blob: ff7b8e555bad01b39b2019fb4f815ab4084df01a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2003
* Kyle Harris, kharris@nexus-tech.net
*/
#include <blk.h>
#include <command.h>
#include <console.h>
#include <display_options.h>
#include <memalign.h>
#include <mmc.h>
#include <part.h>
#include <sparse_format.h>
#include <image-sparse.h>
#include <vsprintf.h>
static int curr_device = -1;
static void print_mmcinfo(struct mmc *mmc)
{
int i;
printf("Device: %s\n", mmc->cfg->name);
printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
if (IS_SD(mmc)) {
printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
} else {
printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xff);
printf("Name: %c%c%c%c%c%c \n", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff,
(mmc->cid[2] >> 24));
}
printf("Bus Speed: %d\n", mmc->clock);
#if CONFIG_IS_ENABLED(MMC_VERBOSE)
printf("Mode: %s\n", mmc_mode_name(mmc->selected_mode));
mmc_dump_capabilities("card capabilities", mmc->card_caps);
mmc_dump_capabilities("host capabilities", mmc->host_caps);
#endif
printf("Rd Block Len: %d\n", mmc->read_bl_len);
printf("%s version %d.%d", IS_SD(mmc) ? "SD" : "MMC",
EXTRACT_SDMMC_MAJOR_VERSION(mmc->version),
EXTRACT_SDMMC_MINOR_VERSION(mmc->version));
if (EXTRACT_SDMMC_CHANGE_VERSION(mmc->version) != 0)
printf(".%d", EXTRACT_SDMMC_CHANGE_VERSION(mmc->version));
printf("\n");
printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
puts("Capacity: ");
print_size(mmc->capacity, "\n");
printf("Bus Width: %d-bit%s\n", mmc->bus_width,
mmc->ddr_mode ? " DDR" : "");
#if CONFIG_IS_ENABLED(MMC_WRITE)
puts("Erase Group Size: ");
print_size(((u64)mmc->erase_grp_size) << 9, "\n");
#endif
if (!IS_SD(mmc) && mmc->version >= MMC_VERSION_4_41) {
bool has_enh = (mmc->part_support & ENHNCD_SUPPORT) != 0;
bool usr_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_USR);
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
u8 wp;
int ret;
#if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
puts("HC WP Group Size: ");
print_size(((u64)mmc->hc_wp_grp_size) << 9, "\n");
#endif
puts("User Capacity: ");
print_size(mmc->capacity_user, usr_enh ? " ENH" : "");
if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_USR)
puts(" WRREL\n");
else
putc('\n');
if (usr_enh) {
puts("User Enhanced Start: ");
print_size(mmc->enh_user_start, "\n");
puts("User Enhanced Size: ");
print_size(mmc->enh_user_size, "\n");
}
puts("Boot Capacity: ");
print_size(mmc->capacity_boot, has_enh ? " ENH\n" : "\n");
puts("RPMB Capacity: ");
print_size(mmc->capacity_rpmb, has_enh ? " ENH\n" : "\n");
for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) {
bool is_enh = has_enh &&
(mmc->part_attr & EXT_CSD_ENH_GP(i));
if (mmc->capacity_gp[i]) {
printf("GP%i Capacity: ", i+1);
print_size(mmc->capacity_gp[i],
is_enh ? " ENH" : "");
if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_GP(i))
puts(" WRREL\n");
else
putc('\n');
}
}
ret = mmc_send_ext_csd(mmc, ext_csd);
if (ret)
return;
wp = ext_csd[EXT_CSD_BOOT_WP_STATUS];
for (i = 0; i < 2; ++i) {
printf("Boot area %d is ", i);
switch (wp & 3) {
case 0:
printf("not write protected\n");
break;
case 1:
printf("power on protected\n");
break;
case 2:
printf("permanently protected\n");
break;
default:
printf("in reserved protection state\n");
break;
}
wp >>= 2;
}
}
}
static struct mmc *__init_mmc_device(int dev, bool force_init,
enum bus_mode speed_mode)
{
struct mmc *mmc;
mmc = find_mmc_device(dev);
if (!mmc) {
printf("no mmc device at slot %x\n", dev);
return NULL;
}
if (!mmc_getcd(mmc))
force_init = true;
if (force_init)
mmc->has_init = 0;
if (IS_ENABLED(CONFIG_MMC_SPEED_MODE_SET))
mmc->user_speed_mode = speed_mode;
if (mmc_init(mmc))
return NULL;
#ifdef CONFIG_BLOCK_CACHE
struct blk_desc *bd = mmc_get_blk_desc(mmc);
blkcache_invalidate(bd->uclass_id, bd->devnum);
#endif
return mmc;
}
static struct mmc *init_mmc_device(int dev, bool force_init)
