBOOT__ |
| if (usb_pipeisoc(pipe)) { |
| int status = 0; |
| struct usb_iso_packet_descriptor *d; |
| |
| if (iso_err) { |
| status = -EILSEQ; |
| urb->error_count++; |
| } |
| |
| d = urb->iso_frame_desc + qh->iso_idx; |
| buf = buffer + d->offset; |
| length = d->length; |
| if (rx_count > length) { |
| if (status == 0) { |
| status = -EOVERFLOW; |
| urb->error_count++; |
| } |
| dev_dbg(musb->controller, "** OVERFLOW %d into %d\n", rx_count, length); |
| do_flush = 1; |
| } else |
| length = rx_count; |
| urb->actual_length += length; |
| d->actual_length = length; |
| |
| d->status = status; |
| |
| /* see if we are done */ |
| done = (++qh->iso_idx >= urb->number_of_packets); |
| } else { |
| #endif |
| /* non-isoch */ |
| buf = buffer + qh->offset; |
| length = urb->transfer_buffer_length - qh->offset; |
| if (rx_count > length) { |
| if (urb->status == -EINPROGRESS) |
| urb->status = -EOVERFLOW; |
| dev_dbg(musb->controller, "** OVERFLOW %d into %d\n", rx_count, length); |
| do_flush = 1; |
| } else |
| length = rx_count; |
| urb->actual_length += length; |
| qh->offset += length; |
| |
| /* see if we are done */ |
| done = (urb->actual_length == urb->transfer_buffer_length) |
| || (rx_count < qh->maxpacket) |
| || (urb->status != -EINPROGRESS); |
| if (done |
| && (urb->status == -EINPROGRESS) |
| && (urb->transfer_flags & URB_SHORT_NOT_OK) |
| && (urb->actual_length |
| < urb->transfer_buffer_length)) |
| urb->status = -EREMOTEIO; |
| #ifndef __UBOOT__ |
| } |
| #endif |
| |
| musb_read_fifo(hw_ep, length, buf); |
| |
| csr = musb_readw(epio, MUSB_RXCSR); |
| csr |= MUSB_RXCSR_H_WZC_BITS; |
| if (unlikely(do_flush)) |
| musb_h_flush_rxfifo(hw_ep, csr); |
| else { |
| /* REVISIT this assumes AUTOCLEAR is never set */ |
| csr &= ~(MUSB_RXCSR_RXPKTRDY | MUSB_RXCSR_H_REQPKT); |
| if (!done) |
| csr |= MUSB_RXCSR_H_REQPKT; |
| musb_writew(epio, MUSB_RXCSR, csr); |
| } |
| |
| return done; |
| } |
| |
| /* we don't always need to reinit a given side of an endpoint... |
| * when we do, use tx/rx reinit routine and then construct a new CSR |
| * to address data toggle, NYET, and DMA or PIO. |
| * |
| * it's possible that driver bugs (especially for DMA) or aborting a |
| * transfer might have left the endpoint busier than it should be. |
| * the busy/not-empty tests are basically paranoia. |
| */ |
| static void |
| musb_rx_reinit(struct musb *musb, struct musb_qh *qh, struct musb_hw_ep *ep) |
| { |
| u16 csr; |
| |
| /* NOTE: we know the "rx" fifo reinit never triggers for ep0. |
| * That always uses tx_reinit since ep0 repurposes TX register |
| * offsets; the initial SETUP packet is also a kind of OUT. |
| */ |
| |
| /* if programmed for Tx, put it in RX mode */ |
| if (ep->is_shared_fifo) { |
| csr = musb_readw(ep->regs, MUSB_TXCSR); |
| if (csr & MUSB_TXCSR_MODE) { |
| musb_h_tx_flush_fifo(ep); |
| csr = musb_readw(ep->regs, MUSB_TXCSR); |
| musb_writew(ep->regs, MUSB_TXCSR, |
| csr | MUSB_TXCSR_FRCDATATOG); |
| } |
| |
| /* |
| * Clear the MODE bit (and everything else) to enable Rx. |
| * NOTE: we mustn't clear the DMAMODE bit before DMAENAB. |
| */ |
| if (csr & MUSB_TXCSR_DMAMODE) |
| musb_writew(ep->regs, MUSB_TXCSR, MUSB_TXCSR_DMAMODE); |
| musb_writew(ep->regs, MUSB_TXCSR, 0); |
| |
| /* scrub all previous state, clearing toggle */ |
| } else { |
| csr = musb_readw(ep->regs, MUSB_RXCSR); |
| if (csr & MUSB_RXCSR_RXPKTRDY) |
| WARNING("rx%d, packet/%d ready?\n", ep->epnum, |
| musb_readw(ep->regs, MUSB_RXCOUNT)); |
| |
| musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG); |
| } |
| |
| /* target addr and (for multipoint) hub addr/port */ |
| if (musb->is_multipoint) { |
| musb_write_rxfunaddr(ep->target_regs, qh->addr_reg); |
| musb_write_rxhubaddr(ep->target_regs, qh->h_addr_reg); |
| musb_write_rxhubport(ep->target_regs, qh->h_port_reg); |
| |
| } else |
| musb_writeb(musb->mregs, MUSB_FADDR, qh->addr_reg); |
| |
| /* protocol/endpoint, interval/NAKlimit, i/o size */ |
| musb_writeb(ep->regs, MUSB_RXTYPE, qh->type_reg); |
| musb_writeb(ep->regs, MUSB_RXINTERVAL, qh->intv_reg); |
| /* NOTE: bulk combining rewrites high bits of maxpacket */ |
| /* Set RXMAXP with the FIFO size of the endpoint |
| * to disable double buffer mode. |
| */ |
| if (musb->double_buffer_not_ok) |
| musb_writew(ep->regs, MUSB_RXMAXP, ep->max_packet_sz_rx); |
| else |
| musb_writew(ep->regs, MUSB_RXMAXP, |
| qh->maxpacket | ((qh->hb_mult - 1) << 11)); |
| |
| ep->rx_reinit = 0; |
| } |
| |
| static bool musb_tx_dma_program(struct dma_controller *dma, |
| struct musb_hw_ep *hw_ep, struct musb_qh *qh, |
| struct urb *urb, u32 offset, u32 length) |
| { |
| struct dma_channel *channel = hw_ep->tx_channel; |
| void __iomem *epio = hw_ep->regs; |
| u16 pkt_size = qh->maxpacket; |
| u16 csr; |
| u8 mode; |
| |
| #ifdef CONFIG_USB_INVENTRA_DMA |
| if (length > channel->max_len) |
| length = channel->max_len; |
| |
| csr = musb_readw(epio, MUSB_TXCSR); |
| if (length > pkt_size) { |
| mode = 1; |
| csr |= MUSB_TXCSR_DMAMODE | MUSB_TXCSR_DMAENAB; |
| /* autoset shouldn't be set in high bandwidth */ |
| if (qh->hb_mult == 1) |
| csr |= MUSB_TXCSR_AUTOSET; |
| } else { |
| mode = 0; |
| csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAMODE); |
| csr |= MUSB_TXCSR_DMAENAB; /* against programmer's guide */ |
| } |
| channel->desired_mode = mode; |
| musb_writew(epio, MUSB_TXCSR, csr); |
| #else |
| if (!is_cppi_enabled() && !tusb_dma_omap()) |
| return false; |
| |
| channel->actual_len = 0; |
| |
| /* |
| * TX uses "RNDIS" mode automatically but needs help |
| * to identify the zero-length-final-packet case. |
| */ |
| mode = (urb->transfer_flags & URB_ZERO_PACKET) ? 1 : 0; |
| #endif |
| |
| qh->segsize = length; |
| |
| /* |
| * Ensure the data reaches to main memory before starting |
| * DMA transfer |
| */ |
| wmb(); |
| |
| if (!dma->channel_program(channel, pkt_size, mode, |
| urb->transfer_dma + offset, length)) { |
| dma->channel_release(channel); |
| hw_ep->tx_channel = NULL; |
| |
| csr = musb_readw(epio, MUSB_TXCSR); |
| csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB); |
| musb_writew(epio, MUSB_TXCSR, csr | MUSB_TXCSR_H_WZC_BITS); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Program an HDRC endpoint as per the given URB |
| * Context: irqs blocked, controller lock held |
| */ |
| static void musb_ep_program(struct musb *musb, u8 epnum, |
| struct urb *urb, int is_out, |
| u8 *buf, u32 offset, u32 len) |
| { |
| struct dma_controller *dma_controller; |
| struct dma_channel *dma_channel; |
| u8 dma_ok; |
| void __iomem *mbase = musb->mregs; |
| struct musb_hw_ep *hw_ep = musb->endpoints + epnum; |
| void __iomem *epio = hw_ep->regs; |
| struct musb_qh *qh = musb_ep_get_qh(hw_ep, !is_out); |
| u16 packet_sz = qh->maxpacket; |
| |
| dev_dbg(musb->controller, "%s hw%d urb %p spd%d dev%d ep%d%s " |
| "h_addr%02x h_port%02x bytes %d\n", |
| is_out ? "-->" : "<--", |
| epnum, urb, urb->dev->speed, |
| qh->addr_reg, qh->epnum, is_out ? "out" : "in", |
| qh->h_addr_reg, qh->h_port_reg, |
| len); |
| |
| musb_ep_select(mbase, epnum); |
