| // SPDX-License-Identifier: GPL-2.0+ and MIT |
| /* |
| * RSA library - generate parameters for a public key |
| * |
| * Copyright (c) 2019 Linaro Limited |
| * Author: AKASHI Takahiro |
| * |
| * Big number routines in this file come from BearSSL: |
| * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org> |
| */ |
| |
| #include <common.h> |
| #include <image.h> |
| #include <malloc.h> |
| #include <asm/byteorder.h> |
| #include <crypto/internal/rsa.h> |
| #include <u-boot/rsa-mod-exp.h> |
| |
| /** |
| * br_dec16be() - Convert 16-bit big-endian integer to native |
| * @src: Pointer to data |
| * Return: Native-endian integer |
| */ |
| static unsigned br_dec16be(const void *src) |
| { |
| return be16_to_cpup(src); |
| } |
| |
| /** |
| * br_dec32be() - Convert 32-bit big-endian integer to native |
| * @src: Pointer to data |
| * Return: Native-endian integer |
| */ |
| static uint32_t br_dec32be(const void *src) |
| { |
| return be32_to_cpup(src); |
| } |
| |
| /** |
| * br_enc32be() - Convert native 32-bit integer to big-endian |
| * @dst: Pointer to buffer to store big-endian integer in |
| * @x: Native 32-bit integer |
| */ |
| static void br_enc32be(void *dst, uint32_t x) |
| { |
| __be32 tmp; |
| |
| tmp = cpu_to_be32(x); |
| memcpy(dst, &tmp, sizeof(tmp)); |
| } |
| |
| /* from BearSSL's src/inner.h */ |
| |
| /* |
| * Negate a boolean. |
| */ |
| static uint32_t NOT(uint32_t ctl) |
| { |
| return ctl ^ 1; |
| } |
| |
| /* |
| * Multiplexer: returns x if ctl == 1, y if ctl == 0. |
| */ |
| static uint32_t MUX(uint32_t ctl, uint32_t x, uint32_t y) |
| { |
| return y ^ (-ctl & (x ^ y)); |
| } |
| |
| /* |
| * Equality check: returns 1 if x == y, 0 otherwise. |
| */ |
| static uint32_t EQ(uint32_t x, uint32_t y) |
| { |
| uint32_t q; |
| |
| q = x ^ y; |
| return NOT((q | -q) >> 31); |
| } |
| |
| /* |
| * Inequality check: returns 1 if x != y, 0 otherwise. |
| */ |
| static uint32_t NEQ(uint32_t x, uint32_t y) |
| { |
| uint32_t q; |
| |
| q = x ^ y; |
| return (q | -q) >> 31; |
| } |
| |
| /* |
| * Comparison: returns 1 if x > y, 0 otherwise. |
| */ |
| static uint32_t GT(uint32_t x, uint32_t y) |
| { |
| /* |
| * If both x < 2^31 and y < 2^31, then y-x will have its high |
| * bit set if x > y, cleared otherwise. |
| * |
| * If either x >= 2^31 or y >= 2^31 (but not both), then the |
| * result is the high bit of x. |
| * |
| * If both x >= 2^31 and y >= 2^31, then we can virtually |
| * subtract 2^31 from both, and we are back to the first case. |
| * Since (y-2^31)-(x-2^31) = y-x, the subtraction is already |
| * fine. |
| */ |
| uint32_t z; |
| |
| z = y - x; |
| return (z ^ ((x ^ y) & (x ^ z))) >> 31; |
| } |
| |
| /* |
| * Compute the bit length of a 32-bit integer. Returned value is between 0 |
| * and 32 (inclusive). |
| */ |
| static uint32_t BIT_LENGTH(uint32_t x) |
| { |
| uint32_t k, c; |
| |
| k = NEQ(x, 0); |
| c = GT(x, 0xFFFF); x = MUX(c, x >> 16, x); k += c << 4; |
| c = GT(x, 0x00FF); x = MUX(c, x >> 8, x); k += c << 3; |
| c = GT(x, 0x000F); x = MUX(c, x >> 4, x); k += c << 2; |
| c = GT(x, 0x0003); x = MUX(c, x >> 2, x); k += c << 1; |
| k += GT(x, 0x0001); |
| return k; |
| } |
| |
| #define GE(x, y) NOT(GT(y, x)) |
