blob: 3c20f3d0033b326b5fa698d1a3f96e9feebf0f77 [file] [log] [blame]
/*
* Based on drivers/usb/gadget/omap1510_udc.c
* TI OMAP1510 USB bus interface driver
*
* (C) Copyright 2009
* Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <usbdevice.h>
#include "ep0.h"
#include <usb/designware_udc.h>
#include <asm/arch/hardware.h>
#define UDC_INIT_MDELAY 80 /* Device settle delay */
/* Some kind of debugging output... */
#ifndef DEBUG_DWUSBTTY
#define UDCDBG(str)
#define UDCDBGA(fmt, args...)
#else
#define UDCDBG(str) serial_printf(str "\n")
#define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
#endif
static struct urb *ep0_urb;
static struct usb_device_instance *udc_device;
static struct plug_regs *const plug_regs_p =
(struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
static struct udc_regs *const udc_regs_p =
(struct udc_regs * const)CONFIG_SYS_USBD_BASE;
static struct udc_endp_regs *const outep_regs_p =
&((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
static struct udc_endp_regs *const inep_regs_p =
&((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
/*
* udc_state_transition - Write the next packet to TxFIFO.
* @initial: Initial state.
* @final: Final state.
*
* Helper function to implement device state changes. The device states and
* the events that transition between them are:
*
* STATE_ATTACHED
* || /\
* \/ ||
* DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
* || /\
* \/ ||
* STATE_POWERED
* || /\
* \/ ||
* DEVICE_RESET DEVICE_POWER_INTERRUPTION
* || /\
* \/ ||
* STATE_DEFAULT
* || /\
* \/ ||
* DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
* || /\
* \/ ||
* STATE_ADDRESSED
* || /\
* \/ ||
* DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
* || /\
* \/ ||
* STATE_CONFIGURED
*
* udc_state_transition transitions up (in the direction from STATE_ATTACHED
* to STATE_CONFIGURED) from the specified initial state to the specified final
* state, passing through each intermediate state on the way. If the initial
* state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
* no state transitions will take place.
*
* udc_state_transition also transitions down (in the direction from
* STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
* specified final state, passing through each intermediate state on the way.
* If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
* state, then no state transitions will take place.
*
* This function must only be called with interrupts disabled.
*/
static void udc_state_transition(usb_device_state_t initial,
usb_device_state_t final)
{
if (initial < final) {
switch (initial) {
case STATE_ATTACHED:
usbd_device_event_irq(udc_device,
DEVICE_HUB_CONFIGURED, 0);
if (final == STATE_POWERED)
break;
case STATE_POWERED:
usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
if (final == STATE_DEFAULT)
break;
case STATE_DEFAULT:
usbd_device_event_irq(udc_device,
DEVICE_ADDRESS_ASSIGNED, 0);
if (final == STATE_ADDRESSED)
break;
case STATE_ADDRESSED:
usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
case STATE_CONFIGURED:
break;
default:
break;
}
} else if (initial > final) {
switch (initial) {
case STATE_CONFIGURED:
usbd_device_event_irq(udc_device,
DEVICE_DE_CONFIGURED, 0);
if (final == STATE_ADDRESSED)
break;
case STATE_ADDRESSED:
usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
if (final == STATE_DEFAULT)
break;
case STATE_DEFAULT:
usbd_device_event_irq(udc_device,
DEVICE_POWER_INTERRUPTION, 0);
if (final == STATE_POWERED)
break;
case STATE_POWERED:
usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
case STATE_ATTACHED:
break;
default:
break;
}
}
}
/* Stall endpoint */
static void udc_stall_ep(u32 ep_num)
{
writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
&inep_regs_p[ep_num].endp_cntl);
writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
&outep_regs_p[ep_num].endp_cntl);
}
static void *get_fifo(int ep_num, int in)
{