| |
| /* candidate for DMA? */ |
| dma_controller = musb->dma_controller; |
| if (is_dma_capable() && epnum && dma_controller) { |
| dma_channel = is_out ? hw_ep->tx_channel : hw_ep->rx_channel; |
| if (!dma_channel) { |
| dma_channel = dma_controller->channel_alloc( |
| dma_controller, hw_ep, is_out); |
| if (is_out) |
| hw_ep->tx_channel = dma_channel; |
| else |
| hw_ep->rx_channel = dma_channel; |
| } |
| } else |
| dma_channel = NULL; |
| |
| /* make sure we clear DMAEnab, autoSet bits from previous run */ |
| |
| /* OUT/transmit/EP0 or IN/receive? */ |
| if (is_out) { |
| u16 csr; |
| u16 int_txe; |
| u16 load_count; |
| |
| csr = musb_readw(epio, MUSB_TXCSR); |
| |
| /* disable interrupt in case we flush */ |
| int_txe = musb_readw(mbase, MUSB_INTRTXE); |
| musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum)); |
| |
| /* general endpoint setup */ |
| if (epnum) { |
| /* flush all old state, set default */ |
| musb_h_tx_flush_fifo(hw_ep); |
| |
| /* |
| * We must not clear the DMAMODE bit before or in |
| * the same cycle with the DMAENAB bit, so we clear |
| * the latter first... |
| */ |
| csr &= ~(MUSB_TXCSR_H_NAKTIMEOUT |
| | MUSB_TXCSR_AUTOSET |
| | MUSB_TXCSR_DMAENAB |
| | MUSB_TXCSR_FRCDATATOG |
| | MUSB_TXCSR_H_RXSTALL |
| | MUSB_TXCSR_H_ERROR |
| | MUSB_TXCSR_TXPKTRDY |
| ); |
| csr |= MUSB_TXCSR_MODE; |
| |
| if (usb_gettoggle(urb->dev, qh->epnum, 1)) |
| csr |= MUSB_TXCSR_H_WR_DATATOGGLE |
| | MUSB_TXCSR_H_DATATOGGLE; |
| else |
| csr |= MUSB_TXCSR_CLRDATATOG; |
| |
| musb_writew(epio, MUSB_TXCSR, csr); |
| /* REVISIT may need to clear FLUSHFIFO ... */ |
| csr &= ~MUSB_TXCSR_DMAMODE; |
| musb_writew(epio, MUSB_TXCSR, csr); |
| csr = musb_readw(epio, MUSB_TXCSR); |
| } else { |
| /* endpoint 0: just flush */ |
| musb_h_ep0_flush_fifo(hw_ep); |
| } |
| |
| /* target addr and (for multipoint) hub addr/port */ |
| if (musb->is_multipoint) { |
| musb_write_txfunaddr(mbase, epnum, qh->addr_reg); |
| musb_write_txhubaddr(mbase, epnum, qh->h_addr_reg); |
| musb_write_txhubport(mbase, epnum, qh->h_port_reg); |
| /* FIXME if !epnum, do the same for RX ... */ |
| } else |
| musb_writeb(mbase, MUSB_FADDR, qh->addr_reg); |
| |
| /* protocol/endpoint/interval/NAKlimit */ |
| if (epnum) { |
| musb_writeb(epio, MUSB_TXTYPE, qh->type_reg); |
| if (musb->double_buffer_not_ok) |
| musb_writew(epio, MUSB_TXMAXP, |
| hw_ep->max_packet_sz_tx); |
| else if (can_bulk_split(musb, qh->type)) |
| musb_writew(epio, MUSB_TXMAXP, packet_sz |
| | ((hw_ep->max_packet_sz_tx / |
| packet_sz) - 1) << 11); |
| else |
| musb_writew(epio, MUSB_TXMAXP, |
| qh->maxpacket | |
| ((qh->hb_mult - 1) << 11)); |
| musb_writeb(epio, MUSB_TXINTERVAL, qh->intv_reg); |
| } else { |
| musb_writeb(epio, MUSB_NAKLIMIT0, qh->intv_reg); |
| if (musb->is_multipoint) |
| musb_writeb(epio, MUSB_TYPE0, |
| qh->type_reg); |
| } |
| |
| if (can_bulk_split(musb, qh->type)) |
| load_count = min((u32) hw_ep->max_packet_sz_tx, |
| len); |
| else |
| load_count = min((u32) packet_sz, len); |
| |
| if (dma_channel && musb_tx_dma_program(dma_controller, |
| hw_ep, qh, urb, offset, len)) |
| load_count = 0; |
| |
| if (load_count) { |
| /* PIO to load FIFO */ |
| qh->segsize = load_count; |
| musb_write_fifo(hw_ep, load_count, buf); |
| } |
| |
| /* re-enable interrupt */ |
| musb_writew(mbase, MUSB_INTRTXE, int_txe); |
| |
| /* IN/receive */ |
| } else { |
| u16 csr; |
| |
| if (hw_ep->rx_reinit) { |
| musb_rx_reinit(musb, qh, hw_ep); |
| |
| /* init new state: toggle and NYET, maybe DMA later */ |
| if (usb_gettoggle(urb->dev, qh->epnum, 0)) |
| csr = MUSB_RXCSR_H_WR_DATATOGGLE |
| | MUSB_RXCSR_H_DATATOGGLE; |
| else |
| csr = 0; |
| if (qh->type == USB_ENDPOINT_XFER_INT) |
| csr |= MUSB_RXCSR_DISNYET; |
| |
| } else { |
| csr = musb_readw(hw_ep->regs, MUSB_RXCSR); |
| |
| if (csr & (MUSB_RXCSR_RXPKTRDY |
| | MUSB_RXCSR_DMAENAB |
| | MUSB_RXCSR_H_REQPKT)) |
| ERR("broken !rx_reinit, ep%d csr %04x\n", |
| hw_ep->epnum, csr); |
| |
| /* scrub any stale state, leaving toggle alone */ |
| csr &= MUSB_RXCSR_DISNYET; |
| } |
| |
| /* kick things off */ |
| |
| if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel) { |
| /* Candidate for DMA */ |
| dma_channel->actual_len = 0L; |
| qh->segsize = len; |
| |
| /* AUTOREQ is in a DMA register */ |
| musb_writew(hw_ep->regs, MUSB_RXCSR, csr); |
| csr = musb_readw(hw_ep->regs, MUSB_RXCSR); |
| |
| /* |
| * Unless caller treats short RX transfers as |
| * errors, we dare not queue multiple transfers. |
| */ |
| dma_ok = dma_controller->channel_program(dma_channel, |
| packet_sz, !(urb->transfer_flags & |
| URB_SHORT_NOT_OK), |
| urb->transfer_dma + offset, |
| qh->segsize); |
| if (!dma_ok) { |
| dma_controller->channel_release(dma_channel); |
| hw_ep->rx_channel = dma_channel = NULL; |
| } else |
| csr |= MUSB_RXCSR_DMAENAB; |
| } |
| |
| csr |= MUSB_RXCSR_H_REQPKT; |
| dev_dbg(musb->controller, "RXCSR%d := %04x\n", epnum, csr); |
| musb_writew(hw_ep->regs, MUSB_RXCSR, csr); |
| csr = musb_readw(hw_ep->regs, MUSB_RXCSR); |
| } |
| } |
| |
| |
| /* |
| * Service the default endpoint (ep0) as host. |
| * Return true until it's time to start the status stage. |
| */ |
| static bool musb_h_ep0_continue(struct musb *musb, u16 len, struct urb *urb) |
| { |
| bool more = false; |
| u8 *fifo_dest = NULL; |
| u16 fifo_count = 0; |
| struct musb_hw_ep *hw_ep = musb->control_ep; |
| struct musb_qh *qh = hw_ep->in_qh; |
| struct usb_ctrlrequest *request; |
| |
| switch (musb->ep0_stage) { |
| case MUSB_EP0_IN: |
| fifo_dest = urb->transfer_buffer + urb->actual_length; |
| fifo_count = min_t(size_t, len, urb->transfer_buffer_length - |
| urb->actual_length); |
| if (fifo_count < len) |
| urb->status = -EOVERFLOW; |
| |
| musb_read_fifo(hw_ep, fifo_count, fifo_dest); |
| |
| urb->actual_length += fifo_count; |
| if (len < qh->maxpacket) { |
| /* always terminate on short read; it's |
| * rarely reported as an error. |
| */ |
| } else if (urb->actual_length < |
| urb->transfer_buffer_length) |
| more = true; |
| break; |
| case MUSB_EP0_START: |
| request = (struct usb_ctrlrequest *) urb->setup_packet; |
| |
| if (!request->wLength) { |
| dev_dbg(musb->controller, "start no-DATA\n"); |
| break; |
| } else if (request->bRequestType & USB_DIR_IN) { |
| dev_dbg(musb->controller, "start IN-DATA\n"); |
| musb->ep0_stage = MUSB_EP0_IN; |
| more = true; |
| break; |
| } else { |
| dev_dbg(musb->controller, "start OUT-DATA\n"); |
| musb->ep0_stage = MUSB_EP0_OUT; |
| more = true; |
| } |
| /* FALLTHROUGH */ |
| case MUSB_EP0_OUT: |
| fifo_count = min_t(size_t, qh->maxpacket, |
| urb->transfer_buffer_length - |
| urb->actual_length); |
| if (fifo_count) { |
| fifo_dest = (u8 *) (urb->transfer_buffer |
| + urb->actual_length); |
| dev_dbg(musb->controller, "Sending %d byte%s to ep0 fifo %p\n", |
| fifo_count, |
| (fifo_count == 1) ? "" : "s", |
| fifo_dest); |
| musb_write_fifo(hw_ep, fifo_count, fifo_dest); |
| |
| urb->actual_length += fifo_count; |
| more = true; |
| } |
| break; |
| default: |
| ERR("bogus ep0 stage %d\n", musb->ep0_stage); |
