| /* |
| * (C) Copyright 2001 |
| * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com |
| * |
| * Based on code by: |
| * |
| * Kenneth Johansson ,Ericsson AB. |
| * kenneth.johansson@etx.ericsson.se |
| * |
| * hacked up by bill hunter. fixed so we could run before |
| * serial_init and console_init. previous version avoided this by |
| * running out of cache memory during serial/console init, then running |
| * this code later. |
| * |
| * (C) Copyright 2002 |
| * Jun Gu, Artesyn Technology, jung@artesyncp.com |
| * Support for IBM 440 based on OpenBIOS draminit.c from IBM. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/processor.h> |
| #include <i2c.h> |
| #include <ppc4xx.h> |
| |
| #ifdef CONFIG_SPD_EEPROM |
| |
| /* |
| * Set default values |
| */ |
| #ifndef CFG_I2C_SPEED |
| #define CFG_I2C_SPEED 50000 |
| #endif |
| |
| #ifndef CFG_I2C_SLAVE |
| #define CFG_I2C_SLAVE 0xFE |
| #endif |
| |
| #ifndef CONFIG_440 /* for 405 WALNUT board */ |
| |
| #define SDRAM0_CFG_DCE 0x80000000 |
| #define SDRAM0_CFG_SRE 0x40000000 |
| #define SDRAM0_CFG_PME 0x20000000 |
| #define SDRAM0_CFG_MEMCHK 0x10000000 |
| #define SDRAM0_CFG_REGEN 0x08000000 |
| #define SDRAM0_CFG_ECCDD 0x00400000 |
| #define SDRAM0_CFG_EMDULR 0x00200000 |
| #define SDRAM0_CFG_DRW_SHIFT (31-6) |
| #define SDRAM0_CFG_BRPF_SHIFT (31-8) |
| |
| #define SDRAM0_TR_CASL_SHIFT (31-8) |
| #define SDRAM0_TR_PTA_SHIFT (31-13) |
| #define SDRAM0_TR_CTP_SHIFT (31-15) |
| #define SDRAM0_TR_LDF_SHIFT (31-17) |
| #define SDRAM0_TR_RFTA_SHIFT (31-29) |
| #define SDRAM0_TR_RCD_SHIFT (31-31) |
| |
| #define SDRAM0_RTR_SHIFT (31-15) |
| #define SDRAM0_ECCCFG_SHIFT (31-11) |
| |
| /* SDRAM0_CFG enable macro */ |
| #define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT ) |
| |
| #define SDRAM0_BXCR_SZ_MASK 0x000e0000 |
| #define SDRAM0_BXCR_AM_MASK 0x0000e000 |
| |
| #define SDRAM0_BXCR_SZ_SHIFT (31-14) |
| #define SDRAM0_BXCR_AM_SHIFT (31-18) |
| |
| #define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) ) |
| #define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) ) |
| |
| #ifdef CONFIG_SPDDRAM_SILENT |
| # define SPD_ERR(x) do { return 0; } while (0) |
| #else |
| # define SPD_ERR(x) do { printf(x); return(0); } while (0) |
| #endif |
| |
| #define sdram_HZ_to_ns(hertz) (1000000000/(hertz)) |
| |
| /* function prototypes */ |
| int spd_read(uint addr); |
| |
| |
| /* |
| * This function is reading data from the DIMM module EEPROM over the SPD bus |
| * and uses that to program the sdram controller. |
| * |
| * This works on boards that has the same schematics that the IBM walnut has. |
| * |
| * Input: null for default I2C spd functions or a pointer to a custom function |
| * returning spd_data. |
| */ |
| |
| long int spd_sdram(int(read_spd)(uint addr)) |
| { |
| int bus_period,tmp,row,col; |
| int total_size,bank_size,bank_code; |
| int ecc_on; |
| int mode; |
| int bank_cnt; |
| |
| int sdram0_pmit=0x07c00000; |
| #ifndef CONFIG_405EP /* not on PPC405EP */ |
| int sdram0_besr0=-1; |
| int sdram0_besr1=-1; |
| int sdram0_eccesr=-1; |
| #endif |
| int sdram0_ecccfg; |
| |
| int sdram0_rtr=0; |
| int sdram0_tr=0; |
| |
| int sdram0_b0cr; |
| int sdram0_b1cr; |
| int sdram0_b2cr; |
| int sdram0_b3cr; |
| |
| int sdram0_cfg=0; |
| |
| int t_rp; |
| int t_rcd; |
| int t_ras; |
| int t_rc; |
| int min_cas; |
| |
| if(read_spd == 0){ |
| read_spd=spd_read; |
| /* |
| * Make sure I2C controller is initialized |
| * before continuing. |
| */ |
| i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| } |
| |
| |
| /* |
| * Calculate the bus period, we do it this |
| * way to minimize stack utilization. |
| */ |
| #ifndef CONFIG_405EP |
| tmp = (mfdcr(pllmd) >> (31-6)) & 0xf; /* get FBDV bits */ |
| tmp = CONFIG_SYS_CLK_FREQ * tmp; /* get plb freq */ |
| #else |
| { |
| unsigned long freqCPU; |
| unsigned long pllmr0; |
| unsigned long pllmr1; |
| unsigned long pllFbkDiv; |
| unsigned long pllPlbDiv; |
| unsigned long pllmr0_ccdv; |
| |
| /* |
| * Read PLL Mode registers |
| */ |
| pllmr0 = mfdcr (cpc0_pllmr0); |
| pllmr1 = mfdcr (cpc0_pllmr1); |
| |
| pllFbkDiv = ((pllmr1 & PLLMR1_FBMUL_MASK) >> 20); |
| if (pllFbkDiv == 0) { |
| pllFbkDiv = 16; |
| } |
| pllPlbDiv = ((pllmr0 & PLLMR0_CPU_TO_PLB_MASK) >> 16) + 1; |
| |
| /* |
| * Determine CPU clock frequency |
| */ |
| pllmr0_ccdv = ((pllmr0 & PLLMR0_CPU_DIV_MASK) >> 20) + 1; |
| if (pllmr1 & PLLMR1_SSCS_MASK) { |
| freqCPU = (CONFIG_SYS_CLK_FREQ * pllFbkDiv) / pllmr0_ccdv; |
| } else { |
| freqCPU = CONFIG_SYS_CLK_FREQ / pllmr0_ccdv; |
| } |
| |
| /* |
| * Determine PLB clock frequency |
| */ |
| tmp = freqCPU / pllPlbDiv; |
| } |
| #endif |
| bus_period = sdram_HZ_to_ns(tmp); /* get sdram speed */ |
| |
| /* Make shure we are using SDRAM */ |
| if (read_spd(2) != 0x04){ |
| SPD_ERR("SDRAM - non SDRAM memory module found\n"); |
| } |
| |
| /*------------------------------------------------------------------ |
| configure memory timing register |
| |
| data from DIMM: |
| 27 IN Row Precharge Time ( t RP) |
| 29 MIN RAS to CAS Delay ( t RCD) |
| 127 Component and Clock Detail ,clk0-clk3, junction temp, CAS |
| -------------------------------------------------------------------*/ |
| |
| /* |
| * first figure out which cas latency mode to use |
| * use the min supported mode |
| */ |
| |
| tmp = read_spd(127) & 0x6; |
| if(tmp == 0x02){ /* only cas = 2 supported */ |
| min_cas = 2; |
| /* t_ck = read_spd(9); */ |
| /* t_ac = read_spd(10); */ |
| } |
| else if (tmp == 0x04){ /* only cas = 3 supported */ |
| min_cas = 3; |
| /* t_ck = read_spd(9); */ |
| /* t_ac = read_spd(10); */ |
| } |
| else if (tmp == 0x06){ /* 2,3 supported, so use 2 */ |
| min_cas = 2; |
| /* t_ck = read_spd(23); */ |
| /* t_ac = read_spd(24); */ |
| } |
| else { |
| SPD_ERR("SDRAM - unsupported CAS latency \n"); |
| } |
| |
| /* get some timing values, t_rp,t_rcd,t_ras,t_rc |
| */ |
| t_rp = read_spd(27); |
| t_rcd = read_spd(29); |
| t_ras = read_spd(30); |
| t_rc = t_ras + t_rp; |
| |
| /* The following timing calcs subtract 1 before deviding. |
