| /* |
| * (C) Copyright 2007 |
| * Larry Johnson, lrj@acm.org |
| * |
| * based on rtc/m41t11.c which is ... |
| * |
| * (C) Copyright 2002 |
| * Andrew May, Viasat Inc, amay@viasat.com |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| /* |
| * STMicroelectronics M41T60 serial access real-time clock |
| */ |
| |
| /* #define DEBUG 1 */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <rtc.h> |
| #include <i2c.h> |
| |
| #if defined(CONFIG_RTC_M41T60) && defined(CFG_I2C_RTC_ADDR) && \ |
| defined(CONFIG_CMD_DATE) |
| |
| static unsigned bcd2bin(uchar n) |
| { |
| return ((((n >> 4) & 0x0F) * 10) + (n & 0x0F)); |
| } |
| |
| static unsigned char bin2bcd(unsigned int n) |
| { |
| return (((n / 10) << 4) | (n % 10)); |
| } |
| |
| /* |
| * Convert between century and "century bits" (CB1 and CB0). These routines |
| * assume years are in the range 1900 - 2299. |
| */ |
| |
| static unsigned char year2cb(unsigned const year) |
| { |
| if (year < 1900 || year >= 2300) |
| printf("M41T60 RTC: year %d out of range\n", year); |
| |
| return (year / 100) & 0x3; |
| } |
| |
| static unsigned cb2year(unsigned const cb) |
| { |
| return 1900 + 100 * ((cb + 1) & 0x3); |
| } |
| |
| /* |
| * These are simple defines for the chip local to here so they aren't too |
| * verbose. DAY/DATE aren't nice but that is how they are on the data sheet. |
| */ |
| #define RTC_SEC 0x0 |
| #define RTC_MIN 0x1 |
| #define RTC_HOUR 0x2 |
| #define RTC_DAY 0x3 |
| #define RTC_DATE 0x4 |
| #define RTC_MONTH 0x5 |
| #define RTC_YEAR 0x6 |
| |
| #define RTC_REG_CNT 7 |
| |
| #define RTC_CTRL 0x7 |
| |
| #if defined(DEBUG) |
| static void rtc_dump(char const *const label) |
| { |
| uchar data[8]; |
| |
| if (i2c_read(CFG_I2C_RTC_ADDR, 0, 1, data, sizeof(data))) { |
| printf("I2C read failed in rtc_dump()\n"); |
| return; |
| } |
| printf("RTC dump %s: %02X-%02X-%02X-%02X-%02X-%02X-%02X-%02X\n", |
| label, data[0], data[1], data[2], data[3], |
| data[4], data[5], data[6], data[7]); |
| } |
| #else |
| #define rtc_dump(label) |
| #endif |
| |
| static uchar *rtc_validate(void) |
| { |
| /* |
| * This routine uses the OUT bit and the validity of the time values to |
| * determine whether there has been an initial power-up since the last |
| * time the routine was run. It assumes that the OUT bit is not being |
| * used for any other purpose. |
| */ |
| static const uchar daysInMonth[0x13] = { |
| 0x00, 0x31, 0x29, 0x31, 0x30, 0x31, 0x30, 0x31, |
| 0x31, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x31, 0x30, 0x31 |
| }; |
| static uchar data[8]; |
| uchar min, date, month, years; |
| |
| rtc_dump("begin validate"); |
| if (i2c_read(CFG_I2C_RTC_ADDR, 0, 1, data, sizeof(data))) { |
| printf("I2C read failed in rtc_validate()\n"); |
| return 0; |
| } |
| /* |
| * If the OUT bit is "1", there has been a loss of power, so stop the |
| * oscillator so it can be "kick-started" as per data sheet. |
| */ |
| if (0x00 != (data[RTC_CTRL] & 0x80)) { |
| printf("M41T60 RTC clock lost power.\n"); |
| data[RTC_SEC] = 0x80; |
| if (i2c_write(CFG_I2C_RTC_ADDR, RTC_SEC, 1, data, 1)) { |
| printf("I2C write failed in rtc_validate()\n"); |
| return 0; |
| } |
| } |
| /* |
| * If the oscillator is stopped or the date is invalid, then reset the |
| * OUT bit to "0", reset the date registers, and start the oscillator. |
| */ |
| min = data[RTC_MIN] & 0x7F; |
| date = data[RTC_DATE]; |
| month = data[RTC_MONTH] & 0x3F; |
| years = data[RTC_YEAR]; |
| if (0x59 < data[RTC_SEC] || 0x09 < (data[RTC_SEC] & 0x0F) || |
| 0x59 < min || 0x09 < (min & 0x0F) || |
| 0x23 < data[RTC_HOUR] || 0x09 < (data[RTC_HOUR] & 0x0F) || |
| 0x07 < data[RTC_DAY] || 0x00 == data[RTC_DAY] || |
| 0x12 < month || |
| 0x99 < years || 0x09 < (years & 0x0F) || |