| break; |
| } |
| |
| return more; |
| } |
| |
| /* |
| * Handle default endpoint interrupt as host. Only called in IRQ time |
| * from musb_interrupt(). |
| * |
| * called with controller irqlocked |
| */ |
| irqreturn_t musb_h_ep0_irq(struct musb *musb) |
| { |
| struct urb *urb; |
| u16 csr, len; |
| int status = 0; |
| void __iomem *mbase = musb->mregs; |
| struct musb_hw_ep *hw_ep = musb->control_ep; |
| void __iomem *epio = hw_ep->regs; |
| struct musb_qh *qh = hw_ep->in_qh; |
| bool complete = false; |
| irqreturn_t retval = IRQ_NONE; |
| |
| /* ep0 only has one queue, "in" */ |
| urb = next_urb(qh); |
| |
| musb_ep_select(mbase, 0); |
| csr = musb_readw(epio, MUSB_CSR0); |
| len = (csr & MUSB_CSR0_RXPKTRDY) |
| ? musb_readb(epio, MUSB_COUNT0) |
| : 0; |
| |
| dev_dbg(musb->controller, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n", |
| csr, qh, len, urb, musb->ep0_stage); |
| |
| /* if we just did status stage, we are done */ |
| if (MUSB_EP0_STATUS == musb->ep0_stage) { |
| retval = IRQ_HANDLED; |
| complete = true; |
| } |
| |
| /* prepare status */ |
| if (csr & MUSB_CSR0_H_RXSTALL) { |
| dev_dbg(musb->controller, "STALLING ENDPOINT\n"); |
| status = -EPIPE; |
| |
| } else if (csr & MUSB_CSR0_H_ERROR) { |
| dev_dbg(musb->controller, "no response, csr0 %04x\n", csr); |
| status = -EPROTO; |
| |
| } else if (csr & MUSB_CSR0_H_NAKTIMEOUT) { |
| dev_dbg(musb->controller, "control NAK timeout\n"); |
| |
| /* NOTE: this code path would be a good place to PAUSE a |
| * control transfer, if another one is queued, so that |
| * ep0 is more likely to stay busy. That's already done |
| * for bulk RX transfers. |
| * |
| * if (qh->ring.next != &musb->control), then |
| * we have a candidate... NAKing is *NOT* an error |
| */ |
| musb_writew(epio, MUSB_CSR0, 0); |
| retval = IRQ_HANDLED; |
| } |
| |
| if (status) { |
| dev_dbg(musb->controller, "aborting\n"); |
| retval = IRQ_HANDLED; |
| if (urb) |
| urb->status = status; |
| complete = true; |
| |
| /* use the proper sequence to abort the transfer */ |
| if (csr & MUSB_CSR0_H_REQPKT) { |
| csr &= ~MUSB_CSR0_H_REQPKT; |
| musb_writew(epio, MUSB_CSR0, csr); |
| csr &= ~MUSB_CSR0_H_NAKTIMEOUT; |
| musb_writew(epio, MUSB_CSR0, csr); |
| } else { |
| musb_h_ep0_flush_fifo(hw_ep); |
| } |
| |
| musb_writeb(epio, MUSB_NAKLIMIT0, 0); |
| |
| /* clear it */ |
| musb_writew(epio, MUSB_CSR0, 0); |
| } |
| |
| if (unlikely(!urb)) { |
| /* stop endpoint since we have no place for its data, this |
| * SHOULD NEVER HAPPEN! */ |
| ERR("no URB for end 0\n"); |
| |
| musb_h_ep0_flush_fifo(hw_ep); |
| goto done; |
| } |
| |
| if (!complete) { |
| /* call common logic and prepare response */ |
| if (musb_h_ep0_continue(musb, len, urb)) { |
| /* more packets required */ |
| csr = (MUSB_EP0_IN == musb->ep0_stage) |
| ? MUSB_CSR0_H_REQPKT : MUSB_CSR0_TXPKTRDY; |
| } else { |
| /* data transfer complete; perform status phase */ |
| if (usb_pipeout(urb->pipe) |
| || !urb->transfer_buffer_length) |
| csr = MUSB_CSR0_H_STATUSPKT |
| | MUSB_CSR0_H_REQPKT; |
| else |
| csr = MUSB_CSR0_H_STATUSPKT |
| | MUSB_CSR0_TXPKTRDY; |
| |
| /* flag status stage */ |
| musb->ep0_stage = MUSB_EP0_STATUS; |
| |
| dev_dbg(musb->controller, "ep0 STATUS, csr %04x\n", csr); |
| |
| } |
| musb_writew(epio, MUSB_CSR0, csr); |
| retval = IRQ_HANDLED; |
| } else |
| musb->ep0_stage = MUSB_EP0_IDLE; |
| |
| /* call completion handler if done */ |
| if (complete) |
| musb_advance_schedule(musb, urb, hw_ep, 1); |
| done: |
| return retval; |
| } |
| |
| |
| #ifdef CONFIG_USB_INVENTRA_DMA |
| |
| /* Host side TX (OUT) using Mentor DMA works as follows: |
| submit_urb -> |
| - if queue was empty, Program Endpoint |
| - ... which starts DMA to fifo in mode 1 or 0 |
| |
| DMA Isr (transfer complete) -> TxAvail() |
| - Stop DMA (~DmaEnab) (<--- Alert ... currently happens |
| only in musb_cleanup_urb) |
| - TxPktRdy has to be set in mode 0 or for |
| short packets in mode 1. |
| */ |
| |
| #endif |
| |
| /* Service a Tx-Available or dma completion irq for the endpoint */ |
| void musb_host_tx(struct musb *musb, u8 epnum) |
| { |
| int pipe; |
| bool done = false; |
| u16 tx_csr; |
| size_t length = 0; |
| size_t offset = 0; |
| struct musb_hw_ep *hw_ep = musb->endpoints + epnum; |
| void __iomem *epio = hw_ep->regs; |
| struct musb_qh *qh = hw_ep->out_qh; |
| struct urb *urb = next_urb(qh); |
| u32 status = 0; |
| void __iomem *mbase = musb->mregs; |
| struct dma_channel *dma; |
| bool transfer_pending = false; |
| |
| musb_ep_select(mbase, epnum); |
| tx_csr = musb_readw(epio, MUSB_TXCSR); |
| |
| /* with CPPI, DMA sometimes triggers "extra" irqs */ |
| if (!urb) { |
| dev_dbg(musb->controller, "extra TX%d ready, csr %04x\n", epnum, tx_csr); |
| return; |
| } |
| |
| pipe = urb->pipe; |
| dma = is_dma_capable() ? hw_ep->tx_channel : NULL; |
| dev_dbg(musb->controller, "OUT/TX%d end, csr %04x%s\n", epnum, tx_csr, |
| dma ? ", dma" : ""); |
| |
| /* check for errors */ |
| if (tx_csr & MUSB_TXCSR_H_RXSTALL) { |
| /* dma was disabled, fifo flushed */ |
| dev_dbg(musb->controller, "TX end %d stall\n", epnum); |
| |
| /* stall; record URB status */ |
| status = -EPIPE; |
| |
| } else if (tx_csr & MUSB_TXCSR_H_ERROR) { |
| /* (NON-ISO) dma was disabled, fifo flushed */ |
| dev_dbg(musb->controller, "TX 3strikes on ep=%d\n", epnum); |
| |
| status = -ETIMEDOUT; |
| |
| } else if (tx_csr & MUSB_TXCSR_H_NAKTIMEOUT) { |
| dev_dbg(musb->controller, "TX end=%d device not responding\n", epnum); |
| |
| /* NOTE: this code path would be a good place to PAUSE a |
| * transfer, if there's some other (nonperiodic) tx urb |
| * that could use this fifo. (dma complicates it...) |
| * That's already done for bulk RX transfers. |
| * |
| * if (bulk && qh->ring.next != &musb->out_bulk), then |
| * we have a candidate... NAKing is *NOT* an error |
| */ |
| musb_ep_select(mbase, epnum); |
| musb_writew(epio, MUSB_TXCSR, |
| MUSB_TXCSR_H_WZC_BITS |
| | MUSB_TXCSR_TXPKTRDY); |
| return; |
| } |
| |
| if (status) { |
| if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { |
| dma->status = MUSB_DMA_STATUS_CORE_ABORT; |
| (void) musb->dma_controller->channel_abort(dma); |
| } |
| |
| /* do the proper sequence to abort the transfer in the |
| * usb core; the dma engine should already be stopped. |
| */ |
| musb_h_tx_flush_fifo(hw_ep); |
| tx_csr &= ~(MUSB_TXCSR_AUTOSET |
| | MUSB_TXCSR_DMAENAB |
| | MUSB_TXCSR_H_ERROR |
| | MUSB_TXCSR_H_RXSTALL |
| | MUSB_TXCSR_H_NAKTIMEOUT |
| ); |
| |
| musb_ep_select(mbase, epnum); |
| musb_writew(epio, MUSB_TXCSR, tx_csr); |
| /* REVISIT may need to clear FLUSHFIFO ... */ |
| musb_writew(epio, MUSB_TXCSR, tx_csr); |
| musb_writeb(epio, MUSB_TXINTERVAL, 0); |
| |
| done = true; |
| } |
| |
| /* second cppi case */ |
| if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { |
| dev_dbg(musb->controller, "extra TX%d ready, csr %04x\n", epnum, tx_csr); |
| return; |
| } |
| |
| if (is_dma_capable() && dma && !status) { |
| /* |
| * DMA has completed. But if we're using DMA mode 1 (multi |
| * packet DMA), we need a terminal TXPKTRDY interrupt before |