| * this has effect of using ceiling instead of floor rounding, |
| * and also subtracting 1 to convert number to reg value |
| */ |
| /* set up CASL */ |
| sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT; |
| /* set up PTA */ |
| sdram0_tr |= (((t_rp - 1)/bus_period) & 0x3) << SDRAM0_TR_PTA_SHIFT; |
| /* set up CTP */ |
| tmp = ((t_rc - t_rcd - t_rp -1) / bus_period) & 0x3; |
| if(tmp<1) tmp=1; |
| sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT; |
| /* set LDF = 2 cycles, reg value = 1 */ |
| sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT; |
| /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */ |
| tmp = ( (t_rc - 1) / bus_period)-3; |
| if(tmp<0)tmp=0; |
| if(tmp>6)tmp=6; |
| sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT; |
| /* set RCD = t_rcd/bus_period*/ |
| sdram0_tr |= (((t_rcd - 1) / bus_period) &0x3) << SDRAM0_TR_RCD_SHIFT ; |
| |
| |
| /*------------------------------------------------------------------ |
| configure RTR register |
| -------------------------------------------------------------------*/ |
| row = read_spd(3); |
| col = read_spd(4); |
| tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */ |
| switch(tmp){ |
| case 0x00: |
| tmp=15625; |
| break; |
| case 0x01: |
| tmp=15625/4; |
| break; |
| case 0x02: |
| tmp=15625/2; |
| break; |
| case 0x03: |
| tmp=15625*2; |
| break; |
| case 0x04: |
| tmp=15625*4; |
| break; |
| case 0x05: |
| tmp=15625*8; |
| break; |
| default: |
| SPD_ERR("SDRAM - Bad refresh period \n"); |
| } |
| /* convert from nsec to bus cycles */ |
| tmp = tmp/bus_period; |
| sdram0_rtr = (tmp & 0x3ff8)<< SDRAM0_RTR_SHIFT; |
| |
| /*------------------------------------------------------------------ |
| determine the number of banks used |
| -------------------------------------------------------------------*/ |
| /* byte 7:6 is module data width */ |
| if(read_spd(7) != 0) |
| SPD_ERR("SDRAM - unsupported module width\n"); |
| tmp = read_spd(6); |
| if (tmp < 32) |
| SPD_ERR("SDRAM - unsupported module width\n"); |
| else if (tmp < 64) |
| bank_cnt=1; /* one bank per sdram side */ |
| else if (tmp < 73) |
| bank_cnt=2; /* need two banks per side */ |
| else if (tmp < 161) |
| bank_cnt=4; /* need four banks per side */ |
| else |
| SPD_ERR("SDRAM - unsupported module width\n"); |
| |
| /* byte 5 is the module row count (refered to as dimm "sides") */ |
| tmp = read_spd(5); |
| if(tmp==1); |
| else if(tmp==2) bank_cnt *=2; |
| else if(tmp==4) bank_cnt *=4; |
| else bank_cnt = 8; /* 8 is an error code */ |
| |
| if(bank_cnt > 4) /* we only have 4 banks to work with */ |
| SPD_ERR("SDRAM - unsupported module rows for this width\n"); |
| |
| /* now check for ECC ability of module. We only support ECC |
| * on 32 bit wide devices with 8 bit ECC. |
| */ |
| if ( (read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8) ){ |
| sdram0_ecccfg=0xf<<SDRAM0_ECCCFG_SHIFT; |
| ecc_on = 1; |
| } |
| else{ |
| sdram0_ecccfg=0; |
| ecc_on = 0; |
| } |
| |
| /*------------------------------------------------------------------ |
| calculate total size |
| -------------------------------------------------------------------*/ |
| /* calculate total size and do sanity check */ |
| tmp = read_spd(31); |
| total_size=1<<22; /* total_size = 4MB */ |
| /* now multiply 4M by the smallest device row density */ |
| /* note that we don't support asymetric rows */ |
| while (((tmp & 0x0001) == 0) && (tmp != 0)){ |
| total_size= total_size<<1; |
| tmp = tmp>>1; |
| } |
| total_size *= read_spd(5); /* mult by module rows (dimm sides) */ |
| |
| /*------------------------------------------------------------------ |
| map rows * cols * banks to a mode |
| -------------------------------------------------------------------*/ |
| |
| switch( row ) |
| { |
| case 11: |
| switch ( col ) |
| { |
| case 8: |
| mode=4; /* mode 5 */ |
| break; |
| case 9: |
| case 10: |
| mode=0; /* mode 1 */ |
| break; |
| default: |
| SPD_ERR("SDRAM - unsupported mode\n"); |
| } |
| break; |
| case 12: |
| switch ( col ) |
| { |
| case 8: |
| mode=3; /* mode 4 */ |
| break; |
| case 9: |
| case 10: |
| mode=1; /* mode 2 */ |
| break; |
| default: |
| SPD_ERR("SDRAM - unsupported mode\n"); |
| } |
| break; |
| case 13: |
| switch ( col ) |
| { |
| case 8: |
| mode=5; /* mode 6 */ |
| break; |
| case 9: |
| case 10: |
| if (read_spd(17) ==2 ) |
| mode=6; /* mode 7 */ |
| else |
| mode=2; /* mode 3 */ |
| break; |
| case 11: |
| mode=2; /* mode 3 */ |
| break; |
| default: |
| SPD_ERR("SDRAM - unsupported mode\n"); |
| } |
| break; |
| default: |
| SPD_ERR("SDRAM - unsupported mode\n"); |
| } |
| |
| /*------------------------------------------------------------------ |
| using the calculated values, compute the bank |
| config register values. |
| -------------------------------------------------------------------*/ |
| sdram0_b1cr = 0; |
| sdram0_b2cr = 0; |
| sdram0_b3cr = 0; |
| |
| /* compute the size of each bank */ |
| bank_size = total_size / bank_cnt; |
| /* convert bank size to bank size code for ppc4xx |
| by takeing log2(bank_size) - 22 */ |
| tmp=bank_size; /* start with tmp = bank_size */ |
| bank_code=0; /* and bank_code = 0 */ |
| while (tmp>1){ /* this takes log2 of tmp */ |
| bank_code++; /* and stores result in bank_code */ |
| tmp=tmp>>1; |
| } /* bank_code is now log2(bank_size) */ |
| bank_code-=22; /* subtract 22 to get the code */ |
| |
| tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1; |
| sdram0_b0cr = (bank_size) * 0 | tmp; |
| #ifndef CONFIG_405EP /* not on PPC405EP */ |
| if(bank_cnt>1) sdram0_b2cr = (bank_size) * 1 | tmp; |
| if(bank_cnt>2) sdram0_b1cr = (bank_size) * 2 | tmp; |
| if(bank_cnt>3) sdram0_b3cr = (bank_size) * 3 | tmp; |
| #else |
| /* PPC405EP chip only supports two SDRAM banks */ |
| if(bank_cnt>1) sdram0_b1cr = (bank_size) * 1 | tmp; |
| if(bank_cnt>2) total_size -= (bank_size) * (bank_cnt - 2); |
| #endif |
| |
| |
| /* |
| * enable sdram controller DCE=1 |
| * enable burst read prefetch to 32 bytes BRPF=2 |
| * leave other functions off |
| */ |
| |