u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
switch (ep_num) {
case UDC_EP3:
fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
/* break intentionally left out */
case UDC_EP1:
fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
/* break intentionally left out */
case UDC_EP0:
default:
if (in) {
fifo_ptr +=
readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
/* break intentionally left out */
} else {
break;
}
case UDC_EP2:
fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
/* break intentionally left out */
}
return (void *)fifo_ptr;
}
static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
{
u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
u32 i, nw, nb;
u32 *wrdp;
u8 *bytp;
if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
return -1;
nw = len / sizeof(u32);
nb = len % sizeof(u32);
wrdp = (u32 *)bufp;
for (i = 0; i < nw; i++) {
writel(readl(fifo_ptr), wrdp);
wrdp++;
}
bytp = (u8 *)wrdp;
for (i = 0; i < nb; i++) {
writeb(readb(fifo_ptr), bytp);
fifo_ptr++;
bytp++;
}
readl(&outep_regs_p[epNum].write_done);
return 0;
}
static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
{
u32 i, nw, nb;
u32 *wrdp;
u8 *bytp;
u8 *fifo_ptr = get_fifo(epNum, 1);
nw = len / sizeof(int);
nb = len % sizeof(int);
wrdp = (u32 *)bufp;
for (i = 0; i < nw; i++) {
writel(*wrdp, fifo_ptr);
wrdp++;
}
bytp = (u8 *)wrdp;
for (i = 0; i < nb; i++) {
writeb(*bytp, fifo_ptr);
fifo_ptr++;
bytp++;
}
}
/*
* dw_write_noniso_tx_fifo - Write the next packet to TxFIFO.
* @endpoint: Endpoint pointer.
*
* If the endpoint has an active tx_urb, then the next packet of data from the
* URB is written to the tx FIFO. The total amount of data in the urb is given
* by urb->actual_length. The maximum amount of data that can be sent in any
* one packet is given by endpoint->tx_packetSize. The number of data bytes
* from this URB that have already been transmitted is given by endpoint->sent.
* endpoint->last is updated by this routine with the number of data bytes
* transmitted in this packet.
*
*/
static void dw_write_noniso_tx_fifo(struct usb_endpoint_instance
*endpoint)
{
struct urb *urb = endpoint->tx_urb;
int align;
if (urb) {
u32 last;
UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
urb->buffer, urb->buffer_length, urb->actual_length);
last = MIN(urb->actual_length - endpoint->sent,
endpoint->tx_packetSize);
if (last) {
u8 *cp = urb->buffer + endpoint->sent;
/*
* This ensures that USBD packet fifo is accessed
* - through word aligned pointer or
* - through non word aligned pointer but only
* with a max length to make the next packet
* word aligned
*/
align = ((ulong)cp % sizeof(int));
if (align)
last = MIN(last, sizeof(int) - align);
UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
endpoint->sent, endpoint->tx_packetSize, last);
usbputpcktofifo(endpoint->endpoint_address &
USB_ENDPOINT_NUMBER_MASK, cp, last);
}
endpoint->last = last;
}
}
/*
* Handle SETUP USB interrupt.
* This function implements TRM Figure 14-14.
*/
static void dw_udc_setup(struct usb_endpoint_instance *endpoint)
{
u8 *datap = (u8 *)&ep0_urb->device_request;
int ep_addr = endpoint->endpoint_address;
UDCDBG("-> Entering device setup");
usbgetpckfromfifo(ep_addr, datap, 8);
/* Try to process setup packet */
if (ep0_recv_setup(ep0_urb)) {
/* Not a setup packet, stall next EP0 transaction */
udc_stall_ep(0);
UDCDBG("can't parse setup packet, still waiting for setup");
return;
}
/* Check direction */
if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
== USB_REQ_HOST2DEVICE) {
UDCDBG("control write on EP0");
if (le16_to_cpu(ep0_urb->device_request.wLength)) {
/* Stall this request */
UDCDBG("Stalling unsupported EP0 control write data "
"stage.");
udc_stall_ep(0);
}
} else {
UDCDBG("control read on EP0");
/*
* The ep0_recv_setup function has already placed our response
* packet data in ep0_urb->buffer and the packet length in
* ep0_urb->actual_length.