{
return __init_mmc_device(dev, force_init, MMC_MODES_END);
}
static int do_mmcinfo(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
struct mmc *mmc;
if (curr_device < 0) {
if (get_mmc_num() > 0)
curr_device = 0;
else {
puts("No MMC device available\n");
return CMD_RET_FAILURE;
}
}
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
print_mmcinfo(mmc);
return CMD_RET_SUCCESS;
}
#if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
static int confirm_key_prog(void)
{
puts("Warning: Programming authentication key can be done only once !\n"
" Use this command only if you are sure of what you are doing,\n"
"Really perform the key programming? <y/N> ");
if (confirm_yesno())
return 1;
puts("Authentication key programming aborted\n");
return 0;
}
static int do_mmcrpmb_key(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
void *key_addr;
struct mmc *mmc = find_mmc_device(curr_device);
if (argc != 2)
return CMD_RET_USAGE;
key_addr = (void *)hextoul(argv[1], NULL);
if (!confirm_key_prog())
return CMD_RET_FAILURE;
if (mmc_rpmb_set_key(mmc, key_addr)) {
printf("ERROR - Key already programmed ?\n");
return CMD_RET_FAILURE;
}
return CMD_RET_SUCCESS;
}
static int do_mmcrpmb_read(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
u16 blk, cnt;
void *addr;
int n;
void *key_addr = NULL;
struct mmc *mmc = find_mmc_device(curr_device);
if (argc < 4)
return CMD_RET_USAGE;
addr = (void *)hextoul(argv[1], NULL);
blk = hextoul(argv[2], NULL);
cnt = hextoul(argv[3], NULL);
if (argc == 5)
key_addr = (void *)hextoul(argv[4], NULL);
printf("MMC RPMB read: dev # %d, block # %d, count %d ... ",
curr_device, blk, cnt);
n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
if (n != cnt)
return CMD_RET_FAILURE;
return CMD_RET_SUCCESS;
}
static int do_mmcrpmb_write(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
u16 blk, cnt;
void *addr;
int n;
void *key_addr;
struct mmc *mmc = find_mmc_device(curr_device);
if (argc != 5)
return CMD_RET_USAGE;
addr = (void *)hextoul(argv[1], NULL);
blk = hextoul(argv[2], NULL);
cnt = hextoul(argv[3], NULL);
key_addr = (void *)hextoul(argv[4], NULL);
printf("MMC RPMB write: dev # %d, block # %d, count %d ... ",
curr_device, blk, cnt);
n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
if (n != cnt)
return CMD_RET_FAILURE;
return CMD_RET_SUCCESS;
}
static int do_mmcrpmb_counter(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
unsigned long counter;
struct mmc *mmc = find_mmc_device(curr_device);
if (mmc_rpmb_get_counter(mmc, &counter))
return CMD_RET_FAILURE;
printf("RPMB Write counter= %lx\n", counter);
return CMD_RET_SUCCESS;
}
static struct cmd_tbl cmd_rpmb[] = {
U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
};
static int do_mmcrpmb(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct cmd_tbl *cp;
struct mmc *mmc;
char original_part;
int ret;
cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
/* Drop the rpmb subcommand */
argc--;
argv++;
if (cp == NULL || argc > cp->maxargs)
return CMD_RET_USAGE;
if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp))
return CMD_RET_SUCCESS;
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
if (!(mmc->version & MMC_VERSION_MMC)) {
printf("It is not an eMMC device\n");
return CMD_RET_FAILURE;
}
if (mmc->version < MMC_VERSION_4_41) {
printf("RPMB not supported before version 4.41\n");
return CMD_RET_FAILURE;
}
/* Switch to the RPMB partition */
#ifndef CONFIG_BLK
original_part = mmc->block_dev.hwpart;
#else
original_part = mmc_get_blk_desc(mmc)->hwpart;
#endif
if (blk_select_hwpart_devnum(UCLASS_MMC, curr_device, MMC_PART_RPMB) !=
0)
return CMD_RET_FAILURE;
ret = cp->cmd(cmdtp, flag, argc, argv);
/* Return to original partition */
if (blk_select_hwpart_devnum(UCLASS_MMC, curr_device, original_part) !=
0)
return CMD_RET_FAILURE;
return ret;
}
#endif