| /*------------------------------------------------------------------ |
| now that we've done our calculations, we are ready to |
| program all the registers. |
| -------------------------------------------------------------------*/ |
| |
| |
| #define mtsdram0(reg, data) mtdcr(memcfga,reg);mtdcr(memcfgd,data) |
| /* disable memcontroller so updates work */ |
| sdram0_cfg = 0; |
| mtsdram0( mem_mcopt1, sdram0_cfg ); |
| |
| #ifndef CONFIG_405EP /* not on PPC405EP */ |
| mtsdram0( mem_besra , sdram0_besr0 ); |
| mtsdram0( mem_besrb , sdram0_besr1 ); |
| mtsdram0( mem_ecccf , sdram0_ecccfg ); |
| mtsdram0( mem_eccerr, sdram0_eccesr ); |
| #endif |
| mtsdram0( mem_rtr , sdram0_rtr ); |
| mtsdram0( mem_pmit , sdram0_pmit ); |
| mtsdram0( mem_mb0cf , sdram0_b0cr ); |
| mtsdram0( mem_mb1cf , sdram0_b1cr ); |
| #ifndef CONFIG_405EP /* not on PPC405EP */ |
| mtsdram0( mem_mb2cf , sdram0_b2cr ); |
| mtsdram0( mem_mb3cf , sdram0_b3cr ); |
| #endif |
| mtsdram0( mem_sdtr1 , sdram0_tr ); |
| |
| /* SDRAM have a power on delay, 500 micro should do */ |
| udelay(500); |
| sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR; |
| if(ecc_on) sdram0_cfg |= SDRAM0_CFG_MEMCHK; |
| mtsdram0( mem_mcopt1, sdram0_cfg ); |
| |
| |
| /* kernel 2.4.2 from mvista has a bug with memory over 128MB */ |
| #ifdef MVISTA_MEM_BUG |
| if (total_size > 128*1024*1024 ) |
| total_size=128*1024*1024; |
| #endif |
| return (total_size); |
| } |
| |
| int spd_read(uint addr) |
| { |
| char data[2]; |
| |
| if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0) |
| return (int)data[0]; |
| else |
| return 0; |
| } |
| |
| #else /* CONFIG_440 */ |
| |
| /*----------------------------------------------------------------------------- |
| | Memory Controller Options 0 |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_CFG0_DCEN 0x80000000 /* SDRAM Controller Enable */ |
| #define SDRAM_CFG0_MCHK_MASK 0x30000000 /* Memory data errchecking mask */ |
| #define SDRAM_CFG0_MCHK_NON 0x00000000 /* No ECC generation */ |
| #define SDRAM_CFG0_MCHK_GEN 0x20000000 /* ECC generation */ |
| #define SDRAM_CFG0_MCHK_CHK 0x30000000 /* ECC generation and checking */ |
| #define SDRAM_CFG0_RDEN 0x08000000 /* Registered DIMM enable */ |
| #define SDRAM_CFG0_PMUD 0x04000000 /* Page management unit */ |
| #define SDRAM_CFG0_DMWD_MASK 0x02000000 /* DRAM width mask */ |
| #define SDRAM_CFG0_DMWD_32 0x00000000 /* 32 bits */ |
| #define SDRAM_CFG0_DMWD_64 0x02000000 /* 64 bits */ |
| #define SDRAM_CFG0_UIOS_MASK 0x00C00000 /* Unused IO State */ |
| #define SDRAM_CFG0_PDP 0x00200000 /* Page deallocation policy */ |
| |
| /*----------------------------------------------------------------------------- |
| | Memory Controller Options 1 |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_CFG1_SRE 0x80000000 /* Self-Refresh Entry */ |
| #define SDRAM_CFG1_PMEN 0x40000000 /* Power Management Enable */ |
| |
| /*-----------------------------------------------------------------------------+ |
| | SDRAM DEVPOT Options |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_DEVOPT_DLL 0x80000000 |
| #define SDRAM_DEVOPT_DS 0x40000000 |
| |
| /*-----------------------------------------------------------------------------+ |
| | SDRAM MCSTS Options |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_MCSTS_MRSC 0x80000000 |
| #define SDRAM_MCSTS_SRMS 0x40000000 |
| #define SDRAM_MCSTS_CIS 0x20000000 |
| |
| /*----------------------------------------------------------------------------- |
| | SDRAM Refresh Timer Register |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_RTR_RINT_MASK 0xFFFF0000 |
| #define SDRAM_RTR_RINT_ENCODE(n) (((n) << 16) & SDRAM_RTR_RINT_MASK) |
| #define sdram_HZ_to_ns(hertz) (1000000000/(hertz)) |
| |
| /*-----------------------------------------------------------------------------+ |
| | SDRAM UABus Base Address Reg |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_UABBA_UBBA_MASK 0x0000000F |
| |
| /*-----------------------------------------------------------------------------+ |
| | Memory Bank 0-7 configuration |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_BXCR_SDBA_MASK 0xff800000 /* Base address */ |
| #define SDRAM_BXCR_SDSZ_MASK 0x000e0000 /* Size */ |
| #define SDRAM_BXCR_SDSZ_8 0x00020000 /* 8M */ |
| #define SDRAM_BXCR_SDSZ_16 0x00040000 /* 16M */ |
| #define SDRAM_BXCR_SDSZ_32 0x00060000 /* 32M */ |
| #define SDRAM_BXCR_SDSZ_64 0x00080000 /* 64M */ |
| #define SDRAM_BXCR_SDSZ_128 0x000a0000 /* 128M */ |
| #define SDRAM_BXCR_SDSZ_256 0x000c0000 /* 256M */ |
| #define SDRAM_BXCR_SDSZ_512 0x000e0000 /* 512M */ |
| #define SDRAM_BXCR_SDAM_MASK 0x0000e000 /* Addressing mode */ |
| #define SDRAM_BXCR_SDAM_1 0x00000000 /* Mode 1 */ |
| #define SDRAM_BXCR_SDAM_2 0x00002000 /* Mode 2 */ |
| #define SDRAM_BXCR_SDAM_3 0x00004000 /* Mode 3 */ |
| #define SDRAM_BXCR_SDAM_4 0x00006000 /* Mode 4 */ |
| #define SDRAM_BXCR_SDBE 0x00000001 /* Memory Bank Enable */ |
| |
| /*-----------------------------------------------------------------------------+ |
| | SDRAM TR0 Options |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_TR0_SDWR_MASK 0x80000000 |
| #define SDRAM_TR0_SDWR_2_CLK 0x00000000 |
| #define SDRAM_TR0_SDWR_3_CLK 0x80000000 |
| #define SDRAM_TR0_SDWD_MASK 0x40000000 |
| #define SDRAM_TR0_SDWD_0_CLK 0x00000000 |
| #define SDRAM_TR0_SDWD_1_CLK 0x40000000 |
| #define SDRAM_TR0_SDCL_MASK 0x01800000 |
| #define SDRAM_TR0_SDCL_2_0_CLK 0x00800000 |
| #define SDRAM_TR0_SDCL_2_5_CLK 0x01000000 |
| #define SDRAM_TR0_SDCL_3_0_CLK 0x01800000 |
| #define SDRAM_TR0_SDPA_MASK 0x000C0000 |
| #define SDRAM_TR0_SDPA_2_CLK 0x00040000 |
| #define SDRAM_TR0_SDPA_3_CLK 0x00080000 |
| #define SDRAM_TR0_SDPA_4_CLK 0x000C0000 |
| #define SDRAM_TR0_SDCP_MASK 0x00030000 |
| #define SDRAM_TR0_SDCP_2_CLK 0x00000000 |
| #define SDRAM_TR0_SDCP_3_CLK 0x00010000 |
| #define SDRAM_TR0_SDCP_4_CLK 0x00020000 |
| #define SDRAM_TR0_SDCP_5_CLK 0x00030000 |
| #define SDRAM_TR0_SDLD_MASK 0x0000C000 |
| #define SDRAM_TR0_SDLD_1_CLK 0x00000000 |
| #define SDRAM_TR0_SDLD_2_CLK 0x00004000 |
| #define SDRAM_TR0_SDRA_MASK 0x0000001C |