| daysInMonth[month] < date || 0x09 < (date & 0x0F) || 0x00 == date || |
| (0x29 == date && 0x02 == month && |
| ((0x00 != (years & 0x03)) || |
| (0x00 == years && 0x00 != (data[RTC_MONTH] & 0xC0))))) { |
| printf("Resetting M41T60 RTC clock.\n"); |
| /* |
| * Set to 00:00:00 1900-01-01 (Monday) |
| */ |
| data[RTC_SEC] = 0x00; |
| data[RTC_MIN] &= 0x80; /* preserve OFIE bit */ |
| data[RTC_HOUR] = 0x00; |
| data[RTC_DAY] = 0x02; |
| data[RTC_DATE] = 0x01; |
| data[RTC_MONTH] = 0xC1; |
| data[RTC_YEAR] = 0x00; |
| data[RTC_CTRL] &= 0x7F; /* reset OUT bit */ |
| |
| if (i2c_write(CFG_I2C_RTC_ADDR, 0, 1, data, sizeof(data))) { |
| printf("I2C write failed in rtc_validate()\n"); |
| return 0; |
| } |
| } |
| return data; |
| } |
| |
| int rtc_get(struct rtc_time *tmp) |
| { |
| uchar const *const data = rtc_validate(); |
| |
| if (!data) |
| return -1; |
| |
| tmp->tm_sec = bcd2bin(data[RTC_SEC] & 0x7F); |
| tmp->tm_min = bcd2bin(data[RTC_MIN] & 0x7F); |
| tmp->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3F); |
| tmp->tm_mday = bcd2bin(data[RTC_DATE] & 0x3F); |
| tmp->tm_mon = bcd2bin(data[RTC_MONTH] & 0x1F); |
| tmp->tm_year = cb2year(data[RTC_MONTH] >> 6) + bcd2bin(data[RTC_YEAR]); |
| tmp->tm_wday = bcd2bin(data[RTC_DAY] & 0x07) - 1; |
| tmp->tm_yday = 0; |
| tmp->tm_isdst = 0; |
| |
| debug("Get DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n", |
| tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday, |
| tmp->tm_hour, tmp->tm_min, tmp->tm_sec); |
| |
| return 0; |
| } |
| |
| void rtc_set(struct rtc_time *tmp) |
| { |
| uchar *const data = rtc_validate(); |
| |
| if (!data) |
| return; |
| |
| debug("Set DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n", |
| tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday, |
| tmp->tm_hour, tmp->tm_min, tmp->tm_sec); |
| |
| data[RTC_SEC] = (data[RTC_SEC] & 0x80) | (bin2bcd(tmp->tm_sec) & 0x7F); |
| data[RTC_MIN] = (data[RTC_MIN] & 0X80) | (bin2bcd(tmp->tm_min) & 0X7F); |
| data[RTC_HOUR] = bin2bcd(tmp->tm_hour) & 0x3F; |
| data[RTC_DATE] = bin2bcd(tmp->tm_mday) & 0x3F; |
| data[RTC_MONTH] = bin2bcd(tmp->tm_mon) & 0x1F; |
| data[RTC_YEAR] = bin2bcd(tmp->tm_year % 100); |
| data[RTC_MONTH] |= year2cb(tmp->tm_year) << 6; |
| data[RTC_DAY] = bin2bcd(tmp->tm_wday + 1) & 0x07; |
| if (i2c_write(CFG_I2C_RTC_ADDR, 0, 1, data, RTC_REG_CNT)) { |
| printf("I2C write failed in rtc_set()\n"); |
| return; |
| } |
| } |
| |
| void rtc_reset(void) |
| { |
| uchar *const data = rtc_validate(); |
| char const *const s = getenv("rtccal"); |
| |
| if (!data) |
| return; |
| |
| rtc_dump("begin reset"); |
| /* |
| * If environmental variable "rtccal" is present, it must be a hex value |
| * between 0x00 and 0x3F, inclusive. The five least-significan bits |
| * represent the calibration magnitude, and the sixth bit the sign bit. |
| * If these do not match the contents of the hardware register, that |
| * register is updated. The value 0x00 imples no correction. Consult |
| * the M41T60 documentation for further details. |
| */ |
| if (s) { |
| unsigned long const l = simple_strtoul(s, 0, 16); |
| |
| if (l <= 0x3F) { |
| if ((data[RTC_CTRL] & 0x3F) != l) { |
| printf("Setting RTC calibration to 0x%02X\n", |
| l); |
| data[RTC_CTRL] &= 0xC0; |
| data[RTC_CTRL] |= (uchar) l; |
| } |
| } else |
| printf("environment parameter \"rtccal\" not valid: " |
| "ignoring\n"); |
| } |
| /* |
| * Turn off frequency test. |
| */ |
| data[RTC_CTRL] &= 0xBF; |
| if (i2c_write(CFG_I2C_RTC_ADDR, RTC_CTRL, 1, data + RTC_CTRL, 1)) { |
| printf("I2C write failed in rtc_reset()\n"); |
| return; |
| } |
| rtc_dump("end reset"); |
| } |
| #endif /* CONFIG_RTC_M41T60 && CFG_I2C_RTC_ADDR && CONFIG_CMD_DATE */ |