blob: 603834e5078b5a1645753de6d347a830e1fc5da1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* AM6: SoC specific initialization
*
* Copyright (C) 2017-2018 Texas Instruments Incorporated - http://www.ti.com/
* Lokesh Vutla <lokeshvutla@ti.com>
*/
#include <common.h>
#include <fdt_support.h>
#include <init.h>
#include <asm/io.h>
#include <spl.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sysfw-loader.h>
#include <asm/arch/sys_proto.h>
#include "common.h"
#include <dm.h>
#include <dm/uclass-internal.h>
#include <dm/pinctrl.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include <log.h>
#include <mmc.h>
#include <stdlib.h>
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_SPL_BUILD
#ifdef CONFIG_K3_LOAD_SYSFW
#ifdef CONFIG_TI_SECURE_DEVICE
struct fwl_data main_cbass_fwls[] = {
{ "MMCSD1_CFG", 2057, 1 },
{ "MMCSD0_CFG", 2058, 1 },
{ "USB3SS0_SLV0", 2176, 2 },
{ "PCIE0_SLV", 2336, 8 },
{ "PCIE1_SLV", 2337, 8 },
{ "PCIE0_CFG", 2688, 1 },
{ "PCIE1_CFG", 2689, 1 },
}, mcu_cbass_fwls[] = {
{ "MCU_ARMSS0_CORE0_SLV", 1024, 1 },
{ "MCU_ARMSS0_CORE1_SLV", 1028, 1 },
{ "MCU_FSS0_S1", 1033, 8 },
{ "MCU_FSS0_S0", 1036, 8 },
{ "MCU_CPSW0", 1220, 1 },
};
#endif
#endif
static void ctrl_mmr_unlock(void)
{
/* Unlock all WKUP_CTRL_MMR0 module registers */
mmr_unlock(WKUP_CTRL_MMR0_BASE, 0);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 1);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 2);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 3);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 6);
mmr_unlock(WKUP_CTRL_MMR0_BASE, 7);
/* Unlock all MCU_CTRL_MMR0 module registers */
mmr_unlock(MCU_CTRL_MMR0_BASE, 0);
mmr_unlock(MCU_CTRL_MMR0_BASE, 1);
mmr_unlock(MCU_CTRL_MMR0_BASE, 2);
mmr_unlock(MCU_CTRL_MMR0_BASE, 6);
/* Unlock all CTRL_MMR0 module registers */
mmr_unlock(CTRL_MMR0_BASE, 0);
mmr_unlock(CTRL_MMR0_BASE, 1);
mmr_unlock(CTRL_MMR0_BASE, 2);
mmr_unlock(CTRL_MMR0_BASE, 3);
mmr_unlock(CTRL_MMR0_BASE, 6);
mmr_unlock(CTRL_MMR0_BASE, 7);
}
/*
* This uninitialized global variable would normal end up in the .bss section,
* but the .bss is cleared between writing and reading this variable, so move
* it to the .data section.
*/
u32 bootindex __attribute__((section(".data")));
static void store_boot_index_from_rom(void)
{
bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX);
}
#if defined(CONFIG_K3_LOAD_SYSFW) && CONFIG_IS_ENABLED(DM_MMC)
void k3_mmc_stop_clock(void)
{
if (spl_boot_device() == BOOT_DEVICE_MMC1) {
struct mmc *mmc = find_mmc_device(0);
if (!mmc)
return;
mmc->saved_clock = mmc->clock;
mmc_set_clock(mmc, 0, true);
}
}
void k3_mmc_restart_clock(void)
{
if (spl_boot_device() == BOOT_DEVICE_MMC1) {
struct mmc *mmc = find_mmc_device(0);
if (!mmc)
return;
mmc_set_clock(mmc, mmc->saved_clock, false);
}
}
#else
void k3_mmc_stop_clock(void) {}
void k3_mmc_restart_clock(void) {}
#endif
#if CONFIG_IS_ENABLED(DFU) || CONFIG_IS_ENABLED(USB_STORAGE)
#define CTRLMMR_SERDES0_CTRL 0x00104080
#define PCIE_LANE0 0x1
static int fixup_usb_boot(void)
{
int ret;
switch (spl_boot_device()) {
case BOOT_DEVICE_USB:
/*
* If bootmode is Host bootmode, fixup the dr_mode to host
* before the dwc3 bind takes place
*/
ret = fdt_find_and_setprop((void *)gd->fdt_blob,
"/interconnect@100000/dwc3@4000000/usb@10000",
"dr_mode", "host", 11, 0);
if (ret)
printf("%s: fdt_find_and_setprop() failed:%d\n", __func__,
ret);
fallthrough;
case BOOT_DEVICE_DFU:
/*
* The serdes mux between PCIe and USB3 needs to be set to PCIe for
* accessing the interface at USB 2.0
*/
writel(PCIE_LANE0, CTRLMMR_SERDES0_CTRL);
default:
break;
}
return 0;
}
int fdtdec_board_setup(const void *fdt_blob)
{
return fixup_usb_boot();
}
#endif
void board_init_f(ulong dummy)
{
#if defined(CONFIG_K3_LOAD_SYSFW) || defined(CONFIG_K3_AM654_DDRSS)
struct udevice *dev;
size_t pool_size;
void *pool_addr;
int ret;
#endif
/*
* Cannot delay this further as there is a chance that
* K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section.