static int do_mmc_read(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct mmc *mmc;
u32 blk, cnt, n;
void *addr;
if (argc != 4)
return CMD_RET_USAGE;
addr = (void *)hextoul(argv[1], NULL);
blk = hextoul(argv[2], NULL);
cnt = hextoul(argv[3], NULL);
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
printf("MMC read: dev # %d, block # %d, count %d ... ",
curr_device, blk, cnt);
n = blk_dread(mmc_get_blk_desc(mmc), blk, cnt, addr);
printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
}
#if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
static lbaint_t mmc_sparse_write(struct sparse_storage *info, lbaint_t blk,
lbaint_t blkcnt, const void *buffer)
{
struct blk_desc *dev_desc = info->priv;
return blk_dwrite(dev_desc, blk, blkcnt, buffer);
}
static lbaint_t mmc_sparse_reserve(struct sparse_storage *info,
lbaint_t blk, lbaint_t blkcnt)
{
return blkcnt;
}
static int do_mmc_sparse_write(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct sparse_storage sparse;
struct blk_desc *dev_desc;
struct mmc *mmc;
char dest[11];
void *addr;
u32 blk;
if (argc != 3)
return CMD_RET_USAGE;
addr = (void *)hextoul(argv[1], NULL);
blk = hextoul(argv[2], NULL);
if (!is_sparse_image(addr)) {
printf("Not a sparse image\n");
return CMD_RET_FAILURE;
}
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
printf("MMC Sparse write: dev # %d, block # %d ... ",
curr_device, blk);
if (mmc_getwp(mmc) == 1) {
printf("Error: card is write protected!\n");
return CMD_RET_FAILURE;
}
dev_desc = mmc_get_blk_desc(mmc);
sparse.priv = dev_desc;
sparse.blksz = 512;
sparse.start = blk;
sparse.size = dev_desc->lba - blk;
sparse.write = mmc_sparse_write;
sparse.reserve = mmc_sparse_reserve;
sparse.mssg = NULL;
sprintf(dest, "0x" LBAF, sparse.start * sparse.blksz);
if (write_sparse_image(&sparse, dest, addr, NULL))
return CMD_RET_FAILURE;
else
return CMD_RET_SUCCESS;
}
#endif
#if CONFIG_IS_ENABLED(MMC_WRITE)
static int do_mmc_write(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct mmc *mmc;
u32 blk, cnt, n;
void *addr;
if (argc != 4)
return CMD_RET_USAGE;
addr = (void *)hextoul(argv[1], NULL);
blk = hextoul(argv[2], NULL);
cnt = hextoul(argv[3], NULL);
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
printf("MMC write: dev # %d, block # %d, count %d ... ",
curr_device, blk, cnt);
if (mmc_getwp(mmc) == 1) {
printf("Error: card is write protected!\n");
return CMD_RET_FAILURE;
}
n = blk_dwrite(mmc_get_blk_desc(mmc), blk, cnt, addr);
printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
}
static int do_mmc_erase(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct mmc *mmc;
u32 blk, cnt, n;
if (argc != 3)
return CMD_RET_USAGE;
blk = hextoul(argv[1], NULL);
cnt = hextoul(argv[2], NULL);
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
printf("MMC erase: dev # %d, block # %d, count %d ... ",
curr_device, blk, cnt);
if (mmc_getwp(mmc) == 1) {
printf("Error: card is write protected!\n");
return CMD_RET_FAILURE;
}
n = blk_derase(mmc_get_blk_desc(mmc), blk, cnt);
printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
}
#endif
static int do_mmc_rescan(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct mmc *mmc;
if (argc == 1) {
mmc = init_mmc_device(curr_device, true);
} else if (argc == 2) {
enum bus_mode speed_mode;
speed_mode = (int)dectoul(argv[1], NULL);
mmc = __init_mmc_device(curr_device, true, speed_mode);
} else {
return CMD_RET_USAGE;
}
if (!mmc)
return CMD_RET_FAILURE;
return CMD_RET_SUCCESS;
}
static int do_mmc_part(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct blk_desc *mmc_dev;
struct mmc *mmc;
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
mmc_dev = blk_get_devnum_by_uclass_id(UCLASS_MMC, curr_device);
if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
part_print(mmc_dev);
return CMD_RET_SUCCESS;
}
puts("get mmc type error!\n");
return CMD_RET_FAILURE;
}
static int do_mmc_dev(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