| #define SDRAM_TR0_SDRA_6_CLK 0x00000000 |
| #define SDRAM_TR0_SDRA_7_CLK 0x00000004 |
| #define SDRAM_TR0_SDRA_8_CLK 0x00000008 |
| #define SDRAM_TR0_SDRA_9_CLK 0x0000000C |
| #define SDRAM_TR0_SDRA_10_CLK 0x00000010 |
| #define SDRAM_TR0_SDRA_11_CLK 0x00000014 |
| #define SDRAM_TR0_SDRA_12_CLK 0x00000018 |
| #define SDRAM_TR0_SDRA_13_CLK 0x0000001C |
| #define SDRAM_TR0_SDRD_MASK 0x00000003 |
| #define SDRAM_TR0_SDRD_2_CLK 0x00000001 |
| #define SDRAM_TR0_SDRD_3_CLK 0x00000002 |
| #define SDRAM_TR0_SDRD_4_CLK 0x00000003 |
| |
| /*-----------------------------------------------------------------------------+ |
| | SDRAM TR1 Options |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_TR1_RDSS_MASK 0xC0000000 |
| #define SDRAM_TR1_RDSS_TR0 0x00000000 |
| #define SDRAM_TR1_RDSS_TR1 0x40000000 |
| #define SDRAM_TR1_RDSS_TR2 0x80000000 |
| #define SDRAM_TR1_RDSS_TR3 0xC0000000 |
| #define SDRAM_TR1_RDSL_MASK 0x00C00000 |
| #define SDRAM_TR1_RDSL_STAGE1 0x00000000 |
| #define SDRAM_TR1_RDSL_STAGE2 0x00400000 |
| #define SDRAM_TR1_RDSL_STAGE3 0x00800000 |
| #define SDRAM_TR1_RDCD_MASK 0x00000800 |
| #define SDRAM_TR1_RDCD_RCD_0_0 0x00000000 |
| #define SDRAM_TR1_RDCD_RCD_1_2 0x00000800 |
| #define SDRAM_TR1_RDCT_MASK 0x000001FF |
| #define SDRAM_TR1_RDCT_ENCODE(x) (((x) << 0) & SDRAM_TR1_RDCT_MASK) |
| #define SDRAM_TR1_RDCT_DECODE(x) (((x) & SDRAM_TR1_RDCT_MASK) >> 0) |
| #define SDRAM_TR1_RDCT_MIN 0x00000000 |
| #define SDRAM_TR1_RDCT_MAX 0x000001FF |
| |
| /*-----------------------------------------------------------------------------+ |
| | SDRAM WDDCTR Options |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_WDDCTR_WRCP_MASK 0xC0000000 |
| #define SDRAM_WDDCTR_WRCP_0DEG 0x00000000 |
| #define SDRAM_WDDCTR_WRCP_90DEG 0x40000000 |
| #define SDRAM_WDDCTR_WRCP_180DEG 0x80000000 |
| #define SDRAM_WDDCTR_DCD_MASK 0x000001FF |
| |
| /*-----------------------------------------------------------------------------+ |
| | SDRAM CLKTR Options |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_CLKTR_CLKP_MASK 0xC0000000 |
| #define SDRAM_CLKTR_CLKP_0DEG 0x00000000 |
| #define SDRAM_CLKTR_CLKP_90DEG 0x40000000 |
| #define SDRAM_CLKTR_CLKP_180DEG 0x80000000 |
| #define SDRAM_CLKTR_DCDT_MASK 0x000001FF |
| |
| /*-----------------------------------------------------------------------------+ |
| | SDRAM DLYCAL Options |
| +-----------------------------------------------------------------------------*/ |
| #define SDRAM_DLYCAL_DLCV_MASK 0x000003FC |
| #define SDRAM_DLYCAL_DLCV_ENCODE(x) (((x)<<2) & SDRAM_DLYCAL_DLCV_MASK) |
| #define SDRAM_DLYCAL_DLCV_DECODE(x) (((x) & SDRAM_DLYCAL_DLCV_MASK)>>2) |
| |
| /*-----------------------------------------------------------------------------+ |
| | General Definition |
| +-----------------------------------------------------------------------------*/ |
| #define DEFAULT_SPD_ADDR1 0x53 |
| #define DEFAULT_SPD_ADDR2 0x52 |
| #define ONE_BILLION 1000000000 |
| #define MAXBANKS 4 /* at most 4 dimm banks */ |
| #define MAX_SPD_BYTES 256 |
| #define NUMHALFCYCLES 4 |
| #define NUMMEMTESTS 8 |
| #define NUMMEMWORDS 8 |
| #define MAXBXCR 4 |
| #define TRUE 1 |
| #define FALSE 0 |
| |
| const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { |
| {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, |
| 0xFFFFFFFF, 0xFFFFFFFF}, |
| {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, |
| 0x00000000, 0x00000000}, |
| {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, |
| 0x55555555, 0x55555555}, |
| {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, |
| 0xAAAAAAAA, 0xAAAAAAAA}, |
| {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, |
| 0x5A5A5A5A, 0x5A5A5A5A}, |
| {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, |
| 0xA5A5A5A5, 0xA5A5A5A5}, |
| {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, |
| 0x55AA55AA, 0x55AA55AA}, |
| {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, |
| 0xAA55AA55, 0xAA55AA55} |
| }; |
| |
| |
| unsigned char spd_read(uchar chip, uint addr); |
| |
| void get_spd_info(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| void check_mem_type |
| (unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| void check_volt_type |
| (unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| void program_cfg0(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| void program_cfg1(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| void program_rtr (unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| void program_tr0 (unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| void program_tr1 (void); |
| |
| void program_ecc (unsigned long num_bytes); |
| |
| unsigned |
| long program_bxcr(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks); |
| |
| /* |
| * This function is reading data from the DIMM module EEPROM over the SPD bus |
| * and uses that to program the sdram controller. |
| * |
| * This works on boards that has the same schematics that the IBM walnut has. |
| * |
| * BUG: Don't handle ECC memory |
| * BUG: A few values in the TR register is currently hardcoded |
| */ |
| |
| long int spd_sdram(void) { |
| unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; |
| unsigned long dimm_populated[sizeof(iic0_dimm_addr)]; |
| unsigned long total_size; |
| unsigned long cfg0; |
| unsigned long mcsts; |
| unsigned long num_dimm_banks; /* on board dimm banks */ |
| |
| num_dimm_banks = sizeof(iic0_dimm_addr); |
| |
| /* |
| * Make sure I2C controller is initialized |
| * before continuing. |
| */ |
| i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); |
| |
| /* |
| * Read the SPD information using I2C interface. Check to see if the |
| * DIMM slots are populated. |
| */ |
| get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * Check the memory type for the dimms plugged. |
| */ |
| check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * Check the voltage type for the dimms plugged. |
| */ |
| check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| #if defined(CONFIG_440_GX) |
| /* |
| * Soft-reset SDRAM controller. |
| */ |