*/
endpoint->tx_urb = ep0_urb;
endpoint->sent = 0;
/*
* Write packet data to the FIFO. dw_write_noniso_tx_fifo
* will update endpoint->last with the number of bytes written
* to the FIFO.
*/
dw_write_noniso_tx_fifo(endpoint);
writel(0x0, &inep_regs_p[ep_addr].write_done);
}
udc_unset_nak(endpoint->endpoint_address);
UDCDBG("<- Leaving device setup");
}
/*
* Handle endpoint 0 RX interrupt
*/
static void dw_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
{
u8 dummy[64];
UDCDBG("RX on EP0");
/* Check direction */
if ((ep0_urb->device_request.bmRequestType
& USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
/*
* This rx interrupt must be for a control write data
* stage packet.
*
* We don't support control write data stages.
* We should never end up here.
*/
UDCDBG("Stalling unexpected EP0 control write "
"data stage packet");
udc_stall_ep(0);
} else {
/*
* This rx interrupt must be for a control read status
* stage packet.
*/
UDCDBG("ACK on EP0 control read status stage packet");
u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
usbgetpckfromfifo(0, dummy, len);
}
}
/*
* Handle endpoint 0 TX interrupt
*/
static void dw_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
{
struct usb_device_request *request = &ep0_urb->device_request;
int ep_addr;
UDCDBG("TX on EP0");
/* Check direction */
if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
USB_REQ_HOST2DEVICE) {
/*
* This tx interrupt must be for a control write status
* stage packet.
*/
UDCDBG("ACK on EP0 control write status stage packet");
} else {
/*
* This tx interrupt must be for a control read data
* stage packet.
*/
int wLength = le16_to_cpu(request->wLength);
/*
* Update our count of bytes sent so far in this
* transfer.
*/
endpoint->sent += endpoint->last;
/*
* We are finished with this transfer if we have sent
* all of the bytes in our tx urb (urb->actual_length)
* unless we need a zero-length terminating packet. We
* need a zero-length terminating packet if we returned
* fewer bytes than were requested (wLength) by the host,
* and the number of bytes we returned is an exact
* multiple of the packet size endpoint->tx_packetSize.
*/
if ((endpoint->sent == ep0_urb->actual_length) &&
((ep0_urb->actual_length == wLength) ||
(endpoint->last != endpoint->tx_packetSize))) {
/* Done with control read data stage. */
UDCDBG("control read data stage complete");
} else {
/*
* We still have another packet of data to send
* in this control read data stage or else we
* need a zero-length terminating packet.
*/
UDCDBG("ACK control read data stage packet");
dw_write_noniso_tx_fifo(endpoint);
ep_addr = endpoint->endpoint_address;
writel(0x0, &inep_regs_p[ep_addr].write_done);
}
}
}
static struct usb_endpoint_instance *dw_find_ep(int ep)
{
int i;
for (i = 0; i < udc_device->bus->max_endpoints; i++) {
if ((udc_device->bus->endpoint_array[i].endpoint_address &
USB_ENDPOINT_NUMBER_MASK) == ep)
return &udc_device->bus->endpoint_array[i];
}
return NULL;
}
/*
* Handle RX transaction on non-ISO endpoint.
* The ep argument is a physical endpoint number for a non-ISO IN endpoint
* in the range 1 to 15.
*/
static void dw_udc_epn_rx(int ep)
{
int nbytes = 0;
struct urb *urb;
struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
if (endpoint) {
urb = endpoint->rcv_urb;
if (urb) {
u8 *cp = urb->buffer + urb->actual_length;
nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
0xfff;
usbgetpckfromfifo(ep, cp, nbytes);
usbd_rcv_complete(endpoint, nbytes, 0);
}
}
}
/*
* Handle TX transaction on non-ISO endpoint.
* The ep argument is a physical endpoint number for a non-ISO IN endpoint
* in the range 16 to 30.