int dev, part = 0, ret;
struct mmc *mmc;
if (argc == 1) {
dev = curr_device;
mmc = init_mmc_device(dev, true);
} else if (argc == 2) {
dev = (int)dectoul(argv[1], NULL);
mmc = init_mmc_device(dev, true);
} else if (argc == 3) {
dev = (int)dectoul(argv[1], NULL);
part = (int)dectoul(argv[2], NULL);
if (part > PART_ACCESS_MASK) {
printf("#part_num shouldn't be larger than %d\n",
PART_ACCESS_MASK);
return CMD_RET_FAILURE;
}
mmc = init_mmc_device(dev, true);
} else if (argc == 4) {
enum bus_mode speed_mode;
dev = (int)dectoul(argv[1], NULL);
part = (int)dectoul(argv[2], NULL);
if (part > PART_ACCESS_MASK) {
printf("#part_num shouldn't be larger than %d\n",
PART_ACCESS_MASK);
return CMD_RET_FAILURE;
}
speed_mode = (int)dectoul(argv[3], NULL);
mmc = __init_mmc_device(dev, true, speed_mode);
} else {
return CMD_RET_USAGE;
}
if (!mmc)
return CMD_RET_FAILURE;
ret = blk_select_hwpart_devnum(UCLASS_MMC, dev, part);
printf("switch to partitions #%d, %s\n",
part, (!ret) ? "OK" : "ERROR");
if (ret)
return 1;
curr_device = dev;
if (mmc->part_config == MMCPART_NOAVAILABLE)
printf("mmc%d is current device\n", curr_device);
else
printf("mmc%d(part %d) is current device\n",
curr_device, mmc_get_blk_desc(mmc)->hwpart);
return CMD_RET_SUCCESS;
}
static int do_mmc_list(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
print_mmc_devices('\n');
return CMD_RET_SUCCESS;
}
#if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
static void parse_hwpart_user_enh_size(struct mmc *mmc,
struct mmc_hwpart_conf *pconf,
char *argv)
{
int i, ret;
pconf->user.enh_size = 0;
if (!strcmp(argv, "-")) { /* The rest of eMMC */
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
ret = mmc_send_ext_csd(mmc, ext_csd);
if (ret)
return;
/* The enh_size value is in 512B block units */
pconf->user.enh_size =
((ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT + 2] << 16) +
(ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT + 1] << 8) +
ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT]) * 1024 *
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] *
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
pconf->user.enh_size -= pconf->user.enh_start;
for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) {
/*
* If the eMMC already has GP partitions set,
* subtract their size from the maximum USER
* partition size.
*
* Else, if the command was used to configure new
* GP partitions, subtract their size from maximum
* USER partition size.
*/
if (mmc->capacity_gp[i]) {
/* The capacity_gp is in 1B units */
pconf->user.enh_size -= mmc->capacity_gp[i] >> 9;
} else if (pconf->gp_part[i].size) {
/* The gp_part[].size is in 512B units */
pconf->user.enh_size -= pconf->gp_part[i].size;
}
}
} else {
pconf->user.enh_size = dectoul(argv, NULL);
}
}
static int parse_hwpart_user(struct mmc *mmc, struct mmc_hwpart_conf *pconf,
int argc, char *const argv[])
{
int i = 0;
memset(&pconf->user, 0, sizeof(pconf->user));
while (i < argc) {
if (!strcmp(argv[i], "enh")) {
if (i + 2 >= argc)
return -1;
pconf->user.enh_start =
dectoul(argv[i + 1], NULL);
parse_hwpart_user_enh_size(mmc, pconf, argv[i + 2]);
i += 3;
} else if (!strcmp(argv[i], "wrrel")) {
if (i + 1 >= argc)
return -1;
pconf->user.wr_rel_change = 1;
if (!strcmp(argv[i+1], "on"))
pconf->user.wr_rel_set = 1;
else if (!strcmp(argv[i+1], "off"))
pconf->user.wr_rel_set = 0;
else
return -1;
i += 2;
} else {
break;
}
}
return i;
}
static int parse_hwpart_gp(struct mmc_hwpart_conf *pconf, int pidx,
int argc, char *const argv[])
{
int i;
memset(&pconf->gp_part[pidx], 0, sizeof(pconf->gp_part[pidx]));
if (1 >= argc)
return -1;
pconf->gp_part[pidx].size = dectoul(argv[0], NULL);
i = 1;
while (i < argc) {
if (!strcmp(argv[i], "enh")) {
pconf->gp_part[pidx].enhanced = 1;
i += 1;
} else if (!strcmp(argv[i], "wrrel")) {
if (i + 1 >= argc)
return -1;
pconf->gp_part[pidx].wr_rel_change = 1;