| mtsdr(sdr_srst, SDR0_SRST_DMC); |
| mtsdr(sdr_srst, 0x00000000); |
| #endif |
| |
| /* |
| * program 440GP SDRAM controller options (SDRAM0_CFG0) |
| */ |
| program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * program 440GP SDRAM controller options (SDRAM0_CFG1) |
| */ |
| program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * program SDRAM refresh register (SDRAM0_RTR) |
| */ |
| program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * program SDRAM Timing Register 0 (SDRAM0_TR0) |
| */ |
| program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks); |
| |
| /* |
| * program the BxCR registers to find out total sdram installed |
| */ |
| total_size = program_bxcr(dimm_populated, iic0_dimm_addr, |
| num_dimm_banks); |
| |
| /* |
| * program SDRAM Clock Timing Register (SDRAM0_CLKTR) |
| */ |
| mtsdram(mem_clktr, 0x40000000); |
| |
| /* |
| * delay to ensure 200 usec has elapsed |
| */ |
| udelay(400); |
| |
| /* |
| * enable the memory controller |
| */ |
| mfsdram(mem_cfg0, cfg0); |
| mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN); |
| |
| /* |
| * wait for SDRAM_CFG0_DC_EN to complete |
| */ |
| while(1) { |
| mfsdram(mem_mcsts, mcsts); |
| if ((mcsts & SDRAM_MCSTS_MRSC) != 0) { |
| break; |
| } |
| } |
| |
| /* |
| * program SDRAM Timing Register 1, adding some delays |
| */ |
| program_tr1(); |
| |
| /* |
| * if ECC is enabled, initialize parity bits |
| */ |
| |
| return total_size; |
| } |
| |
| unsigned char spd_read(uchar chip, uint addr) { |
| unsigned char data[2]; |
| |
| if (i2c_read(chip, addr, 1, data, 1) == 0) |
| return data[0]; |
| else |
| return 0; |
| } |
| |
| void get_spd_info(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long dimm_found; |
| unsigned char num_of_bytes; |
| unsigned char total_size; |
| |
| dimm_found = FALSE; |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| num_of_bytes = 0; |
| total_size = 0; |
| |
| num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); |
| total_size = spd_read(iic0_dimm_addr[dimm_num], 1); |
| |
| if ((num_of_bytes != 0) && (total_size != 0)) { |
| dimm_populated[dimm_num] = TRUE; |
| dimm_found = TRUE; |
| #if 0 |
| printf("DIMM slot %lu: populated\n", dimm_num); |
| #endif |
| } |
| else { |
| dimm_populated[dimm_num] = FALSE; |
| #if 0 |
| printf("DIMM slot %lu: Not populated\n", dimm_num); |
| #endif |
| } |
| } |
| |
| if (dimm_found == FALSE) { |
| printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); |
| hang(); |
| } |
| } |
| |
| void check_mem_type(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned char dimm_type; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == TRUE) { |
| dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); |
| switch (dimm_type) { |
| case 7: |
| #if 0 |
| printf("DIMM slot %lu: DDR SDRAM detected\n", dimm_num); |
| #endif |
| break; |
| default: |
| printf("ERROR: Unsupported DIMM detected in slot %lu.\n", |
| dimm_num); |
| printf("Only DDR SDRAM DIMMs are supported.\n"); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| hang(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| void check_volt_type(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long voltage_type; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == TRUE) { |
| voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); |
| if (voltage_type != 0x04) { |
| printf("ERROR: DIMM %lu with unsupported voltage level.\n", |
| dimm_num); |
| hang(); |
| } |
| else { |
| #if 0 |
| printf("DIMM %lu voltage level supported.\n", dimm_num); |
| #endif |
| } |
| break; |
| } |
| } |
| } |
| |
| void program_cfg0(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long cfg0; |
| unsigned long ecc_enabled; |
| unsigned char ecc; |
| unsigned char attributes; |
| unsigned long data_width; |
| unsigned long dimm_32bit; |
| unsigned long dimm_64bit; |
| |
| /* |
| * get Memory Controller Options 0 data |
| */ |
| mfsdram(mem_cfg0, cfg0); |
| |
| /* |
| * clear bits |
| */ |
| cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK | |
| SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD | |
| SDRAM_CFG0_DMWD_MASK | |
| SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP); |
| |
| |
| /* |
| * FIXME: assume the DDR SDRAMs in both banks are the same |
| */ |
| ecc_enabled = TRUE; |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == TRUE) { |
| ecc = spd_read(iic0_dimm_addr[dimm_num], 11); |
| if (ecc != 0x02) { |
| ecc_enabled = FALSE; |
| } |
| |
| /* |
| * program Registered DIMM Enable |
| */ |
| attributes = spd_read(iic0_dimm_addr[dimm_num], 21); |
| if ((attributes & 0x02) != 0x00) { |
| cfg0 |= SDRAM_CFG0_RDEN; |
| } |
| |
| /* |
| * program DDR SDRAM Data Width |
| */ |
| data_width = |
| (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) + |
| (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8); |
| if (data_width == 64 || data_width == 72) { |
| dimm_64bit = TRUE; |
| cfg0 |= SDRAM_CFG0_DMWD_64; |
| } |
| else if (data_width == 32 || data_width == 40) { |
| dimm_32bit = TRUE; |
| cfg0 |= SDRAM_CFG0_DMWD_32; |
| } |
| else { |
| printf("WARNING: DIMM with datawidth of %lu bits.\n", |
| data_width); |
| printf("Only DIMMs with 32 or 64 bit datawidths supported.\n"); |
| hang(); |
| } |
| break; |
| } |
| } |
| |
| /* |
| * program Memory Data Error Checking |
| */ |
| if (ecc_enabled == TRUE) { |
| cfg0 |= SDRAM_CFG0_MCHK_GEN; |
| } |
| else { |
| cfg0 |= SDRAM_CFG0_MCHK_NON; |
| } |
| |
| /* |
| * program Page Management Unit |
| */ |
| cfg0 |= SDRAM_CFG0_PMUD; |
| |
| /* |
| * program Memory Controller Options 0 |
| * Note: DCEN must be enabled after all DDR SDRAM controller |
| * configuration registers get initialized. |
| */ |
| mtsdram(mem_cfg0, cfg0); |
| } |
| |
| void program_cfg1(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long cfg1; |
| mfsdram(mem_cfg1, cfg1); |
| |
| /* |
| * Self-refresh exit, disable PM |
| */ |
| cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN); |
| |
| /* |
| * program Memory Controller Options 1 |
| */ |
| mtsdram(mem_cfg1, cfg1); |
| } |