| * we can consider this transfer completed, lest we trash |
| * its last packet when writing the next URB's data. So we |
| * switch back to mode 0 to get that interrupt; we'll come |
| * back here once it happens. |
| */ |
| if (tx_csr & MUSB_TXCSR_DMAMODE) { |
| /* |
| * We shouldn't clear DMAMODE with DMAENAB set; so |
| * clear them in a safe order. That should be OK |
| * once TXPKTRDY has been set (and I've never seen |
| * it being 0 at this moment -- DMA interrupt latency |
| * is significant) but if it hasn't been then we have |
| * no choice but to stop being polite and ignore the |
| * programmer's guide... :-) |
| * |
| * Note that we must write TXCSR with TXPKTRDY cleared |
| * in order not to re-trigger the packet send (this bit |
| * can't be cleared by CPU), and there's another caveat: |
| * TXPKTRDY may be set shortly and then cleared in the |
| * double-buffered FIFO mode, so we do an extra TXCSR |
| * read for debouncing... |
| */ |
| tx_csr &= musb_readw(epio, MUSB_TXCSR); |
| if (tx_csr & MUSB_TXCSR_TXPKTRDY) { |
| tx_csr &= ~(MUSB_TXCSR_DMAENAB | |
| MUSB_TXCSR_TXPKTRDY); |
| musb_writew(epio, MUSB_TXCSR, |
| tx_csr | MUSB_TXCSR_H_WZC_BITS); |
| } |
| tx_csr &= ~(MUSB_TXCSR_DMAMODE | |
| MUSB_TXCSR_TXPKTRDY); |
| musb_writew(epio, MUSB_TXCSR, |
| tx_csr | MUSB_TXCSR_H_WZC_BITS); |
| |
| /* |
| * There is no guarantee that we'll get an interrupt |
| * after clearing DMAMODE as we might have done this |
| * too late (after TXPKTRDY was cleared by controller). |
| * Re-read TXCSR as we have spoiled its previous value. |
| */ |
| tx_csr = musb_readw(epio, MUSB_TXCSR); |
| } |
| |
| /* |
| * We may get here from a DMA completion or TXPKTRDY interrupt. |
| * In any case, we must check the FIFO status here and bail out |
| * only if the FIFO still has data -- that should prevent the |
| * "missed" TXPKTRDY interrupts and deal with double-buffered |
| * FIFO mode too... |
| */ |
| if (tx_csr & (MUSB_TXCSR_FIFONOTEMPTY | MUSB_TXCSR_TXPKTRDY)) { |
| dev_dbg(musb->controller, "DMA complete but packet still in FIFO, " |
| "CSR %04x\n", tx_csr); |
| return; |
| } |
| } |
| |
| if (!status || dma || usb_pipeisoc(pipe)) { |
| if (dma) |
| length = dma->actual_len; |
| else |
| length = qh->segsize; |
| qh->offset += length; |
| |
| if (usb_pipeisoc(pipe)) { |
| #ifndef __UBOOT__ |
| struct usb_iso_packet_descriptor *d; |
| |
| d = urb->iso_frame_desc + qh->iso_idx; |
| d->actual_length = length; |
| d->status = status; |
| if (++qh->iso_idx >= urb->number_of_packets) { |
| done = true; |
| } else { |
| d++; |
| offset = d->offset; |
| length = d->length; |
| } |
| #endif |
| } else if (dma && urb->transfer_buffer_length == qh->offset) { |
| done = true; |
| } else { |
| /* see if we need to send more data, or ZLP */ |
| if (qh->segsize < qh->maxpacket) |
| done = true; |
| else if (qh->offset == urb->transfer_buffer_length |
| && !(urb->transfer_flags |
| & URB_ZERO_PACKET)) |
| done = true; |
| if (!done) { |
| offset = qh->offset; |
| length = urb->transfer_buffer_length - offset; |
| transfer_pending = true; |
| } |
| } |
| } |
| |
| /* urb->status != -EINPROGRESS means request has been faulted, |
| * so we must abort this transfer after cleanup |
| */ |
| if (urb->status != -EINPROGRESS) { |
| done = true; |
| if (status == 0) |
| status = urb->status; |
| } |
| |
| if (done) { |
| /* set status */ |
| urb->status = status; |
| urb->actual_length = qh->offset; |
| musb_advance_schedule(musb, urb, hw_ep, USB_DIR_OUT); |
| return; |
| } else if ((usb_pipeisoc(pipe) || transfer_pending) && dma) { |
| if (musb_tx_dma_program(musb->dma_controller, hw_ep, qh, urb, |
| offset, length)) { |
| if (is_cppi_enabled() || tusb_dma_omap()) |
| musb_h_tx_dma_start(hw_ep); |
| return; |
| } |
| } else if (tx_csr & MUSB_TXCSR_DMAENAB) { |
| dev_dbg(musb->controller, "not complete, but DMA enabled?\n"); |
| return; |
| } |
| |
| /* |
| * PIO: start next packet in this URB. |
| * |
| * REVISIT: some docs say that when hw_ep->tx_double_buffered, |
| * (and presumably, FIFO is not half-full) we should write *two* |
| * packets before updating TXCSR; other docs disagree... |
| */ |
| if (length > qh->maxpacket) |
| length = qh->maxpacket; |
| /* Unmap the buffer so that CPU can use it */ |
| usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb), urb); |
| musb_write_fifo(hw_ep, length, urb->transfer_buffer + offset); |
| qh->segsize = length; |
| |
| musb_ep_select(mbase, epnum); |
| musb_writew(epio, MUSB_TXCSR, |
| MUSB_TXCSR_H_WZC_BITS | MUSB_TXCSR_TXPKTRDY); |
| } |
| |
| |
| #ifdef CONFIG_USB_INVENTRA_DMA |
| |
| /* Host side RX (IN) using Mentor DMA works as follows: |
| submit_urb -> |
| - if queue was empty, ProgramEndpoint |
| - first IN token is sent out (by setting ReqPkt) |
| LinuxIsr -> RxReady() |
| /\ => first packet is received |
| | - Set in mode 0 (DmaEnab, ~ReqPkt) |
| | -> DMA Isr (transfer complete) -> RxReady() |
| | - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab) |
| | - if urb not complete, send next IN token (ReqPkt) |
| | | else complete urb. |
| | | |
| --------------------------- |
| * |
| * Nuances of mode 1: |
| * For short packets, no ack (+RxPktRdy) is sent automatically |
| * (even if AutoClear is ON) |
| * For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent |
| * automatically => major problem, as collecting the next packet becomes |
| * difficult. Hence mode 1 is not used. |
| * |
| * REVISIT |
| * All we care about at this driver level is that |
| * (a) all URBs terminate with REQPKT cleared and fifo(s) empty; |
| * (b) termination conditions are: short RX, or buffer full; |
| * (c) fault modes include |
| * - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO. |
| * (and that endpoint's dma queue stops immediately) |
| * - overflow (full, PLUS more bytes in the terminal packet) |
| * |
| * So for example, usb-storage sets URB_SHORT_NOT_OK, and would |
| * thus be a great candidate for using mode 1 ... for all but the |
| * last packet of one URB's transfer. |
| */ |
| |
| #endif |
| |
| /* Schedule next QH from musb->in_bulk and move the current qh to |
| * the end; avoids starvation for other endpoints. |
| */ |
| static void musb_bulk_rx_nak_timeout(struct musb *musb, struct musb_hw_ep *ep) |
| { |
| struct dma_channel *dma; |
| struct urb *urb; |
| void __iomem *mbase = musb->mregs; |
| void __iomem *epio = ep->regs; |
| struct musb_qh *cur_qh, *next_qh; |
| u16 rx_csr; |
| |
| musb_ep_select(mbase, ep->epnum); |
| dma = is_dma_capable() ? ep->rx_channel : NULL; |
| |
| /* clear nak timeout bit */ |
| rx_csr = musb_readw(epio, MUSB_RXCSR); |
| rx_csr |= MUSB_RXCSR_H_WZC_BITS; |
| rx_csr &= ~MUSB_RXCSR_DATAERROR; |
| musb_writew(epio, MUSB_RXCSR, rx_csr); |
| |
| cur_qh = first_qh(&musb->in_bulk); |
| if (cur_qh) { |
| urb = next_urb(cur_qh); |
| if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { |
| dma->status = MUSB_DMA_STATUS_CORE_ABORT; |
| musb->dma_controller->channel_abort(dma); |
| urb->actual_length += dma->actual_len; |
| dma->actual_len = 0L; |