*/
store_boot_index_from_rom();
/* Make all control module registers accessible */
ctrl_mmr_unlock();
#ifdef CONFIG_CPU_V7R
disable_linefill_optimization();
setup_k3_mpu_regions();
#endif
/* Init DM early in-order to invoke system controller */
spl_early_init();
#ifdef CONFIG_K3_EARLY_CONS
/*
* Allow establishing an early console as required for example when
* doing a UART-based boot. Note that this console may not "survive"
* through a SYSFW PM-init step and will need a re-init in some way
* due to changing module clock frequencies.
*/
early_console_init();
#endif
#ifdef CONFIG_K3_LOAD_SYSFW
/*
* Initialize an early full malloc environment. Do so by allocating a
* new malloc area inside the currently active pre-relocation "first"
* malloc pool of which we use all that's left.
*/
pool_size = CONFIG_VAL(SYS_MALLOC_F_LEN) - gd->malloc_ptr;
pool_addr = malloc(pool_size);
if (!pool_addr)
panic("ERROR: Can't allocate full malloc pool!\n");
mem_malloc_init((ulong)pool_addr, (ulong)pool_size);
gd->flags |= GD_FLG_FULL_MALLOC_INIT;
debug("%s: initialized an early full malloc pool at 0x%08lx of 0x%lx bytes\n",
__func__, (unsigned long)pool_addr, (unsigned long)pool_size);
/*
* Process pinctrl for the serial0 a.k.a. WKUP_UART0 module and continue
* regardless of the result of pinctrl. Do this without probing the
* device, but instead by searching the device that would request the
* given sequence number if probed. The UART will be used by the system
* firmware (SYSFW) image for various purposes and SYSFW depends on us
* to initialize its pin settings.
*/
ret = uclass_find_device_by_seq(UCLASS_SERIAL, 0, true, &dev);
if (!ret)
pinctrl_select_state(dev, "default");
/*
* Load, start up, and configure system controller firmware while
* also populating the SYSFW post-PM configuration callback hook.
*/
k3_sysfw_loader(false, k3_mmc_stop_clock, k3_mmc_restart_clock);
/* Prepare console output */
preloader_console_init();
/* Disable ROM configured firewalls right after loading sysfw */
#ifdef CONFIG_TI_SECURE_DEVICE
remove_fwl_configs(main_cbass_fwls, ARRAY_SIZE(main_cbass_fwls));
remove_fwl_configs(mcu_cbass_fwls, ARRAY_SIZE(mcu_cbass_fwls));
#endif
#else
/* Prepare console output */
preloader_console_init();
#endif
/* Output System Firmware version info */
k3_sysfw_print_ver();
/* Perform EEPROM-based board detection */
do_board_detect();
#if defined(CONFIG_CPU_V7R) && defined(CONFIG_K3_AVS0)
ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(k3_avs),
&dev);
if (ret)
printf("AVS init failed: %d\n", ret);
#endif
#ifdef CONFIG_K3_AM654_DDRSS
ret = uclass_get_device(UCLASS_RAM, 0, &dev);
if (ret)
panic("DRAM init failed: %d\n", ret);
#endif
spl_enable_dcache();
}
u32 spl_mmc_boot_mode(const u32 boot_device)
{
#if defined(CONFIG_SUPPORT_EMMC_BOOT)
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT;
/* eMMC boot0 mode is only supported for primary boot */
if (bootindex == K3_PRIMARY_BOOTMODE &&
bootmode == BOOT_DEVICE_MMC1)
return MMCSD_MODE_EMMCBOOT;
#endif
/* Everything else use filesystem if available */