| #define LT(x, y) GT(y, x) |
| #define MUL(x, y) ((uint64_t)(x) * (uint64_t)(y)) |
| |
| /* |
| * Integers 'i32' |
| * -------------- |
| * |
| * The 'i32' functions implement computations on big integers using |
| * an internal representation as an array of 32-bit integers. For |
| * an array x[]: |
| * -- x[0] contains the "announced bit length" of the integer |
| * -- x[1], x[2]... contain the value in little-endian order (x[1] |
| * contains the least significant 32 bits) |
| * |
| * Multiplications rely on the elementary 32x32->64 multiplication. |
| * |
| * The announced bit length specifies the number of bits that are |
| * significant in the subsequent 32-bit words. Unused bits in the |
| * last (most significant) word are set to 0; subsequent words are |
| * uninitialized and need not exist at all. |
| * |
| * The execution time and memory access patterns of all computations |
| * depend on the announced bit length, but not on the actual word |
| * values. For modular integers, the announced bit length of any integer |
| * modulo n is equal to the actual bit length of n; thus, computations |
| * on modular integers are "constant-time" (only the modulus length may |
| * leak). |
| */ |
| |
| /* |
| * Extract one word from an integer. The offset is counted in bits. |
| * The word MUST entirely fit within the word elements corresponding |
| * to the announced bit length of a[]. |
| */ |
| static uint32_t br_i32_word(const uint32_t *a, uint32_t off) |
| { |
| size_t u; |
| unsigned j; |
| |
| u = (size_t)(off >> 5) + 1; |
| j = (unsigned)off & 31; |
| if (j == 0) { |
| return a[u]; |
| } else { |
| return (a[u] >> j) | (a[u + 1] << (32 - j)); |
| } |
| } |
| |
| /* from BearSSL's src/int/i32_bitlen.c */ |
| |
| /* |
| * Compute the actual bit length of an integer. The argument x should |
| * point to the first (least significant) value word of the integer. |
| * The len 'xlen' contains the number of 32-bit words to access. |
| * |
| * CT: value or length of x does not leak. |
| */ |
| static uint32_t br_i32_bit_length(uint32_t *x, size_t xlen) |
| { |
| uint32_t tw, twk; |
| |
| tw = 0; |
| twk = 0; |
| while (xlen -- > 0) { |
| uint32_t w, c; |
| |
| c = EQ(tw, 0); |
| w = x[xlen]; |
| tw = MUX(c, w, tw); |
| twk = MUX(c, (uint32_t)xlen, twk); |
| } |
| return (twk << 5) + BIT_LENGTH(tw); |
| } |
| |
| /* from BearSSL's src/int/i32_decode.c */ |
| |
| /* |
| * Decode an integer from its big-endian unsigned representation. The |
| * "true" bit length of the integer is computed, but all words of x[] |
| * corresponding to the full 'len' bytes of the source are set. |
| * |
| * CT: value or length of x does not leak. |
| */ |
| static void br_i32_decode(uint32_t *x, const void *src, size_t len) |
| { |
| const unsigned char *buf; |
| size_t u, v; |
| |
| buf = src; |
| u = len; |
| v = 1; |
| for (;;) { |
| if (u < 4) { |
| uint32_t w; |
| |
| if (u < 2) { |
| if (u == 0) { |
| break; |
| } else { |
| w = buf[0]; |
| } |
| } else { |
| if (u == 2) { |
| w = br_dec16be(buf); |
| } else { |
| w = ((uint32_t)buf[0] << 16) |
| | br_dec16be(buf + 1); |
| } |
| } |
| x[v ++] = w; |
| break; |
| } else { |
| u -= 4; |