| } |
| musb_save_toggle(cur_qh, 1, urb); |
| |
| /* move cur_qh to end of queue */ |
| list_move_tail(&cur_qh->ring, &musb->in_bulk); |
| |
| /* get the next qh from musb->in_bulk */ |
| next_qh = first_qh(&musb->in_bulk); |
| |
| /* set rx_reinit and schedule the next qh */ |
| ep->rx_reinit = 1; |
| musb_start_urb(musb, 1, next_qh); |
| } |
| } |
| |
| /* |
| * Service an RX interrupt for the given IN endpoint; docs cover bulk, iso, |
| * and high-bandwidth IN transfer cases. |
| */ |
| void musb_host_rx(struct musb *musb, u8 epnum) |
| { |
| struct urb *urb; |
| struct musb_hw_ep *hw_ep = musb->endpoints + epnum; |
| void __iomem *epio = hw_ep->regs; |
| struct musb_qh *qh = hw_ep->in_qh; |
| size_t xfer_len; |
| void __iomem *mbase = musb->mregs; |
| int pipe; |
| u16 rx_csr, val; |
| bool iso_err = false; |
| bool done = false; |
| u32 status; |
| struct dma_channel *dma; |
| |
| musb_ep_select(mbase, epnum); |
| |
| urb = next_urb(qh); |
| dma = is_dma_capable() ? hw_ep->rx_channel : NULL; |
| status = 0; |
| xfer_len = 0; |
| |
| rx_csr = musb_readw(epio, MUSB_RXCSR); |
| val = rx_csr; |
| |
| if (unlikely(!urb)) { |
| /* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least |
| * usbtest #11 (unlinks) triggers it regularly, sometimes |
| * with fifo full. (Only with DMA??) |
| */ |
| dev_dbg(musb->controller, "BOGUS RX%d ready, csr %04x, count %d\n", epnum, val, |
| musb_readw(epio, MUSB_RXCOUNT)); |
| musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG); |
| return; |
| } |
| |
| pipe = urb->pipe; |
| |
| dev_dbg(musb->controller, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n", |
| epnum, rx_csr, urb->actual_length, |
| dma ? dma->actual_len : 0); |
| |
| /* check for errors, concurrent stall & unlink is not really |
| * handled yet! */ |
| if (rx_csr & MUSB_RXCSR_H_RXSTALL) { |
| dev_dbg(musb->controller, "RX end %d STALL\n", epnum); |
| |
| /* stall; record URB status */ |
| status = -EPIPE; |
| |
| } else if (rx_csr & MUSB_RXCSR_H_ERROR) { |
| dev_dbg(musb->controller, "end %d RX proto error\n", epnum); |
| |
| status = -EPROTO; |
| musb_writeb(epio, MUSB_RXINTERVAL, 0); |
| |
| } else if (rx_csr & MUSB_RXCSR_DATAERROR) { |
| |
| if (USB_ENDPOINT_XFER_ISOC != qh->type) { |
| dev_dbg(musb->controller, "RX end %d NAK timeout\n", epnum); |
| |
| /* NOTE: NAKing is *NOT* an error, so we want to |
| * continue. Except ... if there's a request for |
| * another QH, use that instead of starving it. |
| * |
| * Devices like Ethernet and serial adapters keep |
| * reads posted at all times, which will starve |
| * other devices without this logic. |
| */ |
| if (usb_pipebulk(urb->pipe) |
| && qh->mux == 1 |
| && !list_is_singular(&musb->in_bulk)) { |
| musb_bulk_rx_nak_timeout(musb, hw_ep); |
| return; |
| } |
| musb_ep_select(mbase, epnum); |
| rx_csr |= MUSB_RXCSR_H_WZC_BITS; |
| rx_csr &= ~MUSB_RXCSR_DATAERROR; |
| musb_writew(epio, MUSB_RXCSR, rx_csr); |
| |
| goto finish; |
| } else { |
| dev_dbg(musb->controller, "RX end %d ISO data error\n", epnum); |
| /* packet error reported later */ |
| iso_err = true; |
| } |
| } else if (rx_csr & MUSB_RXCSR_INCOMPRX) { |
| dev_dbg(musb->controller, "end %d high bandwidth incomplete ISO packet RX\n", |
| epnum); |
| status = -EPROTO; |
| } |
| |
| /* faults abort the transfer */ |
| if (status) { |
| /* clean up dma and collect transfer count */ |
| if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { |
| dma->status = MUSB_DMA_STATUS_CORE_ABORT; |
| (void) musb->dma_controller->channel_abort(dma); |
| xfer_len = dma->actual_len; |
| } |
| musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG); |
| musb_writeb(epio, MUSB_RXINTERVAL, 0); |
| done = true; |
| goto finish; |
| } |
| |
| if (unlikely(dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY)) { |
| /* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */ |
| ERR("RX%d dma busy, csr %04x\n", epnum, rx_csr); |
| goto finish; |
| } |
| |
| /* thorough shutdown for now ... given more precise fault handling |
| * and better queueing support, we might keep a DMA pipeline going |
| * while processing this irq for earlier completions. |
| */ |
| |
| /* FIXME this is _way_ too much in-line logic for Mentor DMA */ |
| |
| #ifndef CONFIG_USB_INVENTRA_DMA |
| if (rx_csr & MUSB_RXCSR_H_REQPKT) { |
| /* REVISIT this happened for a while on some short reads... |
| * the cleanup still needs investigation... looks bad... |
| * and also duplicates dma cleanup code above ... plus, |
| * shouldn't this be the "half full" double buffer case? |
| */ |
| if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { |
| dma->status = MUSB_DMA_STATUS_CORE_ABORT; |
| (void) musb->dma_controller->channel_abort(dma); |
| xfer_len = dma->actual_len; |
| done = true; |
| } |
| |
| dev_dbg(musb->controller, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum, rx_csr, |
| xfer_len, dma ? ", dma" : ""); |
| rx_csr &= ~MUSB_RXCSR_H_REQPKT; |
| |
| musb_ep_select(mbase, epnum); |
| musb_writew(epio, MUSB_RXCSR, |
| MUSB_RXCSR_H_WZC_BITS | rx_csr); |
| } |
| #endif |
| if (dma && (rx_csr & MUSB_RXCSR_DMAENAB)) { |
| xfer_len = dma->actual_len; |
| |
| val &= ~(MUSB_RXCSR_DMAENAB |
| | MUSB_RXCSR_H_AUTOREQ |
| | MUSB_RXCSR_AUTOCLEAR |
| | MUSB_RXCSR_RXPKTRDY); |
| musb_writew(hw_ep->regs, MUSB_RXCSR, val); |
| |
| #ifdef CONFIG_USB_INVENTRA_DMA |
| if (usb_pipeisoc(pipe)) { |
| struct usb_iso_packet_descriptor *d; |
| |
| d = urb->iso_frame_desc + qh->iso_idx; |
| d->actual_length = xfer_len; |
| |
| /* even if there was an error, we did the dma |
| * for iso_frame_desc->length |
| */ |
| if (d->status != -EILSEQ && d->status != -EOVERFLOW) |
| d->status = 0; |
| |
| if (++qh->iso_idx >= urb->number_of_packets) |
| done = true; |
| else |
| done = false; |
| |
| } else { |
| /* done if urb buffer is full or short packet is recd */ |
| done = (urb->actual_length + xfer_len >= |
| urb->transfer_buffer_length |
| || dma->actual_len < qh->maxpacket); |
| } |
| |
| /* send IN token for next packet, without AUTOREQ */ |
| if (!done) { |
| val |= MUSB_RXCSR_H_REQPKT; |
| musb_writew(epio, MUSB_RXCSR, |
| MUSB_RXCSR_H_WZC_BITS | val); |
| } |
| |
| dev_dbg(musb->controller, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum, |
| done ? "off" : "reset", |
| musb_readw(epio, MUSB_RXCSR), |
| musb_readw(epio, MUSB_RXCOUNT)); |
| #else |
| done = true; |
| #endif |
| } else if (urb->status == -EINPROGRESS) { |
| /* if no errors, be sure a packet is ready for unloading */ |
| if (unlikely(!(rx_csr & MUSB_RXCSR_RXPKTRDY))) { |
| status = -EPROTO; |
| ERR("Rx interrupt with no errors or packet!\n"); |
| |
| /* FIXME this is another "SHOULD NEVER HAPPEN" */ |
| |
| /* SCRUB (RX) */ |
| /* do the proper sequence to abort the transfer */ |
| musb_ep_select(mbase, epnum); |
| val &= ~MUSB_RXCSR_H_REQPKT; |
| musb_writew(epio, MUSB_RXCSR, val); |
| goto finish; |
| } |
| |
| /* we are expecting IN packets */ |
| #ifdef CONFIG_USB_INVENTRA_DMA |
| if (dma) { |
| struct dma_controller *c; |
| u16 rx_count; |
| int ret, length; |
| dma_addr_t buf; |