*/
static void dw_udc_epn_tx(int ep)
{
struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
if (!endpoint)
return;
/*
* We need to transmit a terminating zero-length packet now if
* we have sent all of the data in this URB and the transfer
* size was an exact multiple of the packet size.
*/
if (endpoint->tx_urb &&
(endpoint->last == endpoint->tx_packetSize) &&
(endpoint->tx_urb->actual_length - endpoint->sent -
endpoint->last == 0)) {
/* handle zero length packet here */
writel(0x0, &inep_regs_p[ep].write_done);
}
if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
/* retire the data that was just sent */
usbd_tx_complete(endpoint);
/*
* Check to see if we have more data ready to transmit
* now.
*/
if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
/* write data to FIFO */
dw_write_noniso_tx_fifo(endpoint);
writel(0x0, &inep_regs_p[ep].write_done);
} else if (endpoint->tx_urb
&& (endpoint->tx_urb->actual_length == 0)) {
/* udc_set_nak(ep); */
}
}
}
/*
* Start of public functions.
*/
/* Called to start packet transmission. */
int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
{
udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
return 0;
}
/* Start to initialize h/w stuff */
int udc_init(void)
{
int i;
u32 plug_st;
udc_device = NULL;
UDCDBG("starting");
readl(&plug_regs_p->plug_pending);
for (i = 0; i < UDC_INIT_MDELAY; i++)
udelay(1000);
plug_st = readl(&plug_regs_p->plug_state);
writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
writel(~0x0, &udc_regs_p->endp_int);
writel(~0x0, &udc_regs_p->dev_int_mask);
writel(~0x0, &udc_regs_p->endp_int_mask);
writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
/* Clear all interrupts pending */
writel(DEV_INT_MSK, &udc_regs_p->dev_int);
return 0;
}
/*
* udc_setup_ep - setup endpoint
* Associate a physical endpoint with endpoint_instance
*/
void udc_setup_ep(struct usb_device_instance *device,
u32 ep, struct usb_endpoint_instance *endpoint)
{
UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
int ep_addr;
int ep_num, ep_type;
int packet_size;
int buffer_size;
int attributes;
char *tt;
u32 endp_intmask;
if ((ep != 0) && (udc_device->device_state < STATE_ADDRESSED))
return;
tt = getenv("usbtty");
if (!tt)
tt = "generic";
ep_addr = endpoint->endpoint_address;
ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
/* IN endpoint */
packet_size = endpoint->tx_packetSize;
buffer_size = packet_size * 2;
attributes = endpoint->tx_attributes;
} else {
/* OUT endpoint */
packet_size = endpoint->rcv_packetSize;
buffer_size = packet_size * 2;
attributes = endpoint->rcv_attributes;
}
switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_CONTROL:
ep_type = ENDP_EPTYPE_CNTL;
break;
case USB_ENDPOINT_XFER_BULK:
default:
ep_type = ENDP_EPTYPE_BULK;
break;
case USB_ENDPOINT_XFER_INT:
ep_type = ENDP_EPTYPE_INT;
break;
case USB_ENDPOINT_XFER_ISOC:
ep_type = ENDP_EPTYPE_ISO;
break;
}
struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
if (!ep_addr) {
/* Setup endpoint 0 */
buffer_size = packet_size;
writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
&in_p->endp_cntl);
writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
&out_p->endp_cntl);
writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
writel(packet_size, &in_p->endp_maxpacksize);
writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
writel(packet_size | ((buffer_size / sizeof(int)) << 16),
&out_p->endp_maxpacksize);
} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
/* Setup the IN endpoint */
writel(0x0, &in_p->endp_status);
writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