| x[v ++] = br_dec32be(buf + u); |
| } |
| } |
| x[0] = br_i32_bit_length(x + 1, v - 1); |
| } |
| |
| /* from BearSSL's src/int/i32_encode.c */ |
| |
| /* |
| * Encode an integer into its big-endian unsigned representation. The |
| * output length in bytes is provided (parameter 'len'); if the length |
| * is too short then the integer is appropriately truncated; if it is |
| * too long then the extra bytes are set to 0. |
| */ |
| static void br_i32_encode(void *dst, size_t len, const uint32_t *x) |
| { |
| unsigned char *buf; |
| size_t k; |
| |
| buf = dst; |
| |
| /* |
| * Compute the announced size of x in bytes; extra bytes are |
| * filled with zeros. |
| */ |
| k = (x[0] + 7) >> 3; |
| while (len > k) { |
| *buf ++ = 0; |
| len --; |
| } |
| |
| /* |
| * Now we use k as index within x[]. That index starts at 1; |
| * we initialize it to the topmost complete word, and process |
| * any remaining incomplete word. |
| */ |
| k = (len + 3) >> 2; |
| switch (len & 3) { |
| case 3: |
| *buf ++ = x[k] >> 16; |
| /* fall through */ |
| case 2: |
| *buf ++ = x[k] >> 8; |
| /* fall through */ |
| case 1: |
| *buf ++ = x[k]; |
| k --; |
| } |
| |
| /* |
| * Encode all complete words. |
| */ |
| while (k > 0) { |
| br_enc32be(buf, x[k]); |
| k --; |
| buf += 4; |
| } |
| } |
| |
| /* from BearSSL's src/int/i32_ninv32.c */ |
| |
| /* |
| * Compute -(1/x) mod 2^32. If x is even, then this function returns 0. |
| */ |
| static uint32_t br_i32_ninv32(uint32_t x) |
| { |
| uint32_t y; |
| |
| y = 2 - x; |
| y *= 2 - y * x; |
| y *= 2 - y * x; |
| y *= 2 - y * x; |
| y *= 2 - y * x; |
| return MUX(x & 1, -y, 0); |
| } |
| |
| /* from BearSSL's src/int/i32_add.c */ |
| |
| /* |
| * Add b[] to a[] and return the carry (0 or 1). If ctl is 0, then a[] |
| * is unmodified, but the carry is still computed and returned. The |
| * arrays a[] and b[] MUST have the same announced bit length. |
| * |
| * a[] and b[] MAY be the same array, but partial overlap is not allowed. |
| */ |
| static uint32_t br_i32_add(uint32_t *a, const uint32_t *b, uint32_t ctl) |
| { |
| uint32_t cc; |
| size_t u, m; |
| |
| cc = 0; |
| m = (a[0] + 63) >> 5; |
| for (u = 1; u < m; u ++) { |
| uint32_t aw, bw, naw; |
| |
| aw = a[u]; |
| bw = b[u]; |
| naw = aw + bw + cc; |
| |
| /* |
| * Carry is 1 if naw < aw. Carry is also 1 if naw == aw |
| * AND the carry was already 1. |
| */ |
| cc = (cc & EQ(naw, aw)) | LT(naw, aw); |
| a[u] = MUX(ctl, naw, aw); |
| } |
| return cc; |
| } |
| |
| /* from BearSSL's src/int/i32_sub.c */ |
| |
| /* |
| * Subtract b[] from a[] and return the carry (0 or 1). If ctl is 0, |
| * then a[] is unmodified, but the carry is still computed and returned. |
| * The arrays a[] and b[] MUST have the same announced bit length. |
| * |
| * a[] and b[] MAY be the same array, but partial overlap is not allowed. |
| */ |
| static uint32_t br_i32_sub(uint32_t *a, const uint32_t *b, uint32_t ctl) |
| { |
| uint32_t cc; |
| size_t u, m; |
| |
| cc = 0; |
| m = (a[0] + 63) >> 5; |
| for (u = 1; u < m; u ++) { |
| uint32_t aw, bw, naw; |
| |
| aw = a[u]; |
| bw = b[u]; |
| naw = aw - bw - cc; |
| |
| /* |
| * Carry is 1 if naw > aw. Carry is 1 also if naw == aw |