| |
| rx_count = musb_readw(epio, MUSB_RXCOUNT); |
| |
| dev_dbg(musb->controller, "RX%d count %d, buffer 0x%x len %d/%d\n", |
| epnum, rx_count, |
| urb->transfer_dma |
| + urb->actual_length, |
| qh->offset, |
| urb->transfer_buffer_length); |
| |
| c = musb->dma_controller; |
| |
| if (usb_pipeisoc(pipe)) { |
| int d_status = 0; |
| struct usb_iso_packet_descriptor *d; |
| |
| d = urb->iso_frame_desc + qh->iso_idx; |
| |
| if (iso_err) { |
| d_status = -EILSEQ; |
| urb->error_count++; |
| } |
| if (rx_count > d->length) { |
| if (d_status == 0) { |
| d_status = -EOVERFLOW; |
| urb->error_count++; |
| } |
| dev_dbg(musb->controller, "** OVERFLOW %d into %d\n",\ |
| rx_count, d->length); |
| |
| length = d->length; |
| } else |
| length = rx_count; |
| d->status = d_status; |
| buf = urb->transfer_dma + d->offset; |
| } else { |
| length = rx_count; |
| buf = urb->transfer_dma + |
| urb->actual_length; |
| } |
| |
| dma->desired_mode = 0; |
| #ifdef USE_MODE1 |
| /* because of the issue below, mode 1 will |
| * only rarely behave with correct semantics. |
| */ |
| if ((urb->transfer_flags & |
| URB_SHORT_NOT_OK) |
| && (urb->transfer_buffer_length - |
| urb->actual_length) |
| > qh->maxpacket) |
| dma->desired_mode = 1; |
| if (rx_count < hw_ep->max_packet_sz_rx) { |
| length = rx_count; |
| dma->desired_mode = 0; |
| } else { |
| length = urb->transfer_buffer_length; |
| } |
| #endif |
| |
| /* Disadvantage of using mode 1: |
| * It's basically usable only for mass storage class; essentially all |
| * other protocols also terminate transfers on short packets. |
| * |
| * Details: |
| * An extra IN token is sent at the end of the transfer (due to AUTOREQ) |
| * If you try to use mode 1 for (transfer_buffer_length - 512), and try |
| * to use the extra IN token to grab the last packet using mode 0, then |
| * the problem is that you cannot be sure when the device will send the |
| * last packet and RxPktRdy set. Sometimes the packet is recd too soon |
| * such that it gets lost when RxCSR is re-set at the end of the mode 1 |
| * transfer, while sometimes it is recd just a little late so that if you |
| * try to configure for mode 0 soon after the mode 1 transfer is |
| * completed, you will find rxcount 0. Okay, so you might think why not |
| * wait for an interrupt when the pkt is recd. Well, you won't get any! |
| */ |
| |
| val = musb_readw(epio, MUSB_RXCSR); |
| val &= ~MUSB_RXCSR_H_REQPKT; |
| |
| if (dma->desired_mode == 0) |
| val &= ~MUSB_RXCSR_H_AUTOREQ; |
| else |
| val |= MUSB_RXCSR_H_AUTOREQ; |
| val |= MUSB_RXCSR_DMAENAB; |
| |
| /* autoclear shouldn't be set in high bandwidth */ |
| if (qh->hb_mult == 1) |
| val |= MUSB_RXCSR_AUTOCLEAR; |
| |
| musb_writew(epio, MUSB_RXCSR, |
| MUSB_RXCSR_H_WZC_BITS | val); |
| |
| /* REVISIT if when actual_length != 0, |
| * transfer_buffer_length needs to be |
| * adjusted first... |
| */ |
| ret = c->channel_program( |
| dma, qh->maxpacket, |
| dma->desired_mode, buf, length); |
| |
| if (!ret) { |
| c->channel_release(dma); |
| hw_ep->rx_channel = NULL; |
| dma = NULL; |
| val = musb_readw(epio, MUSB_RXCSR); |
| val &= ~(MUSB_RXCSR_DMAENAB |
| | MUSB_RXCSR_H_AUTOREQ |
| | MUSB_RXCSR_AUTOCLEAR); |
| musb_writew(epio, MUSB_RXCSR, val); |
| } |
| } |
| #endif /* Mentor DMA */ |
| |
| if (!dma) { |
| /* Unmap the buffer so that CPU can use it */ |
| usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb), urb); |
| done = musb_host_packet_rx(musb, urb, |
| epnum, iso_err); |
| dev_dbg(musb->controller, "read %spacket\n", done ? "last " : ""); |
| } |
| } |
| |
| finish: |
| urb->actual_length += xfer_len; |
| qh->offset += xfer_len; |
| if (done) { |
| if (urb->status == -EINPROGRESS) |
| urb->status = status; |
| musb_advance_schedule(musb, urb, hw_ep, USB_DIR_IN); |
| } |
| } |
| |
| /* schedule nodes correspond to peripheral endpoints, like an OHCI QH. |
| * the software schedule associates multiple such nodes with a given |
| * host side hardware endpoint + direction; scheduling may activate |
| * that hardware endpoint. |
| */ |
| static int musb_schedule( |
| struct musb *musb, |
| struct musb_qh *qh, |
| int is_in) |
| { |
| int idle; |
| int best_diff; |
| int best_end, epnum; |
| struct musb_hw_ep *hw_ep = NULL; |
| struct list_head *head = NULL; |
| u8 toggle; |
| u8 txtype; |
| struct urb *urb = next_urb(qh); |
| |
| /* use fixed hardware for control and bulk */ |
| if (qh->type == USB_ENDPOINT_XFER_CONTROL) { |
| head = &musb->control; |
| hw_ep = musb->control_ep; |
| goto success; |
| } |
| |
| /* else, periodic transfers get muxed to other endpoints */ |
| |
| /* |
| * We know this qh hasn't been scheduled, so all we need to do |
| * is choose which hardware endpoint to put it on ... |
| * |
| * REVISIT what we really want here is a regular schedule tree |
| * like e.g. OHCI uses. |
| */ |
| best_diff = 4096; |
| best_end = -1; |
| |
| for (epnum = 1, hw_ep = musb->endpoints + 1; |
| epnum < musb->nr_endpoints; |
| epnum++, hw_ep++) { |
| int diff; |
| |
| if (musb_ep_get_qh(hw_ep, is_in) != NULL) |
| continue; |
| |
| if (hw_ep == musb->bulk_ep) |
| continue; |
| |
| if (is_in) |
| diff = hw_ep->max_packet_sz_rx; |
| else |
| diff = hw_ep->max_packet_sz_tx; |
| diff -= (qh->maxpacket * qh->hb_mult); |
| |
| if (diff >= 0 && best_diff > diff) { |
| |
| /* |
| * Mentor controller has a bug in that if we schedule |
| * a BULK Tx transfer on an endpoint that had earlier |
| * handled ISOC then the BULK transfer has to start on |
| * a zero toggle. If the BULK transfer starts on a 1 |
| * toggle then this transfer will fail as the mentor |
| * controller starts the Bulk transfer on a 0 toggle |
| * irrespective of the programming of the toggle bits |
| * in the TXCSR register. Check for this condition |
| * while allocating the EP for a Tx Bulk transfer. If |
| * so skip this EP. |
| */ |
| hw_ep = musb->endpoints + epnum; |
| toggle = usb_gettoggle(urb->dev, qh->epnum, !is_in); |
| txtype = (musb_readb(hw_ep->regs, MUSB_TXTYPE) |
| >> 4) & 0x3; |
| if (!is_in && (qh->type == USB_ENDPOINT_XFER_BULK) && |
| toggle && (txtype == USB_ENDPOINT_XFER_ISOC)) |
| continue; |
| |
| best_diff = diff; |
| best_end = epnum; |
| } |
| } |
| /* use bulk reserved ep1 if no other ep is free */ |
| if (best_end < 0 && qh->type == USB_ENDPOINT_XFER_BULK) { |
| hw_ep = musb->bulk_ep; |
| if (is_in) |
| head = &musb->in_bulk; |
| else |
| head = &musb->out_bulk; |
| |
| /* Enable bulk RX NAK timeout scheme when bulk requests are |
| * multiplexed. This scheme doen't work in high speed to full |
| * speed scenario as NAK interrupts are not coming from a |
| * full speed device connected to a high speed device. |
| * NAK timeout interval is 8 (128 uframe or 16ms) for HS and |
| * 4 (8 frame or 8ms) for FS device. |
| */ |
| if (is_in && qh->dev) |
| qh->intv_reg = |
| (USB_SPEED_HIGH == qh->dev->speed) ? 8 : 4; |
| goto success; |
| } else if (best_end < 0) { |
| return -ENOSPC; |
| } |
| |
| idle = 1; |
| qh->mux = 0; |
| hw_ep = musb->endpoints + best_end; |