writel(packet_size, &in_p->endp_maxpacksize);
if (!strcmp(tt, "cdc_acm")) {
if (ep_type == ENDP_EPTYPE_INT) {
/* Conf no. 1 Interface no. 0 */
writel((packet_size << 19) |
ENDP_EPDIR_IN | (1 << 7) |
(0 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
} else {
/* Conf no. 1 Interface no. 1 */
writel((packet_size << 19) |
ENDP_EPDIR_IN | (1 << 7) |
(1 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
}
} else {
/* Conf no. 1 Interface no. 0 */
writel((packet_size << 19) |
ENDP_EPDIR_IN | (1 << 7) |
(0 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
}
} else {
/* Setup the OUT endpoint */
writel(0x0, &out_p->endp_status);
writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
writel(packet_size | ((buffer_size / sizeof(int)) << 16),
&out_p->endp_maxpacksize);
if (!strcmp(tt, "cdc_acm")) {
writel((packet_size << 19) |
ENDP_EPDIR_OUT | (1 << 7) |
(1 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
} else {
writel((packet_size << 19) |
ENDP_EPDIR_OUT | (1 << 7) |
(0 << 11) | (ep_type << 5) | ep_num,
&udc_regs_p->udc_endp_reg[ep_num]);
}
}
endp_intmask = readl(&udc_regs_p->endp_int_mask);
endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
writel(endp_intmask, &udc_regs_p->endp_int_mask);
}
/* Turn on the USB connection by enabling the pullup resistor */
void udc_connect(void)
{
u32 plug_st, dev_cntl;
dev_cntl = readl(&udc_regs_p->dev_cntl);
dev_cntl |= DEV_CNTL_SOFTDISCONNECT;
writel(dev_cntl, &udc_regs_p->dev_cntl);
udelay(1000);
dev_cntl = readl(&udc_regs_p->dev_cntl);
dev_cntl &= ~DEV_CNTL_SOFTDISCONNECT;
writel(dev_cntl, &udc_regs_p->dev_cntl);
plug_st = readl(&plug_regs_p->plug_state);
plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
writel(plug_st, &plug_regs_p->plug_state);
}
/* Turn off the USB connection by disabling the pullup resistor */
void udc_disconnect(void)
{
u32 plug_st;
writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
plug_st = readl(&plug_regs_p->plug_state);
plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
writel(plug_st, &plug_regs_p->plug_state);
}
/* Switch on the UDC */
void udc_enable(struct usb_device_instance *device)
{
UDCDBGA("enable device %p, status %d", device, device->status);
/* Save the device structure pointer */
udc_device = device;
/* Setup ep0 urb */
if (!ep0_urb) {
ep0_urb =
usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
} else {
serial_printf("udc_enable: ep0_urb already allocated %p\n",
ep0_urb);
}
writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
}
/**
* udc_startup - allow udc code to do any additional startup
*/
void udc_startup_events(struct usb_device_instance *device)
{
/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
usbd_device_event_irq(device, DEVICE_INIT, 0);
/*
* The DEVICE_CREATE event puts the USB device in the state
* STATE_ATTACHED.
*/
usbd_device_event_irq(device, DEVICE_CREATE, 0);
/*
* Some USB controller driver implementations signal
* DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
* DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
* and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
* The DW USB client controller has the capability to detect when the
* USB cable is connected to a powered USB bus, so we will defer the
* DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
*/
udc_enable(device);
}
/*
* Plug detection interrupt handling
*/
void dw_udc_plug_irq(void)
{
if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
/*
* USB cable attached
* Turn off PHY reset bit (PLUG detect).
* Switch PHY opmode to normal operation (PLUG detect).