| |
| void program_rtr (unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long bus_period_x_10; |
| unsigned long refresh_rate = 0; |
| unsigned char refresh_rate_type; |
| unsigned long refresh_interval; |
| unsigned long sdram_rtr; |
| PPC440_SYS_INFO sys_info; |
| |
| /* |
| * get the board info |
| */ |
| get_sys_info(&sys_info); |
| bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); |
| |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == TRUE) { |
| refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12); |
| switch (refresh_rate_type) { |
| case 0x00: |
| refresh_rate = 15625; |
| break; |
| case 0x01: |
| refresh_rate = 15625/4; |
| break; |
| case 0x02: |
| refresh_rate = 15625/2; |
| break; |
| case 0x03: |
| refresh_rate = 15626*2; |
| break; |
| case 0x04: |
| refresh_rate = 15625*4; |
| break; |
| case 0x05: |
| refresh_rate = 15625*8; |
| break; |
| default: |
| printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n", |
| dimm_num); |
| printf("Replace the DIMM module with a supported DIMM.\n"); |
| break; |
| } |
| |
| break; |
| } |
| } |
| |
| refresh_interval = refresh_rate * 10 / bus_period_x_10; |
| sdram_rtr = (refresh_interval & 0x3ff8) << 16; |
| |
| /* |
| * program Refresh Timer Register (SDRAM0_RTR) |
| */ |
| mtsdram(mem_rtr, sdram_rtr); |
| } |
| |
| void program_tr0 (unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long tr0; |
| unsigned char wcsbc; |
| unsigned char t_rp_ns; |
| unsigned char t_rcd_ns; |
| unsigned char t_ras_ns; |
| unsigned long t_rp_clk; |
| unsigned long t_ras_rcd_clk; |
| unsigned long t_rcd_clk; |
| unsigned long t_rfc_clk; |
| unsigned long plb_check; |
| unsigned char cas_bit; |
| unsigned long cas_index; |
| unsigned char cas_2_0_available; |
| unsigned char cas_2_5_available; |
| unsigned char cas_3_0_available; |
| unsigned long cycle_time_ns_x_10[3]; |
| unsigned long tcyc_3_0_ns_x_10; |
| unsigned long tcyc_2_5_ns_x_10; |
| unsigned long tcyc_2_0_ns_x_10; |
| unsigned long tcyc_reg; |
| unsigned long bus_period_x_10; |
| PPC440_SYS_INFO sys_info; |
| unsigned long residue; |
| |
| /* |
| * get the board info |
| */ |
| get_sys_info(&sys_info); |
| bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); |
| |
| /* |
| * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits |
| */ |
| mfsdram(mem_tr0, tr0); |
| tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK | |
| SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK | |
| SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK | |
| SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK); |
| |
| /* |
| * initialization |
| */ |
| wcsbc = 0; |
| t_rp_ns = 0; |
| t_rcd_ns = 0; |
| t_ras_ns = 0; |
| cas_2_0_available = TRUE; |
| cas_2_5_available = TRUE; |
| cas_3_0_available = TRUE; |
| tcyc_2_0_ns_x_10 = 0; |
| tcyc_2_5_ns_x_10 = 0; |
| tcyc_3_0_ns_x_10 = 0; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == TRUE) { |
| wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15); |
| t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2; |
| t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2; |
| t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30); |
| cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); |
| |
| for (cas_index = 0; cas_index < 3; cas_index++) { |
| switch (cas_index) { |
| case 0: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); |
| break; |
| case 1: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); |
| break; |
| default: |
| tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); |
| break; |
| } |
| |
| if ((tcyc_reg & 0x0F) >= 10) { |
| printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n", |
| dimm_num); |
| hang(); |
| } |
| |
| cycle_time_ns_x_10[cas_index] = |
| (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F); |
| } |
| |
| cas_index = 0; |
| |
| if ((cas_bit & 0x80) != 0) { |
| cas_index += 3; |
| } |
| else if ((cas_bit & 0x40) != 0) { |
| cas_index += 2; |
| } |
| else if ((cas_bit & 0x20) != 0) { |
| cas_index += 1; |
| } |
| |
| if (((cas_bit & 0x10) != 0) && (cas_index < 3)) { |
| tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; |
| cas_index++; |
| } |
| else { |
| if (cas_index != 0) { |
| cas_index++; |
| } |
| cas_3_0_available = FALSE; |
| } |
| |
| if (((cas_bit & 0x08) != 0) || (cas_index < 3)) { |
| tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index]; |
| cas_index++; |
| } |
| else { |
| if (cas_index != 0) { |
| cas_index++; |
| } |
| cas_2_5_available = FALSE; |
| } |
| |
| if (((cas_bit & 0x04) != 0) || (cas_index < 3)) { |
| tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; |
| cas_index++; |
| } |
| else { |
| if (cas_index != 0) { |
| cas_index++; |
| } |
| cas_2_0_available = FALSE; |
| } |
| |
| break; |
| } |
| } |
| |
| /* |
| * Program SD_WR and SD_WCSBC fields |
| */ |
| tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */ |
| switch (wcsbc) { |
| case 0: |
| tr0 |= SDRAM_TR0_SDWD_0_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDWD_1_CLK; |
| break; |
| } |
| |
| /* |
| * Program SD_CASL field |
| */ |
| if ((cas_2_0_available == TRUE) && |
| (bus_period_x_10 >= tcyc_2_0_ns_x_10)) { |
| tr0 |= SDRAM_TR0_SDCL_2_0_CLK; |
| } |
| else if((cas_2_5_available == TRUE) && |
| (bus_period_x_10 >= tcyc_2_5_ns_x_10)) { |
| tr0 |= SDRAM_TR0_SDCL_2_5_CLK; |
| } |
| else if((cas_3_0_available == TRUE) && |
| (bus_period_x_10 >= tcyc_3_0_ns_x_10)) { |
| tr0 |= SDRAM_TR0_SDCL_3_0_CLK; |
| } |
| else { |
| printf("ERROR: No supported CAS latency with the installed DIMMs.\n"); |
| printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); |
| printf("Make sure the PLB speed is within the supported range.\n"); |
| hang(); |
| } |
| |
| /* |
| * Calculate Trp in clock cycles and round up if necessary |
| * Program SD_PTA field |
| */ |
| t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION; |
| plb_check = ONE_BILLION * t_rp_clk / t_rp_ns; |
| if (sys_info.freqPLB != plb_check) { |
| t_rp_clk++; |
| } |
| switch ((unsigned long)t_rp_clk) { |
| case 0: |
| case 1: |
| case 2: |