| dev_dbg(musb->controller, "qh %p periodic slot %d\n", qh, best_end); |
| success: |
| if (head) { |
| idle = list_empty(head); |
| list_add_tail(&qh->ring, head); |
| qh->mux = 1; |
| } |
| qh->hw_ep = hw_ep; |
| qh->hep->hcpriv = qh; |
| if (idle) |
| musb_start_urb(musb, is_in, qh); |
| return 0; |
| } |
| |
| #ifdef __UBOOT__ |
| /* check if transaction translator is needed for device */ |
| static int tt_needed(struct musb *musb, struct usb_device *dev) |
| { |
| if ((musb_readb(musb->mregs, MUSB_POWER) & MUSB_POWER_HSMODE) && |
| (dev->speed < USB_SPEED_HIGH)) |
| return 1; |
| return 0; |
| } |
| #endif |
| |
| #ifndef __UBOOT__ |
| static int musb_urb_enqueue( |
| #else |
| int musb_urb_enqueue( |
| #endif |
| struct usb_hcd *hcd, |
| struct urb *urb, |
| gfp_t mem_flags) |
| { |
| unsigned long flags; |
| struct musb *musb = hcd_to_musb(hcd); |
| struct usb_host_endpoint *hep = urb->ep; |
| struct musb_qh *qh; |
| struct usb_endpoint_descriptor *epd = &hep->desc; |
| int ret; |
| unsigned type_reg; |
| unsigned interval; |
| |
| /* host role must be active */ |
| if (!is_host_active(musb) || !musb->is_active) |
| return -ENODEV; |
| |
| spin_lock_irqsave(&musb->lock, flags); |
| ret = usb_hcd_link_urb_to_ep(hcd, urb); |
| qh = ret ? NULL : hep->hcpriv; |
| if (qh) |
| urb->hcpriv = qh; |
| spin_unlock_irqrestore(&musb->lock, flags); |
| |
| /* DMA mapping was already done, if needed, and this urb is on |
| * hep->urb_list now ... so we're done, unless hep wasn't yet |
| * scheduled onto a live qh. |
| * |
| * REVISIT best to keep hep->hcpriv valid until the endpoint gets |
| * disabled, testing for empty qh->ring and avoiding qh setup costs |
| * except for the first urb queued after a config change. |
| */ |
| if (qh || ret) |
| return ret; |
| |
| /* Allocate and initialize qh, minimizing the work done each time |
| * hw_ep gets reprogrammed, or with irqs blocked. Then schedule it. |
| * |
| * REVISIT consider a dedicated qh kmem_cache, so it's harder |
| * for bugs in other kernel code to break this driver... |
| */ |
| qh = kzalloc(sizeof *qh, mem_flags); |
| if (!qh) { |
| spin_lock_irqsave(&musb->lock, flags); |
| usb_hcd_unlink_urb_from_ep(hcd, urb); |
| spin_unlock_irqrestore(&musb->lock, flags); |
| return -ENOMEM; |
| } |
| |
| qh->hep = hep; |
| qh->dev = urb->dev; |
| INIT_LIST_HEAD(&qh->ring); |
| qh->is_ready = 1; |
| |
| qh->maxpacket = usb_endpoint_maxp(epd); |
| qh->type = usb_endpoint_type(epd); |
| |
| /* Bits 11 & 12 of wMaxPacketSize encode high bandwidth multiplier. |
| * Some musb cores don't support high bandwidth ISO transfers; and |
| * we don't (yet!) support high bandwidth interrupt transfers. |
| */ |
| qh->hb_mult = 1 + ((qh->maxpacket >> 11) & 0x03); |
| if (qh->hb_mult > 1) { |
| int ok = (qh->type == USB_ENDPOINT_XFER_ISOC); |
| |
| if (ok) |
| ok = (usb_pipein(urb->pipe) && musb->hb_iso_rx) |
| || (usb_pipeout(urb->pipe) && musb->hb_iso_tx); |
| if (!ok) { |
| ret = -EMSGSIZE; |
| goto done; |
| } |
| qh->maxpacket &= 0x7ff; |
| } |
| |
| qh->epnum = usb_endpoint_num(epd); |
| |
| /* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */ |
| qh->addr_reg = (u8) usb_pipedevice(urb->pipe); |
| |
| /* precompute rxtype/txtype/type0 register */ |
| type_reg = (qh->type << 4) | qh->epnum; |
| switch (urb->dev->speed) { |
| case USB_SPEED_LOW: |
| type_reg |= 0xc0; |
| break; |
| case USB_SPEED_FULL: |
| type_reg |= 0x80; |
| break; |
| default: |
| type_reg |= 0x40; |
| } |
| qh->type_reg = type_reg; |
| |
| /* Precompute RXINTERVAL/TXINTERVAL register */ |
| switch (qh->type) { |
| case USB_ENDPOINT_XFER_INT: |
| /* |
| * Full/low speeds use the linear encoding, |
| * high speed uses the logarithmic encoding. |
| */ |
| if (urb->dev->speed <= USB_SPEED_FULL) { |
| interval = max_t(u8, epd->bInterval, 1); |
| break; |
| } |
| /* FALLTHROUGH */ |
| case USB_ENDPOINT_XFER_ISOC: |
| /* ISO always uses logarithmic encoding */ |
| interval = min_t(u8, epd->bInterval, 16); |
| break; |
| default: |
| /* REVISIT we actually want to use NAK limits, hinting to the |
| * transfer scheduling logic to try some other qh, e.g. try |
| * for 2 msec first: |
| * |
| * interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2; |
| * |
| * The downside of disabling this is that transfer scheduling |
| * gets VERY unfair for nonperiodic transfers; a misbehaving |
| * peripheral could make that hurt. That's perfectly normal |
| * for reads from network or serial adapters ... so we have |
| * partial NAKlimit support for bulk RX. |
| * |
| * The upside of disabling it is simpler transfer scheduling. |
| */ |
| interval = 0; |
| } |
| qh->intv_reg = interval; |
| |
| /* precompute addressing for external hub/tt ports */ |
| if (musb->is_multipoint) { |
| #ifndef __UBOOT__ |
| struct usb_device *parent = urb->dev->parent; |
| #else |
| struct usb_device *parent = usb_dev_get_parent(urb->dev); |
| #endif |
| |
| #ifndef __UBOOT__ |
| if (parent != hcd->self.root_hub) { |
| #else |
| if (parent) { |
| #endif |
| qh->h_addr_reg = (u8) parent->devnum; |
| |
| #ifndef __UBOOT__ |
| /* set up tt info if needed */ |
| if (urb->dev->tt) { |
| qh->h_port_reg = (u8) urb->dev->ttport; |
| if (urb->dev->tt->hub) |
| qh->h_addr_reg = |
| (u8) urb->dev->tt->hub->devnum; |
| if (urb->dev->tt->multi) |
| qh->h_addr_reg |= 0x80; |
| } |
| #else |
| if (tt_needed(musb, urb->dev)) { |
| uint8_t portnr = 0; |
| uint8_t hubaddr = 0; |
| usb_find_usb2_hub_address_port(urb->dev, |
| &hubaddr, |
| &portnr); |
| qh->h_addr_reg = hubaddr; |
| qh->h_port_reg = portnr; |
| } |
| #endif |
| } |
| } |
| |
| /* invariant: hep->hcpriv is null OR the qh that's already scheduled. |
| * until we get real dma queues (with an entry for each urb/buffer), |
| * we only have work to do in the former case. |
| */ |
| spin_lock_irqsave(&musb->lock, flags); |
| if (hep->hcpriv) { |
| /* some concurrent activity submitted another urb to hep... |
| * odd, rare, error prone, but legal. |
| */ |
| kfree(qh); |
| qh = NULL; |
| ret = 0; |
| } else |
| ret = musb_schedule(musb, qh, |
| epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK); |
| |
| if (ret == 0) { |
| urb->hcpriv = qh; |
| /* FIXME set urb->start_frame for iso/intr, it's tested in |
| * musb_start_urb(), but otherwise only konicawc cares ... |
| */ |
| } |
| spin_unlock_irqrestore(&musb->lock, flags); |
| |
| done: |
| if (ret != 0) { |
| spin_lock_irqsave(&musb->lock, flags); |
| usb_hcd_unlink_urb_from_ep(hcd, urb); |
| spin_unlock_irqrestore(&musb->lock, flags); |
| kfree(qh); |
| } |
| return ret; |
| } |
| |
| /* |
| * abort a transfer that's at the head of a hardware queue. |
| * called with controller locked, irqs blocked |
| * that hardware queue advances to the next transfer, unless prevented |
| */ |
| static int musb_cleanup_urb(struct urb *urb, struct musb_qh *qh) |
| { |
| struct musb_hw_ep *ep = qh->hw_ep; |
| struct musb *musb = ep->musb; |
| void __iomem *epio = ep->regs; |
| unsigned hw_end = ep->epnum; |
| void __iomem *regs = ep->musb->mregs; |
| int is_in = usb_pipein(urb->pipe); |
| int status = 0; |
| u16 csr; |