if (!strcmp(argv[i+1], "on"))
pconf->gp_part[pidx].wr_rel_set = 1;
else if (!strcmp(argv[i+1], "off"))
pconf->gp_part[pidx].wr_rel_set = 0;
else
return -1;
i += 2;
} else {
break;
}
}
return i;
}
static int do_mmc_hwpartition(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct mmc *mmc;
struct mmc_hwpart_conf pconf = { };
enum mmc_hwpart_conf_mode mode = MMC_HWPART_CONF_CHECK;
int i, r, pidx;
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
if (IS_SD(mmc)) {
puts("SD doesn't support partitioning\n");
return CMD_RET_FAILURE;
}
if (argc < 1)
return CMD_RET_USAGE;
i = 1;
while (i < argc) {
if (!strcmp(argv[i], "user")) {
i++;
r = parse_hwpart_user(mmc, &pconf, argc - i, &argv[i]);
if (r < 0)
return CMD_RET_USAGE;
i += r;
} else if (!strncmp(argv[i], "gp", 2) &&
strlen(argv[i]) == 3 &&
argv[i][2] >= '1' && argv[i][2] <= '4') {
pidx = argv[i][2] - '1';
i++;
r = parse_hwpart_gp(&pconf, pidx, argc-i, &argv[i]);
if (r < 0)
return CMD_RET_USAGE;
i += r;
} else if (!strcmp(argv[i], "check")) {
mode = MMC_HWPART_CONF_CHECK;
i++;
} else if (!strcmp(argv[i], "set")) {
mode = MMC_HWPART_CONF_SET;
i++;
} else if (!strcmp(argv[i], "complete")) {
mode = MMC_HWPART_CONF_COMPLETE;
i++;
} else {
return CMD_RET_USAGE;
}
}
puts("Partition configuration:\n");
if (pconf.user.enh_size) {
puts("\tUser Enhanced Start: ");
print_size(((u64)pconf.user.enh_start) << 9, "\n");
puts("\tUser Enhanced Size: ");
print_size(((u64)pconf.user.enh_size) << 9, "\n");
} else {
puts("\tNo enhanced user data area\n");
}
if (pconf.user.wr_rel_change)
printf("\tUser partition write reliability: %s\n",
pconf.user.wr_rel_set ? "on" : "off");
for (pidx = 0; pidx < 4; pidx++) {
if (pconf.gp_part[pidx].size) {
printf("\tGP%i Capacity: ", pidx+1);
print_size(((u64)pconf.gp_part[pidx].size) << 9,
pconf.gp_part[pidx].enhanced ?
" ENH\n" : "\n");
} else {
printf("\tNo GP%i partition\n", pidx+1);
}
if (pconf.gp_part[pidx].wr_rel_change)
printf("\tGP%i write reliability: %s\n", pidx+1,
pconf.gp_part[pidx].wr_rel_set ? "on" : "off");
}
if (!mmc_hwpart_config(mmc, &pconf, mode)) {
if (mode == MMC_HWPART_CONF_COMPLETE)
puts("Partitioning successful, "
"power-cycle to make effective\n");
return CMD_RET_SUCCESS;
} else {
puts("Failed!\n");
return CMD_RET_FAILURE;
}
}
#endif
#ifdef CONFIG_SUPPORT_EMMC_BOOT
static int do_mmc_bootbus(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
int dev;
struct mmc *mmc;
u8 width, reset, mode;
if (argc != 5)
return CMD_RET_USAGE;
dev = dectoul(argv[1], NULL);
width = dectoul(argv[2], NULL);
reset = dectoul(argv[3], NULL);
mode = dectoul(argv[4], NULL);
mmc = init_mmc_device(dev, false);
if (!mmc)
return CMD_RET_FAILURE;
if (IS_SD(mmc)) {
puts("BOOT_BUS_WIDTH only exists on eMMC\n");
return CMD_RET_FAILURE;
}
/*
* BOOT_BUS_CONDITIONS[177]
* BOOT_MODE[4:3]
* 0x0 : Use SDR + Backward compatible timing in boot operation
* 0x1 : Use SDR + High Speed Timing in boot operation mode
* 0x2 : Use DDR in boot operation
* RESET_BOOT_BUS_CONDITIONS
* 0x0 : Reset bus width to x1, SDR, Backward compatible
* 0x1 : Retain BOOT_BUS_WIDTH and BOOT_MODE
* BOOT_BUS_WIDTH
* 0x0 : x1(sdr) or x4 (ddr) buswidth
* 0x1 : x4(sdr/ddr) buswith
* 0x2 : x8(sdr/ddr) buswith
*
*/
if (width >= 0x3) {
printf("boot_bus_width %d is invalid\n", width);
return CMD_RET_FAILURE;
}
if (reset >= 0x2) {
printf("reset_boot_bus_width %d is invalid\n", reset);
return CMD_RET_FAILURE;
}
if (mode >= 0x3) {
printf("reset_boot_bus_width %d is invalid\n", mode);
return CMD_RET_FAILURE;
}
/* acknowledge to be sent during boot operation */
if (mmc_set_boot_bus_width(mmc, width, reset, mode)) {
puts("BOOT_BUS_WIDTH is failed to change.\n");
return CMD_RET_FAILURE;
}
printf("Set to BOOT_BUS_WIDTH = 0x%x, RESET = 0x%x, BOOT_MODE = 0x%x\n",
width, reset, mode);
return CMD_RET_SUCCESS;
}
static int do_mmc_boot_resize(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
int dev;