| * AND the carry was already 1. |
| */ |
| cc = (cc & EQ(naw, aw)) | GT(naw, aw); |
| a[u] = MUX(ctl, naw, aw); |
| } |
| return cc; |
| } |
| |
| /* from BearSSL's src/int/i32_div32.c */ |
| |
| /* |
| * Constant-time division. The dividend hi:lo is divided by the |
| * divisor d; the quotient is returned and the remainder is written |
| * in *r. If hi == d, then the quotient does not fit on 32 bits; |
| * returned value is thus truncated. If hi > d, returned values are |
| * indeterminate. |
| */ |
| static uint32_t br_divrem(uint32_t hi, uint32_t lo, uint32_t d, uint32_t *r) |
| { |
| /* TODO: optimize this */ |
| uint32_t q; |
| uint32_t ch, cf; |
| int k; |
| |
| q = 0; |
| ch = EQ(hi, d); |
| hi = MUX(ch, 0, hi); |
| for (k = 31; k > 0; k --) { |
| int j; |
| uint32_t w, ctl, hi2, lo2; |
| |
| j = 32 - k; |
| w = (hi << j) | (lo >> k); |
| ctl = GE(w, d) | (hi >> k); |
| hi2 = (w - d) >> j; |
| lo2 = lo - (d << k); |
| hi = MUX(ctl, hi2, hi); |
| lo = MUX(ctl, lo2, lo); |
| q |= ctl << k; |
| } |
| cf = GE(lo, d) | hi; |
| q |= cf; |
| *r = MUX(cf, lo - d, lo); |
| return q; |
| } |
| |
| /* |
| * Wrapper for br_divrem(); the remainder is returned, and the quotient |
| * is discarded. |
| */ |
| static uint32_t br_rem(uint32_t hi, uint32_t lo, uint32_t d) |
| { |
| uint32_t r; |
| |
| br_divrem(hi, lo, d, &r); |
| return r; |
| } |
| |
| /* |
| * Wrapper for br_divrem(); the quotient is returned, and the remainder |
| * is discarded. |
| */ |
| static uint32_t br_div(uint32_t hi, uint32_t lo, uint32_t d) |
| { |
| uint32_t r; |
| |
| return br_divrem(hi, lo, d, &r); |
| } |
| |
| /* from BearSSL's src/int/i32_muladd.c */ |
| |
| /* |
| * Multiply x[] by 2^32 and then add integer z, modulo m[]. This |
| * function assumes that x[] and m[] have the same announced bit |
| * length, and the announced bit length of m[] matches its true |
| * bit length. |
| * |
| * x[] and m[] MUST be distinct arrays. |
| * |
| * CT: only the common announced bit length of x and m leaks, not |
| * the values of x, z or m. |
| */ |
| static void br_i32_muladd_small(uint32_t *x, uint32_t z, const uint32_t *m) |
| { |
| uint32_t m_bitlen; |
| size_t u, mlen; |
| uint32_t a0, a1, b0, hi, g, q, tb; |
| uint32_t chf, clow, under, over; |
| uint64_t cc; |
| |
| /* |
| * We can test on the modulus bit length since we accept to |
| * leak that length. |
| */ |
| m_bitlen = m[0]; |
| if (m_bitlen == 0) { |
| return; |
| } |
| if (m_bitlen <= 32) { |
| x[1] = br_rem(x[1], z, m[1]); |
| return; |
| } |
| mlen = (m_bitlen + 31) >> 5; |
| |
| /* |
| * Principle: we estimate the quotient (x*2^32+z)/m by |
| * doing a 64/32 division with the high words. |
| * |
| * Let: |
| * w = 2^32 |
| * a = (w*a0 + a1) * w^N + a2 |
| * b = b0 * w^N + b2 |
| * such that: |
| * 0 <= a0 < w |
| * 0 <= a1 < w |
| * 0 <= a2 < w^N |
| * w/2 <= b0 < w |
| * 0 <= b2 < w^N |
| * a < w*b |
| * I.e. the two top words of a are a0:a1, the top word of b is |
| * b0, we ensured that b0 is "full" (high bit set), and a is |
| * such that the quotient q = a/b fits on one word (0 <= q < w). |
| * |
| * If a = b*q + r (with 0 <= r < q), we can estimate q by |
| * doing an Euclidean division on the top words: |