| tr0 |= SDRAM_TR0_SDPA_2_CLK; |
| break; |
| case 3: |
| tr0 |= SDRAM_TR0_SDPA_3_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDPA_4_CLK; |
| break; |
| } |
| |
| /* |
| * Program SD_CTP field |
| */ |
| t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION; |
| plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns); |
| if (sys_info.freqPLB != plb_check) { |
| t_ras_rcd_clk++; |
| } |
| switch (t_ras_rcd_clk) { |
| case 0: |
| case 1: |
| case 2: |
| tr0 |= SDRAM_TR0_SDCP_2_CLK; |
| break; |
| case 3: |
| tr0 |= SDRAM_TR0_SDCP_3_CLK; |
| break; |
| case 4: |
| tr0 |= SDRAM_TR0_SDCP_4_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDCP_5_CLK; |
| break; |
| } |
| |
| /* |
| * Program SD_LDF field |
| */ |
| tr0 |= SDRAM_TR0_SDLD_2_CLK; |
| |
| /* |
| * Program SD_RFTA field |
| * FIXME tRFC hardcoded as 75 nanoseconds |
| */ |
| t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75); |
| residue = sys_info.freqPLB % (ONE_BILLION / 75); |
| if (residue >= (ONE_BILLION / 150)) { |
| t_rfc_clk++; |
| } |
| switch (t_rfc_clk) { |
| case 0: |
| case 1: |
| case 2: |
| case 3: |
| case 4: |
| case 5: |
| case 6: |
| tr0 |= SDRAM_TR0_SDRA_6_CLK; |
| break; |
| case 7: |
| tr0 |= SDRAM_TR0_SDRA_7_CLK; |
| break; |
| case 8: |
| tr0 |= SDRAM_TR0_SDRA_8_CLK; |
| break; |
| case 9: |
| tr0 |= SDRAM_TR0_SDRA_9_CLK; |
| break; |
| case 10: |
| tr0 |= SDRAM_TR0_SDRA_10_CLK; |
| break; |
| case 11: |
| tr0 |= SDRAM_TR0_SDRA_11_CLK; |
| break; |
| case 12: |
| tr0 |= SDRAM_TR0_SDRA_12_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDRA_13_CLK; |
| break; |
| } |
| |
| /* |
| * Program SD_RCD field |
| */ |
| t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION; |
| plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns; |
| if (sys_info.freqPLB != plb_check) { |
| t_rcd_clk++; |
| } |
| switch (t_rcd_clk) { |
| case 0: |
| case 1: |
| case 2: |
| tr0 |= SDRAM_TR0_SDRD_2_CLK; |
| break; |
| case 3: |
| tr0 |= SDRAM_TR0_SDRD_3_CLK; |
| break; |
| default: |
| tr0 |= SDRAM_TR0_SDRD_4_CLK; |
| break; |
| } |
| |
| #if 0 |
| printf("tr0: %x\n", tr0); |
| #endif |
| mtsdram(mem_tr0, tr0); |
| } |
| |
| void program_tr1 (void) |
| { |
| unsigned long tr0; |
| unsigned long tr1; |
| unsigned long cfg0; |
| unsigned long ecc_temp; |
| unsigned long dlycal; |
| unsigned long dly_val; |
| unsigned long i, j, k; |
| unsigned long bxcr_num; |
| unsigned long max_pass_length; |
| unsigned long current_pass_length; |
| unsigned long current_fail_length; |
| unsigned long current_start; |
| unsigned long rdclt; |
| unsigned long rdclt_offset; |
| long max_start; |
| long max_end; |
| long rdclt_average; |
| unsigned char window_found; |
| unsigned char fail_found; |
| unsigned char pass_found; |
| unsigned long * membase; |
| PPC440_SYS_INFO sys_info; |
| |
| /* |
| * get the board info |
| */ |
| get_sys_info(&sys_info); |
| |
| /* |
| * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits |
| */ |
| mfsdram(mem_tr1, tr1); |
| tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK | |
| SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK); |
| |
| mfsdram(mem_tr0, tr0); |
| if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) && |
| (sys_info.freqPLB > 100000000)) { |
| tr1 |= SDRAM_TR1_RDSS_TR2; |
| tr1 |= SDRAM_TR1_RDSL_STAGE3; |
| tr1 |= SDRAM_TR1_RDCD_RCD_1_2; |
| } |
| else { |
| tr1 |= SDRAM_TR1_RDSS_TR1; |
| tr1 |= SDRAM_TR1_RDSL_STAGE2; |
| tr1 |= SDRAM_TR1_RDCD_RCD_0_0; |
| } |
| |
| /* |
| * save CFG0 ECC setting to a temporary variable and turn ECC off |
| */ |
| mfsdram(mem_cfg0, cfg0); |
| ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK; |
| mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON); |
| |
| /* |
| * get the delay line calibration register value |
| */ |
| mfsdram(mem_dlycal, dlycal); |
| dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2; |
| |
| max_pass_length = 0; |
| max_start = 0; |
| max_end = 0; |
| current_pass_length = 0; |
| current_fail_length = 0; |
| current_start = 0; |
| rdclt_offset = 0; |
| window_found = FALSE; |
| fail_found = FALSE; |
| pass_found = FALSE; |
| #ifdef DEBUG |
| printf("Starting memory test "); |
| #endif |
| for (k = 0; k < NUMHALFCYCLES; k++) { |
| for (rdclt = 0; rdclt < dly_val; rdclt++) { |
| /* |
| * Set the timing reg for the test. |
| */ |
| mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt))); |
| |
| for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) { |
| mtdcr(memcfga, mem_b0cr + (bxcr_num<<2)); |
| if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) { |
| /* Bank is enabled */ |
| membase = (unsigned long*) |
| (mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK); |
| |
| /* |
| * Run the short memory test |
| */ |
| for (i = 0; i < NUMMEMTESTS; i++) { |
| for (j = 0; j < NUMMEMWORDS; j++) { |
| membase[j] = test[i][j]; |
| ppcDcbf((unsigned long)&(membase[j])); |
| } |
| |
| for (j = 0; j < NUMMEMWORDS; j++) { |
| if (membase[j] != test[i][j]) { |
| ppcDcbf((unsigned long)&(membase[j])); |
| break; |
| } |
| ppcDcbf((unsigned long)&(membase[j])); |
| } |
| |
| if (j < NUMMEMWORDS) { |
| break; |
| } |
| } |
| |
| /* |
| * see if the rdclt value passed |
| */ |
| if (i < NUMMEMTESTS) { |
| break; |
| } |
| } |
| } |
| |
| if (bxcr_num == MAXBXCR) { |
| if (fail_found == TRUE) { |
| pass_found = TRUE; |
| if (current_pass_length == 0) { |
| current_start = rdclt_offset + rdclt; |
| } |
| |
| current_fail_length = 0; |
| current_pass_length++; |
| |
| if (current_pass_length > max_pass_length) { |
| max_pass_length = current_pass_length; |
| max_start = current_start; |
| max_end = rdclt_offset + rdclt; |
| } |
| } |
| } |
| else { |
| current_pass_length = 0; |
| current_fail_length++; |
| |
| if (current_fail_length >= (dly_val>>2)) { |
| if (fail_found == FALSE) { |
| fail_found = TRUE; |
| } |
| else if (pass_found == TRUE) { |
| window_found = TRUE; |
| break; |
| } |
| } |
| } |
| } |
| #ifdef DEBUG |
| printf("."); |
| #endif |
| if (window_found == TRUE) { |
| break; |
| } |
| |
| tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; |