struct mmc *mmc;
u32 bootsize, rpmbsize;
if (argc != 4)
return CMD_RET_USAGE;
dev = dectoul(argv[1], NULL);
bootsize = dectoul(argv[2], NULL);
rpmbsize = dectoul(argv[3], NULL);
mmc = init_mmc_device(dev, false);
if (!mmc)
return CMD_RET_FAILURE;
if (IS_SD(mmc)) {
printf("It is not an eMMC device\n");
return CMD_RET_FAILURE;
}
if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
printf("EMMC boot partition Size change Failed.\n");
return CMD_RET_FAILURE;
}
printf("EMMC boot partition Size %d MB\n", bootsize);
printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
return CMD_RET_SUCCESS;
}
static int mmc_partconf_print(struct mmc *mmc, const char *varname)
{
u8 ack, access, part;
if (mmc->part_config == MMCPART_NOAVAILABLE) {
printf("No part_config info for ver. 0x%x\n", mmc->version);
return CMD_RET_FAILURE;
}
access = EXT_CSD_EXTRACT_PARTITION_ACCESS(mmc->part_config);
ack = EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config);
part = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
if(varname)
env_set_hex(varname, part);
printf("EXT_CSD[179], PARTITION_CONFIG:\n"
"BOOT_ACK: 0x%x\n"
"BOOT_PARTITION_ENABLE: 0x%x\n"
"PARTITION_ACCESS: 0x%x\n", ack, part, access);
return CMD_RET_SUCCESS;
}
static int do_mmc_partconf(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
int ret, dev;
struct mmc *mmc;
u8 ack, part_num, access;
if (argc != 2 && argc != 3 && argc != 5)
return CMD_RET_USAGE;
dev = dectoul(argv[1], NULL);
mmc = init_mmc_device(dev, false);
if (!mmc)
return CMD_RET_FAILURE;
if (IS_SD(mmc)) {
puts("PARTITION_CONFIG only exists on eMMC\n");
return CMD_RET_FAILURE;
}
if (argc == 2 || argc == 3)
return mmc_partconf_print(mmc, cmd_arg2(argc, argv));
ack = dectoul(argv[2], NULL);
part_num = dectoul(argv[3], NULL);
access = dectoul(argv[4], NULL);
/* acknowledge to be sent during boot operation */
ret = mmc_set_part_conf(mmc, ack, part_num, access);
if (ret != 0)
return CMD_RET_FAILURE;
return CMD_RET_SUCCESS;
}
static int do_mmc_rst_func(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
int ret, dev;
struct mmc *mmc;
u8 enable;
/*
* Set the RST_n_ENABLE bit of RST_n_FUNCTION
* The only valid values are 0x0, 0x1 and 0x2 and writing
* a value of 0x1 or 0x2 sets the value permanently.
*/
if (argc != 3)
return CMD_RET_USAGE;
dev = dectoul(argv[1], NULL);
enable = dectoul(argv[2], NULL);
if (enable > 2) {
puts("Invalid RST_n_ENABLE value\n");
return CMD_RET_USAGE;
}
mmc = init_mmc_device(dev, false);
if (!mmc)
return CMD_RET_FAILURE;
if (IS_SD(mmc)) {
puts("RST_n_FUNCTION only exists on eMMC\n");
return CMD_RET_FAILURE;
}
ret = mmc_set_rst_n_function(mmc, enable);
if (ret != 0)
return CMD_RET_FAILURE;
return CMD_RET_SUCCESS;
}
#endif
static int do_mmc_setdsr(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
struct mmc *mmc;
u32 val;
int ret;
if (argc != 2)
return CMD_RET_USAGE;
val = hextoul(argv[1], NULL);
mmc = find_mmc_device(curr_device);
if (!mmc) {
printf("no mmc device at slot %x\n", curr_device);
return CMD_RET_FAILURE;
}
ret = mmc_set_dsr(mmc, val);
printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
if (!ret) {
mmc->has_init = 0;
if (mmc_init(mmc))
return CMD_RET_FAILURE;
else
return CMD_RET_SUCCESS;
}
return ret;
}
#ifdef CONFIG_CMD_BKOPS_ENABLE
static int mmc_bkops_common(char *device, bool autobkops, bool enable)
{
struct mmc *mmc;
int dev;
dev = dectoul(device, NULL);
mmc = init_mmc_device(dev, false);
if (!mmc)
return CMD_RET_FAILURE;
if (IS_SD(mmc)) {
puts("BKOPS_EN only exists on eMMC\n");
return CMD_RET_FAILURE;
}
return mmc_set_bkops_enable(mmc, autobkops, enable);
}
static int do_mmc_bkops(struct cmd_tbl *cmdtp, int flag,
int argc, char * const argv[])
{
bool autobkops, enable;
if (argc != 4)
return CMD_RET_USAGE;
if (!strcmp(argv[2], "manual"))
autobkops = false;
else if (!strcmp(argv[2], "auto"))
autobkops = true;
else
return CMD_RET_FAILURE;