| |
| musb_ep_select(regs, hw_end); |
| |
| if (is_dma_capable()) { |
| struct dma_channel *dma; |
| |
| dma = is_in ? ep->rx_channel : ep->tx_channel; |
| if (dma) { |
| status = ep->musb->dma_controller->channel_abort(dma); |
| dev_dbg(musb->controller, |
| "abort %cX%d DMA for urb %p --> %d\n", |
| is_in ? 'R' : 'T', ep->epnum, |
| urb, status); |
| urb->actual_length += dma->actual_len; |
| } |
| } |
| |
| /* turn off DMA requests, discard state, stop polling ... */ |
| if (ep->epnum && is_in) { |
| /* giveback saves bulk toggle */ |
| csr = musb_h_flush_rxfifo(ep, 0); |
| |
| /* REVISIT we still get an irq; should likely clear the |
| * endpoint's irq status here to avoid bogus irqs. |
| * clearing that status is platform-specific... |
| */ |
| } else if (ep->epnum) { |
| musb_h_tx_flush_fifo(ep); |
| csr = musb_readw(epio, MUSB_TXCSR); |
| csr &= ~(MUSB_TXCSR_AUTOSET |
| | MUSB_TXCSR_DMAENAB |
| | MUSB_TXCSR_H_RXSTALL |
| | MUSB_TXCSR_H_NAKTIMEOUT |
| | MUSB_TXCSR_H_ERROR |
| | MUSB_TXCSR_TXPKTRDY); |
| musb_writew(epio, MUSB_TXCSR, csr); |
| /* REVISIT may need to clear FLUSHFIFO ... */ |
| musb_writew(epio, MUSB_TXCSR, csr); |
| /* flush cpu writebuffer */ |
| csr = musb_readw(epio, MUSB_TXCSR); |
| } else { |
| musb_h_ep0_flush_fifo(ep); |
| } |
| if (status == 0) |
| musb_advance_schedule(ep->musb, urb, ep, is_in); |
| return status; |
| } |
| |
| #ifndef __UBOOT__ |
| static int musb_urb_dequeue( |
| #else |
| int musb_urb_dequeue( |
| #endif |
| struct usb_hcd *hcd, |
| struct urb *urb, |
| int status) |
| { |
| struct musb *musb = hcd_to_musb(hcd); |
| struct musb_qh *qh; |
| unsigned long flags; |
| int is_in = usb_pipein(urb->pipe); |
| int ret; |
| |
| dev_dbg(musb->controller, "urb=%p, dev%d ep%d%s\n", urb, |
| usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe), |
| is_in ? "in" : "out"); |
| |
| spin_lock_irqsave(&musb->lock, flags); |
| ret = usb_hcd_check_unlink_urb(hcd, urb, status); |
| if (ret) |
| goto done; |
| |
| qh = urb->hcpriv; |
| if (!qh) |
| goto done; |
| |
| /* |
| * Any URB not actively programmed into endpoint hardware can be |
| * immediately given back; that's any URB not at the head of an |
| * endpoint queue, unless someday we get real DMA queues. And even |
| * if it's at the head, it might not be known to the hardware... |
| * |
| * Otherwise abort current transfer, pending DMA, etc.; urb->status |
| * has already been updated. This is a synchronous abort; it'd be |
| * OK to hold off until after some IRQ, though. |
| * |
| * NOTE: qh is invalid unless !list_empty(&hep->urb_list) |
| */ |
| if (!qh->is_ready |
| || urb->urb_list.prev != &qh->hep->urb_list |
| || musb_ep_get_qh(qh->hw_ep, is_in) != qh) { |
| int ready = qh->is_ready; |
| |
| qh->is_ready = 0; |
| musb_giveback(musb, urb, 0); |
| qh->is_ready = ready; |
| |
| /* If nothing else (usually musb_giveback) is using it |
| * and its URB list has emptied, recycle this qh. |
| */ |
| if (ready && list_empty(&qh->hep->urb_list)) { |
| qh->hep->hcpriv = NULL; |
| list_del(&qh->ring); |
| kfree(qh); |
| } |
| } else |
| ret = musb_cleanup_urb(urb, qh); |
| done: |
| spin_unlock_irqrestore(&musb->lock, flags); |
| return ret; |
| } |
| |
| #ifndef __UBOOT__ |
| /* disable an endpoint */ |
| static void |
| musb_h_disable(struct usb_hcd *hcd, struct usb_host_endpoint *hep) |
| { |
| u8 is_in = hep->desc.bEndpointAddress & USB_DIR_IN; |
| unsigned long flags; |
| struct musb *musb = hcd_to_musb(hcd); |
| struct musb_qh *qh; |
| struct urb *urb; |
| |
| spin_lock_irqsave(&musb->lock, flags); |
| |
| qh = hep->hcpriv; |
| if (qh == NULL) |
| goto exit; |
| |
| /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */ |
| |
| /* Kick the first URB off the hardware, if needed */ |
| qh->is_ready = 0; |
| if (musb_ep_get_qh(qh->hw_ep, is_in) == qh) { |
| urb = next_urb(qh); |
| |
| /* make software (then hardware) stop ASAP */ |
| if (!urb->unlinked) |
| urb->status = -ESHUTDOWN; |
| |
| /* cleanup */ |
| musb_cleanup_urb(urb, qh); |
| |
| /* Then nuke all the others ... and advance the |
| * queue on hw_ep (e.g. bulk ring) when we're done. |
| */ |
| while (!list_empty(&hep->urb_list)) { |
| urb = next_urb(qh); |
| urb->status = -ESHUTDOWN; |
| musb_advance_schedule(musb, urb, qh->hw_ep, is_in); |
| } |
| } else { |
| /* Just empty the queue; the hardware is busy with |
| * other transfers, and since !qh->is_ready nothing |
| * will activate any of these as it advances. |
| */ |
| while (!list_empty(&hep->urb_list)) |
| musb_giveback(musb, next_urb(qh), -ESHUTDOWN); |
| |
| hep->hcpriv = NULL; |
| list_del(&qh->ring); |
| kfree(qh); |
| } |
| exit: |
| spin_unlock_irqrestore(&musb->lock, flags); |
| } |
| |
| static int musb_h_get_frame_number(struct usb_hcd *hcd) |
| { |
| struct musb *musb = hcd_to_musb(hcd); |
| |
| return musb_readw(musb->mregs, MUSB_FRAME); |
| } |
| |
| static int musb_h_start(struct usb_hcd *hcd) |
| { |
| struct musb *musb = hcd_to_musb(hcd); |
| |
| /* NOTE: musb_start() is called when the hub driver turns |
| * on port power, or when (OTG) peripheral starts. |
| */ |
| hcd->state = HC_STATE_RUNNING; |
| musb->port1_status = 0; |
| return 0; |
| } |
| |
| static void musb_h_stop(struct usb_hcd *hcd) |
| { |
| musb_stop(hcd_to_musb(hcd)); |
| hcd->state = HC_STATE_HALT; |
| } |
| |
| static int musb_bus_suspend(struct usb_hcd *hcd) |
| { |
| struct musb *musb = hcd_to_musb(hcd); |
| u8 devctl; |
| |
| if (!is_host_active(musb)) |
| return 0; |
| |
| switch (musb->xceiv->state) { |
| case OTG_STATE_A_SUSPEND: |
| return 0; |
| case OTG_STATE_A_WAIT_VRISE: |
| /* ID could be grounded even if there's no device |
| * on the other end of the cable. NOTE that the |
| * A_WAIT_VRISE timers are messy with MUSB... |
| */ |
| devctl = musb_readb(musb->mregs, MUSB_DEVCTL); |
| if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS) |
| musb->xceiv->state = OTG_STATE_A_WAIT_BCON; |
| break; |
| default: |
| break; |
| } |
| |
| if (musb->is_active) { |
| WARNING("trying to suspend as %s while active\n", |
| otg_state_string(musb->xceiv->state)); |
| return -EBUSY; |
| } else |
| return 0; |
| } |
| |
| static int musb_bus_resume(struct usb_hcd *hcd) |
| { |
| /* resuming child port does the work */ |
| return 0; |
| } |
| |
| const struct hc_driver musb_hc_driver = { |
| .description = "musb-hcd", |
| .product_desc = "MUSB HDRC host driver", |
| .hcd_priv_size = sizeof(struct musb), |
| .flags = HCD_USB2 | HCD_MEMORY, |
| |
| /* not using irq handler or reset hooks from usbcore, since |
| * those must be shared with peripheral code for OTG configs |
| */ |
| |
| .start = musb_h_start, |
| .stop = musb_h_stop, |
| |
| .get_frame_number = musb_h_get_frame_number, |
| |
| .urb_enqueue = musb_urb_enqueue, |
| .urb_dequeue = musb_urb_dequeue, |
| .endpoint_disable = musb_h_disable, |
| |
| .hub_status_data = musb_hub_status_data, |
| .hub_control = musb_hub_control, |
| .bus_suspend = musb_bus_suspend, |
| .bus_resume = musb_bus_resume, |
| /* .start_port_reset = NULL, */ |
| /* .hub_irq_enable = NULL, */ |
| }; |
| #endif |