| rdclt_offset += dly_val; |
| } |
| #ifdef DEBUG |
| printf("\n"); |
| #endif |
| |
| /* |
| * make sure we find the window |
| */ |
| if (window_found == FALSE) { |
| printf("ERROR: Cannot determine a common read delay.\n"); |
| hang(); |
| } |
| |
| /* |
| * restore the orignal ECC setting |
| */ |
| mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp); |
| |
| /* |
| * set the SDRAM TR1 RDCD value |
| */ |
| tr1 &= ~SDRAM_TR1_RDCD_MASK; |
| if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) { |
| tr1 |= SDRAM_TR1_RDCD_RCD_1_2; |
| } |
| else { |
| tr1 |= SDRAM_TR1_RDCD_RCD_0_0; |
| } |
| |
| /* |
| * set the SDRAM TR1 RDCLT value |
| */ |
| tr1 &= ~SDRAM_TR1_RDCT_MASK; |
| while (max_end >= (dly_val<<1)) { |
| max_end -= (dly_val<<1); |
| max_start -= (dly_val<<1); |
| } |
| |
| rdclt_average = ((max_start + max_end) >> 1); |
| if (rdclt_average >= 0x60) |
| while(1); |
| |
| if (rdclt_average < 0) { |
| rdclt_average = 0; |
| } |
| |
| if (rdclt_average >= dly_val) { |
| rdclt_average -= dly_val; |
| tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; |
| } |
| tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average); |
| |
| #if 0 |
| printf("tr1: %x\n", tr1); |
| #endif |
| /* |
| * program SDRAM Timing Register 1 TR1 |
| */ |
| mtsdram(mem_tr1, tr1); |
| } |
| |
| unsigned long program_bxcr(unsigned long* dimm_populated, |
| unsigned char* iic0_dimm_addr, |
| unsigned long num_dimm_banks) |
| { |
| unsigned long dimm_num; |
| unsigned long bxcr_num; |
| unsigned long bank_base_addr; |
| unsigned long bank_size_bytes; |
| unsigned long cr; |
| unsigned long i; |
| unsigned long temp; |
| unsigned char num_row_addr; |
| unsigned char num_col_addr; |
| unsigned char num_banks; |
| unsigned char bank_size_id; |
| |
| |
| /* |
| * Set the BxCR regs. First, wipe out the bank config registers. |
| */ |
| for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) { |
| mtdcr(memcfga, mem_b0cr + (bxcr_num << 2)); |
| mtdcr(memcfgd, 0x00000000); |
| } |
| |
| /* |
| * reset the bank_base address |
| */ |
| bank_base_addr = CFG_SDRAM_BASE; |
| |
| for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { |
| if (dimm_populated[dimm_num] == TRUE) { |
| num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3); |
| num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); |
| num_banks = spd_read(iic0_dimm_addr[dimm_num], 5); |
| bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); |
| |
| /* |
| * Set the SDRAM0_BxCR regs |
| */ |
| cr = 0; |
| bank_size_bytes = 4 * 1024 * 1024 * bank_size_id; |
| switch (bank_size_id) { |
| case 0x02: |
| cr |= SDRAM_BXCR_SDSZ_8; |
| break; |
| case 0x04: |
| cr |= SDRAM_BXCR_SDSZ_16; |
| break; |
| case 0x08: |
| cr |= SDRAM_BXCR_SDSZ_32; |
| break; |
| case 0x10: |
| cr |= SDRAM_BXCR_SDSZ_64; |
| break; |
| case 0x20: |
| cr |= SDRAM_BXCR_SDSZ_128; |
| break; |
| case 0x40: |
| cr |= SDRAM_BXCR_SDSZ_256; |
| break; |
| case 0x80: |
| cr |= SDRAM_BXCR_SDSZ_512; |
| break; |
| default: |
| printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", |
| dimm_num); |
| printf("ERROR: Unsupported value for the banksize: %d.\n", |
| bank_size_id); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| hang(); |
| } |
| |
| switch (num_col_addr) { |
| case 0x08: |
| cr |= SDRAM_BXCR_SDAM_1; |
| break; |
| case 0x09: |
| cr |= SDRAM_BXCR_SDAM_2; |
| break; |
| case 0x0A: |
| cr |= SDRAM_BXCR_SDAM_3; |
| break; |
| case 0x0B: |
| cr |= SDRAM_BXCR_SDAM_4; |
| break; |
| default: |
| printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", |
| dimm_num); |
| printf("ERROR: Unsupported value for number of " |
| "column addresses: %d.\n", num_col_addr); |
| printf("Replace the DIMM module with a supported DIMM.\n\n"); |
| hang(); |
| } |
| |
| /* |
| * enable the bank |
| */ |
| cr |= SDRAM_BXCR_SDBE; |
| |
| /*------------------------------------------------------------------ |
| | This next section is hardware dependent and must be programmed |
| | to match the hardware. |
| +-----------------------------------------------------------------*/ |
| if (dimm_num == 0) { |
| for (i = 0; i < num_banks; i++) { |
| mtdcr(memcfga, mem_b0cr + (i << 2)); |
| temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK | |
| SDRAM_BXCR_SDSZ_MASK | |
| SDRAM_BXCR_SDAM_MASK | |
| SDRAM_BXCR_SDBE); |
| cr |= temp; |
| cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK; |
| mtdcr(memcfgd, cr); |
| bank_base_addr += bank_size_bytes; |
| } |
| } |
| else { |
| for (i = 0; i < num_banks; i++) { |
| mtdcr(memcfga, mem_b2cr + (i << 2)); |
| temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK | |
| SDRAM_BXCR_SDSZ_MASK | |
| SDRAM_BXCR_SDAM_MASK | |
| SDRAM_BXCR_SDBE); |
| cr |= temp; |
| cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK; |
| mtdcr(memcfgd, cr); |
| bank_base_addr += bank_size_bytes; |
| } |
| } |
| } |
| } |
| |
| return(bank_base_addr); |
| } |
| |
| void program_ecc (unsigned long num_bytes) |
| { |
| unsigned long bank_base_addr; |
| unsigned long current_address; |
| unsigned long end_address; |
| unsigned long address_increment; |
| unsigned long cfg0; |
| |
| /* |
| * get Memory Controller Options 0 data |
| */ |
| mfsdram(mem_cfg0, cfg0); |
| |
| /* |
| * reset the bank_base address |
| */ |
| bank_base_addr = CFG_SDRAM_BASE; |
| |
| if ((cfg0 & SDRAM_CFG0_MCHK_MASK) != SDRAM_CFG0_MCHK_NON) { |
| mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | |
| SDRAM_CFG0_MCHK_GEN); |
| |
| if ((cfg0 & SDRAM_CFG0_DMWD_MASK) == SDRAM_CFG0_DMWD_32) { |
| address_increment = 4; |
| } |
| else { |
| address_increment = 8; |
| } |
| |
| current_address = (unsigned long)(bank_base_addr); |
| end_address = (unsigned long)(bank_base_addr) + num_bytes; |
| |
| while (current_address < end_address) { |
| *((unsigned long*)current_address) = 0x00000000; |
| current_address += address_increment; |
| } |
| |
| mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | |
| SDRAM_CFG0_MCHK_CHK); |
| } |
| } |
| |
| #endif /* CONFIG_440 */ |
| |
| #endif /* CONFIG_SPD_EEPROM */ |