| * a0*w+a1 = b0*u + v (with 0 <= v < w) |
| * Then the following holds: |
| * 0 <= u <= w |
| * u-2 <= q <= u |
| */ |
| a0 = br_i32_word(x, m_bitlen - 32); |
| hi = x[mlen]; |
| memmove(x + 2, x + 1, (mlen - 1) * sizeof *x); |
| x[1] = z; |
| a1 = br_i32_word(x, m_bitlen - 32); |
| b0 = br_i32_word(m, m_bitlen - 32); |
| |
| /* |
| * We estimate a divisor q. If the quotient returned by br_div() |
| * is g: |
| * -- If a0 == b0 then g == 0; we want q = 0xFFFFFFFF. |
| * -- Otherwise: |
| * -- if g == 0 then we set q = 0; |
| * -- otherwise, we set q = g - 1. |
| * The properties described above then ensure that the true |
| * quotient is q-1, q or q+1. |
| */ |
| g = br_div(a0, a1, b0); |
| q = MUX(EQ(a0, b0), 0xFFFFFFFF, MUX(EQ(g, 0), 0, g - 1)); |
| |
| /* |
| * We subtract q*m from x (with the extra high word of value 'hi'). |
| * Since q may be off by 1 (in either direction), we may have to |
| * add or subtract m afterwards. |
| * |
| * The 'tb' flag will be true (1) at the end of the loop if the |
| * result is greater than or equal to the modulus (not counting |
| * 'hi' or the carry). |
| */ |
| cc = 0; |
| tb = 1; |
| for (u = 1; u <= mlen; u ++) { |
| uint32_t mw, zw, xw, nxw; |
| uint64_t zl; |
| |
| mw = m[u]; |
| zl = MUL(mw, q) + cc; |
| cc = (uint32_t)(zl >> 32); |
| zw = (uint32_t)zl; |
| xw = x[u]; |
| nxw = xw - zw; |
| cc += (uint64_t)GT(nxw, xw); |
| x[u] = nxw; |
| tb = MUX(EQ(nxw, mw), tb, GT(nxw, mw)); |
| } |
| |
| /* |
| * If we underestimated q, then either cc < hi (one extra bit |
| * beyond the top array word), or cc == hi and tb is true (no |
| * extra bit, but the result is not lower than the modulus). In |
| * these cases we must subtract m once. |
| * |
| * Otherwise, we may have overestimated, which will show as |
| * cc > hi (thus a negative result). Correction is adding m once. |
| */ |
| chf = (uint32_t)(cc >> 32); |
| clow = (uint32_t)cc; |
| over = chf | GT(clow, hi); |
| under = ~over & (tb | (~chf & LT(clow, hi))); |
| br_i32_add(x, m, over); |
| br_i32_sub(x, m, under); |
| } |
| |
| /* from BearSSL's src/int/i32_reduce.c */ |
| |
| /* |
| * Reduce an integer (a[]) modulo another (m[]). The result is written |
| * in x[] and its announced bit length is set to be equal to that of m[]. |
| * |
| * x[] MUST be distinct from a[] and m[]. |
| * |
| * CT: only announced bit lengths leak, not values of x, a or m. |
| */ |
| static void br_i32_reduce(uint32_t *x, const uint32_t *a, const uint32_t *m) |
| { |
| uint32_t m_bitlen, a_bitlen; |
| size_t mlen, alen, u; |
| |
| m_bitlen = m[0]; |
| mlen = (m_bitlen + 31) >> 5; |
| |
| x[0] = m_bitlen; |
| if (m_bitlen == 0) { |
| return; |
| } |
| |
| /* |
| * If the source is shorter, then simply copy all words from a[] |
| * and zero out the upper words. |
| */ |
| a_bitlen = a[0]; |
| alen = (a_bitlen + 31) >> 5; |
| if (a_bitlen < m_bitlen) { |
| memcpy(x + 1, a + 1, alen * sizeof *a); |
| for (u = alen; u < mlen; u ++) { |
| x[u + 1] = 0; |
| } |
| return; |
| } |
| |
| /* |
| * The source length is at least equal to that of the modulus. |
| * We must thus copy N-1 words, and input the remaining words |
| * one by one. |
| */ |