if (!strcmp(argv[3], "disable"))
enable = false;
else if (!strcmp(argv[3], "enable"))
enable = true;
else
return CMD_RET_FAILURE;
return mmc_bkops_common(argv[1], autobkops, enable);
}
static int do_mmc_bkops_enable(struct cmd_tbl *cmdtp, int flag,
int argc, char * const argv[])
{
if (argc != 2)
return CMD_RET_USAGE;
return mmc_bkops_common(argv[1], false, true);
}
#endif
static int do_mmc_boot_wp(struct cmd_tbl *cmdtp, int flag,
int argc, char * const argv[])
{
int err;
struct mmc *mmc;
int part;
mmc = init_mmc_device(curr_device, false);
if (!mmc)
return CMD_RET_FAILURE;
if (IS_SD(mmc)) {
printf("It is not an eMMC device\n");
return CMD_RET_FAILURE;
}
if (argc == 2) {
part = dectoul(argv[1], NULL);
err = mmc_boot_wp_single_partition(mmc, part);
} else {
err = mmc_boot_wp(mmc);
}
if (err)
return CMD_RET_FAILURE;
printf("boot areas protected\n");
return CMD_RET_SUCCESS;
}
#if CONFIG_IS_ENABLED(CMD_MMC_REG)
static int do_mmc_reg(struct cmd_tbl *cmdtp, int flag,
int argc, char *const argv[])
{
ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN);
struct mmc *mmc;
int i, ret;
u32 off;
if (argc < 3 || argc > 5)
return CMD_RET_USAGE;
mmc = find_mmc_device(curr_device);
if (!mmc) {
printf("no mmc device at slot %x\n", curr_device);
return CMD_RET_FAILURE;
}
if (IS_SD(mmc)) {
printf("SD registers are not supported\n");
return CMD_RET_FAILURE;
}
off = simple_strtoul(argv[3], NULL, 10);
if (!strcmp(argv[2], "cid")) {
if (off > 3)
return CMD_RET_USAGE;
printf("CID[%i]: 0x%08x\n", off, mmc->cid[off]);
if (argv[4])
env_set_hex(argv[4], mmc->cid[off]);
return CMD_RET_SUCCESS;
}
if (!strcmp(argv[2], "csd")) {
if (off > 3)
return CMD_RET_USAGE;
printf("CSD[%i]: 0x%08x\n", off, mmc->csd[off]);
if (argv[4])
env_set_hex(argv[4], mmc->csd[off]);
return CMD_RET_SUCCESS;
}
if (!strcmp(argv[2], "dsr")) {
printf("DSR: 0x%08x\n", mmc->dsr);
if (argv[4])
env_set_hex(argv[4], mmc->dsr);
return CMD_RET_SUCCESS;
}
if (!strcmp(argv[2], "ocr")) {
printf("OCR: 0x%08x\n", mmc->ocr);
if (argv[4])
env_set_hex(argv[4], mmc->ocr);
return CMD_RET_SUCCESS;
}
if (!strcmp(argv[2], "rca")) {
printf("RCA: 0x%08x\n", mmc->rca);
if (argv[4])
env_set_hex(argv[4], mmc->rca);
return CMD_RET_SUCCESS;
}
if (!strcmp(argv[2], "extcsd") &&
mmc->version >= MMC_VERSION_4_41) {
ret = mmc_send_ext_csd(mmc, ext_csd);
if (ret)
return CMD_RET_FAILURE;
if (!strcmp(argv[3], "all")) {
/* Dump the entire register */
printf("EXT_CSD:");
for (i = 0; i < MMC_MAX_BLOCK_LEN; i++) {
if (!(i % 10))
printf("\n%03i: ", i);
printf(" %02x", ext_csd[i]);
}
printf("\n");
return CMD_RET_SUCCESS;
}
off = simple_strtoul(argv[3], NULL, 10);
if (off > 512)
return CMD_RET_USAGE;
printf("EXT_CSD[%i]: 0x%02x\n", off, ext_csd[off]);
if (argv[4])
env_set_hex(argv[4], ext_csd[off]);
return CMD_RET_SUCCESS;
}
return CMD_RET_FAILURE;
}
#endif
static struct cmd_tbl cmd_mmc[] = {
U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
U_BOOT_CMD_MKENT(wp, 2, 0, do_mmc_boot_wp, "", ""),
#if CONFIG_IS_ENABLED(MMC_WRITE)
U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
#endif
#if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
U_BOOT_CMD_MKENT(swrite, 3, 0, do_mmc_sparse_write, "", ""),
#endif
U_BOOT_CMD_MKENT(rescan, 2, 1, do_mmc_rescan, "", ""),
U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
U_BOOT_CMD_MKENT(dev, 4, 0, do_mmc_dev, "", ""),
U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
#if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
U_BOOT_CMD_MKENT(hwpartition, 28, 0, do_mmc_hwpartition, "", ""),
#endif
#ifdef CONFIG_SUPPORT_EMMC_BOOT
U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
#endif
#if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
#endif
U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
#ifdef CONFIG_CMD_BKOPS_ENABLE
U_BOOT_CMD_MKENT(bkops-enable, 2, 0, do_mmc_bkops_enable, "", ""),
U_BOOT_CMD_MKENT(bkops, 4, 0, do_mmc_bkops, "", ""),
#endif