*/
udc_connect();
writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
UDCDBG("device attached and powered");
udc_state_transition(udc_device->device_state, STATE_POWERED);
} else {
writel(~0x0, &udc_regs_p->dev_int_mask);
UDCDBG("device detached or unpowered");
udc_state_transition(udc_device->device_state, STATE_ATTACHED);
}
}
/*
* Device interrupt handling
*/
void dw_udc_dev_irq(void)
{
if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
writel(~0x0, &udc_regs_p->endp_int_mask);
writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
&inep_regs_p[0].endp_cntl);
writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
/*
* This endpoint0 specific register can be programmed only
* after the phy clock is initialized
*/
writel((EP0_MAX_PACKET_SIZE << 19) | ENDP_EPTYPE_CNTL,
&udc_regs_p->udc_endp_reg[0]);
UDCDBG("device reset in progess");
udc_state_transition(udc_device->device_state, STATE_DEFAULT);
}
/* Device Enumeration completed */
if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
/* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
&udc_regs_p->endp_int_mask);
UDCDBG("default -> addressed");
udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
}
/* The USB will be in SUSPEND in 3 ms */
if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
UDCDBG("entering inactive state");
/* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
}
/* SetConfiguration command received */
if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
UDCDBG("entering configured state");
udc_state_transition(udc_device->device_state,
STATE_CONFIGURED);
}
/* SetInterface command received */
if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
/* USB Suspend detected on cable */
if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
UDCDBG("entering suspended state");
usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
}
/* USB Start-Of-Frame detected on cable */
if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
writel(DEV_INT_SOF, &udc_regs_p->dev_int);
}
/*
* Endpoint interrupt handling
*/
void dw_udc_endpoint_irq(void)
{
while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
== ENDP_STATUS_OUT_SETUP) {
dw_udc_setup(udc_device->bus->endpoint_array + 0);
writel(ENDP_STATUS_OUT_SETUP,
&outep_regs_p[0].endp_status);
} else if ((readl(&outep_regs_p[0].endp_status) &
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
dw_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
writel(ENDP_STATUS_OUT_DATA,
&outep_regs_p[0].endp_status);
} else if ((readl(&outep_regs_p[0].endp_status) &
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
/* NONE received */
}
writel(0x0, &outep_regs_p[0].endp_status);
}
if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
dw_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
}
if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
u32 epnum = 0;
u32 ep_int = readl(&udc_regs_p->endp_int) &
ENDP_INT_NONISOOUT_MSK;
ep_int >>= 16;
while (0x0 == (ep_int & 0x1)) {
ep_int >>= 1;
epnum++;
}
writel((1 << 16) << epnum, &udc_regs_p->endp_int);
if ((readl(&outep_regs_p[epnum].endp_status) &
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
dw_udc_epn_rx(epnum);
writel(ENDP_STATUS_OUT_DATA,
&outep_regs_p[epnum].endp_status);
} else if ((readl(&outep_regs_p[epnum].endp_status) &
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
writel(0x0, &outep_regs_p[epnum].endp_status);
}
}
if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
u32 epnum = 0;
u32 ep_int = readl(&udc_regs_p->endp_int) &
ENDP_INT_NONISOIN_MSK;
while (0x0 == (ep_int & 0x1)) {
ep_int >>= 1;
epnum++;
}
if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
writel(ENDP_STATUS_IN,
&outep_regs_p[epnum].endp_status);
dw_udc_epn_tx(epnum);
writel(ENDP_STATUS_IN,
&outep_regs_p[epnum].endp_status);
}
writel((1 << epnum), &udc_regs_p->endp_int);
}
}
/*
* UDC interrupts
*/
void udc_irq(void)
{
/*
* Loop while we have interrupts.
* If we don't do this, the input chain
* polling delay is likely to miss
* host requests.
*/
while (readl(&plug_regs_p->plug_pending))
dw_udc_plug_irq();
while (readl(&udc_regs_p->dev_int))
dw_udc_dev_irq();
if (readl(&udc_regs_p->endp_int))
dw_udc_endpoint_irq();
}
/* Flow control */
void udc_set_nak(int epid)
{
writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
&inep_regs_p[epid].endp_cntl);
writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
&outep_regs_p[epid].endp_cntl);
}
void udc_unset_nak(int epid)
{
u32 val;
val = readl(&inep_regs_p[epid].endp_cntl);
val &= ~ENDP_CNTL_SNAK;
val |= ENDP_CNTL_CNAK;
writel(val, &inep_regs_p[epid].endp_cntl);
val = readl(&outep_regs_p[epid].endp_cntl);
val &= ~ENDP_CNTL_SNAK;
val |= ENDP_CNTL_CNAK;
writel(val, &outep_regs_p[epid].endp_cntl);
}