| memcpy(x + 1, a + 2 + (alen - mlen), (mlen - 1) * sizeof *a); |
| x[mlen] = 0; |
| for (u = 1 + alen - mlen; u > 0; u --) { |
| br_i32_muladd_small(x, a[u], m); |
| } |
| } |
| |
| /** |
| * rsa_free_key_prop() - Free key properties |
| * @prop: Pointer to struct key_prop |
| * |
| * This function frees all the memories allocated by rsa_gen_key_prop(). |
| */ |
| void rsa_free_key_prop(struct key_prop *prop) |
| { |
| if (!prop) |
| return; |
| |
| free((void *)prop->modulus); |
| free((void *)prop->public_exponent); |
| free((void *)prop->rr); |
| |
| free(prop); |
| } |
| |
| /** |
| * rsa_gen_key_prop() - Generate key properties of RSA public key |
| * @key: Specifies key data in DER format |
| * @keylen: Length of @key |
| * @prop: Generated key property |
| * |
| * This function takes a blob of encoded RSA public key data in DER |
| * format, parse it and generate all the relevant properties |
| * in key_prop structure. |
| * Return a pointer to struct key_prop in @prop on success. |
| * |
| * Return: 0 on success, negative on error |
| */ |
| int rsa_gen_key_prop(const void *key, uint32_t keylen, struct key_prop **prop) |
| { |
| struct rsa_key rsa_key; |
| uint32_t *n = NULL, *rr = NULL, *rrtmp = NULL; |
| int rlen, i, ret = 0; |
| |
| *prop = calloc(sizeof(**prop), 1); |
| if (!(*prop)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| ret = rsa_parse_pub_key(&rsa_key, key, keylen); |
| if (ret) |
| goto out; |
| |
| /* modulus */ |
| /* removing leading 0's */ |
| for (i = 0; i < rsa_key.n_sz && !rsa_key.n[i]; i++) |
| ; |
| (*prop)->num_bits = (rsa_key.n_sz - i) * 8; |
| (*prop)->modulus = malloc(rsa_key.n_sz - i); |
| if (!(*prop)->modulus) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| memcpy((void *)(*prop)->modulus, &rsa_key.n[i], rsa_key.n_sz - i); |
| |
| n = calloc(sizeof(uint32_t), 1 + ((*prop)->num_bits >> 5)); |
| rr = calloc(sizeof(uint32_t), 1 + (((*prop)->num_bits * 2) >> 5)); |
| rrtmp = calloc(sizeof(uint32_t), 2 + (((*prop)->num_bits * 2) >> 5)); |
| if (!n || !rr || !rrtmp) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* exponent */ |
| (*prop)->public_exponent = calloc(1, sizeof(uint64_t)); |
| if (!(*prop)->public_exponent) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| memcpy((void *)(*prop)->public_exponent + sizeof(uint64_t) |
| - rsa_key.e_sz, |
| rsa_key.e, rsa_key.e_sz); |
| (*prop)->exp_len = sizeof(uint64_t); |
| |
| /* n0 inverse */ |
| br_i32_decode(n, &rsa_key.n[i], rsa_key.n_sz - i); |
| (*prop)->n0inv = br_i32_ninv32(n[1]); |
| |
| /* R^2 mod n; R = 2^(num_bits) */ |
| rlen = (*prop)->num_bits * 2; /* #bits of R^2 = (2^num_bits)^2 */ |
| rr[0] = 0; |
| *(uint8_t *)&rr[0] = (1 << (rlen % 8)); |
| for (i = 1; i < (((rlen + 31) >> 5) + 1); i++) |
| rr[i] = 0; |
| br_i32_decode(rrtmp, rr, ((rlen + 7) >> 3) + 1); |
| br_i32_reduce(rr, rrtmp, n); |
| |
| rlen = ((*prop)->num_bits + 7) >> 3; /* #bytes of R^2 mod n */ |
| (*prop)->rr = malloc(rlen); |
| if (!(*prop)->rr) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| br_i32_encode((void *)(*prop)->rr, rlen, rr); |
| |
| out: |
| free(n); |
| free(rr); |
| free(rrtmp); |
| if (ret < 0) |
| rsa_free_key_prop(*prop); |
| return ret; |
| } |