#if CONFIG_IS_ENABLED(CMD_MMC_REG)
U_BOOT_CMD_MKENT(reg, 5, 0, do_mmc_reg, "", ""),
#endif
};
static int do_mmcops(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
struct cmd_tbl *cp;
cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
/* Drop the mmc command */
argc--;
argv++;
if (cp == NULL || argc > cp->maxargs)
return CMD_RET_USAGE;
if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp))
return CMD_RET_SUCCESS;
if (curr_device < 0) {
if (get_mmc_num() > 0) {
curr_device = 0;
} else {
puts("No MMC device available\n");
return CMD_RET_FAILURE;
}
}
return cp->cmd(cmdtp, flag, argc, argv);
}
U_BOOT_CMD(
mmc, 29, 1, do_mmcops,
"MMC sub system",
"info - display info of the current MMC device\n"
"mmc read addr blk# cnt\n"
"mmc write addr blk# cnt\n"
#if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
"mmc swrite addr blk#\n"
#endif
"mmc erase blk# cnt\n"
"mmc rescan [mode]\n"
"mmc part - lists available partition on current mmc device\n"
"mmc dev [dev] [part] [mode] - show or set current mmc device [partition] and set mode\n"
" - the required speed mode is passed as the index from the following list\n"
" [MMC_LEGACY, MMC_HS, SD_HS, MMC_HS_52, MMC_DDR_52, UHS_SDR12, UHS_SDR25,\n"
" UHS_SDR50, UHS_DDR50, UHS_SDR104, MMC_HS_200, MMC_HS_400, MMC_HS_400_ES]\n"
"mmc list - lists available devices\n"
"mmc wp [PART] - power on write protect boot partitions\n"
" arguments:\n"
" PART - [0|1]\n"
" : 0 - first boot partition, 1 - second boot partition\n"
" if not assigned, write protect all boot partitions\n"
#if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
"mmc hwpartition <USER> <GP> <MODE> - does hardware partitioning\n"
" arguments (sizes in 512-byte blocks):\n"
" USER - <user> <enh> <start> <cnt> <wrrel> <{on|off}>\n"
" : sets user data area attributes\n"
" GP - <{gp1|gp2|gp3|gp4}> <cnt> <enh> <wrrel> <{on|off}>\n"
" : general purpose partition\n"
" MODE - <{check|set|complete}>\n"
" : mode, complete set partitioning completed\n"
" WARNING: Partitioning is a write-once setting once it is set to complete.\n"
" Power cycling is required to initialize partitions after set to complete.\n"
#endif
#ifdef CONFIG_SUPPORT_EMMC_BOOT
"mmc bootbus <dev> <boot_bus_width> <reset_boot_bus_width> <boot_mode>\n"
" - Set the BOOT_BUS_WIDTH field of the specified device\n"
"mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
" - Change sizes of boot and RPMB partitions of specified device\n"
"mmc partconf <dev> [[varname] | [<boot_ack> <boot_partition> <partition_access>]]\n"
" - Show or change the bits of the PARTITION_CONFIG field of the specified device\n"
" If showing the bits, optionally store the boot_partition field into varname\n"
"mmc rst-function <dev> <value>\n"
" - Change the RST_n_FUNCTION field of the specified device\n"
" WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
#endif
#if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
"mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
"mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
"mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
"mmc rpmb counter - read the value of the write counter\n"
#endif
"mmc setdsr <value> - set DSR register value\n"
#ifdef CONFIG_CMD_BKOPS_ENABLE
"mmc bkops-enable <dev> - enable background operations handshake on device\n"
" WARNING: This is a write-once setting.\n"
"mmc bkops <dev> [auto|manual] [enable|disable]\n"
" - configure background operations handshake on device\n"
#endif
#if CONFIG_IS_ENABLED(CMD_MMC_REG)
"mmc reg read <reg> <offset> [env] - read card register <reg> offset <offset>\n"
" (optionally into [env] variable)\n"
" - reg: cid/csd/dsr/ocr/rca/extcsd\n"
" - offset: for cid/csd [0..3], for extcsd [0..511,all]\n"
#endif
);
/* Old command kept for compatibility. Same as 'mmc info' */
U_BOOT_CMD(
mmcinfo, 1, 0, do_mmcinfo,
"display MMC info",
"- display info of the current MMC device"
);