#if defined(CONFIG_SPL_FS_FAT) || defined(CONFIG_SPL_FS_EXT4)
return MMCSD_MODE_FS;
#else
return MMCSD_MODE_RAW;
#endif
}
static u32 __get_backup_bootmedia(u32 devstat)
{
u32 bkup_boot = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_SHIFT;
switch (bkup_boot) {
case BACKUP_BOOT_DEVICE_USB:
return BOOT_DEVICE_USB;
case BACKUP_BOOT_DEVICE_UART:
return BOOT_DEVICE_UART;
case BACKUP_BOOT_DEVICE_ETHERNET:
return BOOT_DEVICE_ETHERNET;
case BACKUP_BOOT_DEVICE_MMC2:
{
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_SHIFT;
if (port == 0x0)
return BOOT_DEVICE_MMC1;
return BOOT_DEVICE_MMC2;
}
case BACKUP_BOOT_DEVICE_SPI:
return BOOT_DEVICE_SPI;
case BACKUP_BOOT_DEVICE_HYPERFLASH:
return BOOT_DEVICE_HYPERFLASH;
case BACKUP_BOOT_DEVICE_I2C:
return BOOT_DEVICE_I2C;
};
return BOOT_DEVICE_RAM;
}
static u32 __get_primary_bootmedia(u32 devstat)
{
u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT;
if (bootmode == BOOT_DEVICE_OSPI || bootmode == BOOT_DEVICE_QSPI)
bootmode = BOOT_DEVICE_SPI;
if (bootmode == BOOT_DEVICE_MMC2) {
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_MMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_MMC_PORT_SHIFT;
if (port == 0x0)
bootmode = BOOT_DEVICE_MMC1;
} else if (bootmode == BOOT_DEVICE_MMC1) {
u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_MASK) >>
CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_SHIFT;
if (port == 0x1)
bootmode = BOOT_DEVICE_MMC2;
} else if (bootmode == BOOT_DEVICE_DFU) {
u32 mode = (devstat & CTRLMMR_MAIN_DEVSTAT_USB_MODE_MASK) >>
CTRLMMR_MAIN_DEVSTAT_USB_MODE_SHIFT;
if (mode == 0x2)
bootmode = BOOT_DEVICE_USB;
}
return bootmode;
}
u32 spl_boot_device(void)
{
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
if (bootindex == K3_PRIMARY_BOOTMODE)
return __get_primary_bootmedia(devstat);
else
return __get_backup_bootmedia(devstat);
}
#endif
#ifdef CONFIG_SYS_K3_SPL_ATF
#define AM6_DEV_MCU_RTI0 134
#define AM6_DEV_MCU_RTI1 135
#define AM6_DEV_MCU_ARMSS0_CPU0 159
#define AM6_DEV_MCU_ARMSS0_CPU1 245
void release_resources_for_core_shutdown(void)
{
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
struct ti_sci_dev_ops *dev_ops = &ti_sci->ops.dev_ops;
struct ti_sci_proc_ops *proc_ops = &ti_sci->ops.proc_ops;
int ret;
u32 i;
const u32 put_device_ids[] = {
AM6_DEV_MCU_RTI0,
AM6_DEV_MCU_RTI1,
};
/* Iterate through list of devices to put (shutdown) */
for (i = 0; i < ARRAY_SIZE(put_device_ids); i++) {
u32 id = put_device_ids[i];
ret = dev_ops->put_device(ti_sci, id);
if (ret)
panic("Failed to put device %u (%d)\n", id, ret);
}
const u32 put_core_ids[] = {
AM6_DEV_MCU_ARMSS0_CPU1,
AM6_DEV_MCU_ARMSS0_CPU0, /* Handle CPU0 after CPU1 */
};
/* Iterate through list of cores to put (shutdown) */
for (i = 0; i < ARRAY_SIZE(put_core_ids); i++) {
u32 id = put_core_ids[i];
/*
* Queue up the core shutdown request. Note that this call
* needs to be followed up by an actual invocation of an WFE
* or WFI CPU instruction.
*/
ret = proc_ops->proc_shutdown_no_wait(ti_sci, id);
if (ret)
panic("Failed sending core %u shutdown message (%d)\n",
id, ret);
}
}
#endif